Chapter 1

Essentials

Five great strengths of S are its variety of objects, its vector orientation, the
power of subscripting, object-oriented programming and graphics. Each of these
is explored before turning to other matters.

A powerful and fairly unique part of S that will be addressed in later chapters
is the possibility of computing on the language. Essentially everything in S—
for instance, a call to a function—is an S object. One viewpoint is that S has
self-knowledge. This self-awareness makes a lot of things possible in S that are
not in other languages.

Of fundamental importance is that S is a language. This makes S much
more useful than if it were merely a “package” for statistics or graphics or
mathematics. Imagine if English were not a language, but merely a collection of
words that could only be used individually—a package. Then what is expressed
in this sentence is far more complex than any meaning that could be expressed
with the English package.

1.1 Objects

I briefly outline the important types of objects that exist in S. All objects possess
a length and a mode. While the length of an object is generally straightforward,
the mode is more arbitrary. The concept of mode should become clear as
examples unfold.

The most basic object is an atomic vector—often merely called a vector.
The atomic modes to speak of are—numeric, logical, character and complex. If
an object is atomic, then each element has the same mode. There is no such
thing as an atomic vector that contains both numbers and logicals.

The length of a vector is the number of elements it contains. For example,
the length of a numeric or complex vector says how many numbers are contained
in the object.

2 CHAPTER 1. ESSENTIALS

Although S does distinguish between double-precision floating-point num-
bers, single-precision floating-point numbers and integers, S considers this a
detail that should not concern the user. Only when you are interfacing to C or
Fortran is it an issue. In S there is no difference between writing 1 and 1.0.

In addition to the usual numbers, numeric objects may contain NAs and
Infs. There are two flavors of NA, the usual type means “missing value”. The
other NA is NaN, meaning “Not-a-Number”—these occur through mathematical
operations such as zero divided by zero, and infinity minus infinity. You can
distinguish NaNs from ordinary NAs with the is.nan function. An Inf is an
infinite value and, for numeric data, may be either positive or negative. You
may initially think that these special values are burdensome, but in fact they
eliminate a great deal of bother.

Objects of mode complex contain complex numbers. The imaginary part of

a complex number is written with an “i” at the end. An example of a complex
vector of length 2 is:

c(1+3i, 2.4-8.71)

Complex vectors have special values analogous to those for numeric objects.

There are three logical values: TRUE, FALSE and NA. TRUE is also written T,
and similarly, FALSE can be written F.

Each element of a vector of mode character is a character string. Each
string contains an arbitrary number of characters. There is not a missing value
for mode character—often the empty string is used where a missing value is fit-
ting. The backslash is a special character—rather than meaning “backslash”, it
is the escape. For example, "\\" means “backslash” and "\n" means “newline”.
Character strings are surrounded by either double quotes or single quotes. If
double quotes are used, then a double quote within the string needs a backslash
in front of it. Likewise, a single quote needs to be escaped if the string is de-
limited by single quotes. Double quotes are always used when character vectors
are printed.

> c("single ’ quote", ’double " quote’,
+ "double \" quote", ’single \’ quote’)
[1] "single ’ quote" "double \" quote"
[3] "double \" quote" "single ’ quote"

There are a few other characters that are formed by following a backslash with

another character. A backslash followed by a triple of octal digits gives the
corresponding ASCII code.

There is one more object that is classified as atomic—NULL. Just as zero is

S Poetry (©1998 Patrick J. Burns v1.0

1.1. OBJECTS 3

a very important number, an object that stands for “nothing” is a powerful
instrument.

Since everything in an atomic vector must be of one type, they are pleasantly
simple, but limited in applicability. To put various types into a single object,
you need a list. Lists are objects of mode 1list and the length of a list is the
number of components it contains. Each component of a list is another S object.

For example, the first component may be a numeric vector of length 20, the
second component a character vector of length 3, and the third component a
list of length 24. (Note that Becker, Chambers and Wilks (1988, p112) use the
word “component” only when it is named, but I use it no matter what.)

The availability of lists in S is a very powerful feature—it sets it apart from
much other software. One more thing allows an even richer set of objects in S.

Each object may have a set of attributes. The attributes of an object is a list
in which each component has a name. You can imagine each S object having a
hook where the attributes list hangs—some objects have nothing there, others
have quite involved lists there.

S understands some attributes internally—the names attribute is an exam-
ple. The names of an object is a vector of character strings that has the same
length as the object. Suppose we issue the command:

jjew <= c(stevie=4, munchkin=2)

The object named jjcw is a numeric vector of length 2. Its attributes are a list
with 1 component named "names", which is a character vector of length 2.

Arrays provide a good example of attributes. A matriz—a rectangular ar-
rangement of elements—is a two-dimensional array. The S notion of array gen-
eralizes matrices from two dimensions to an arbitrary number of dimensions. An
S array is merely a vector that has a dim attribute, and optionally a dimnames
attribute. The dim is a vector of integers; the length of the dim is the dimension
of the array, and the elements tell how many rows, columns, etc. are in the
array. The product of the elements in the dim must equal the length of the
object. Thus a matrix has a dim attribute of length 2. The dimnames provide
names along each dimension.

By adding just the dim attribute, we get an object that has a quite different
nature. You have the ability to give objects any attributes, so that they can
take on whatever nature you choose. The class attribute is the granddaddy
attribute of them all. This is what drives the object-oriented programming,
which we will come to shortly. The shapes a bright container can contain! !

There are additional types of objects in S, many of which will be discussed
later. But we already have all the basics—mode, length and attributes define
an object.

S Poetry (©1998 Patrick J. Burns v1.0

4 CHAPTER 1. ESSENTIALS

Many objects are given names. Although there are ways of using almost
any name, generally objects are given “valid” S names. A valid name contains
only alphanumeric characters and periods. The first digit, if any, in the name
must be preceded by an alphabetic character. Capital letters are distinct from
lower-case characters. Assignment functions, like dim<- do not have “valid”
names so special measures need to be used at times when working with them.
See valid.s.name on page 279.

One particular object is .Last.value which is essentially the last value that
was not given a name. For instance, if you decide that you should have assigned
the last command to an object name, then you can do something like:

> jj <- .Last.value

1.2 Vectorization

Many S functions are wvectorized, meaning that they operate on each of the
elements of a vector. For example, the command log(x) returns a vector that
is the same length as x; each element of the result is the natural logarithm of
the corresponding element in x.

Vectorization tends to be frightening to new users, and taken for granted by
experienced users. That users become unconscious of the fact that log(x) is
shorthand for a whole series of operations is testimony to the power of vector-
ization. Drinking my juices up >

The arithmetic operators in S are vectorized. If x and y are the same length,
then x+y returns a vector in which each element is the sum of the corresponding
elements in x and y. Additionally the command x+2 returns a vector as long as
x containing two plus the corresponding element of x.

The main source of confusion is when the two vectors are not the same length
and neither has length 1. The rule is that the shorter vector is replicated to be
the length of the longer vector. Replication (as done by the rep function and
implicitly done by the arithmetic operators) means to keep re-using the elements
in order until the result is the proper length. The x+2 example is really a case
of this—the length one vector containing 2 is replicated to the length of x.

Consider the command:
x ~ (2:3)

If x is 1 long, then the result is length 2 with the first element being the square
of the element in x and the second being its cube. If x has length 2, then
the result is again length 2 with the first element being the square of the first
element of x and the second element being the cube of the second element of x.
More generally, suppose x has length 2n. Then the result is the same length as
x and element 27 of the result will be the cube of element 2i of x, and element

S Poetry (©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING)

2i — 1 of the result will be the square of element 2i — 1 of x. The same is true
when x has length 2n + 1, but in this case you will also get a warning that
the longer length is not an even multiple of the shorter length. Here is such a
warning with a different command:

>1:4 + 5:1
[1] 6 6 662
Warning messages:
Length of longer object is not a multiple of the
length of the shorter object in: 1:4 + 5:1

It is often the case that something is wrong when such a warning appears.

1.3 Subscripting

The term subscripting refers to the extraction or replacement of parts of objects.
A first step in mastering S is to thoroughly understand subscripting.

There are a number of ways of subscripting. Each possibility is described
below. If the expression that contains the subscripting is on the left-hand side
of an assignment, then the values are replaced, otherwise they are merely ex-
tracted.

value <- x[sub] # extraction
x[sub] <- value # replacement

In what follows, I often speak in terms of extraction, but replacement is analo-
gous (except where noted).

[with positive numbers

A single square bracket with positive numbers extracts the elements with indices
equal to the numbers. For example, the command

state.name[1:5]

extracts the first five state names. The result is usually the length of the numeric
vector that is inside the brackets. There is no constraint on the length of the
subscripting vector or the number of times any particular index appears.

The subscripting numbers are coerced to be integer before subscripting is
attempted. The actual rule on the length of the result is that it is the length
of the integer subscripting vector after zeros have been removed. Elements that
are NA or larger than the length of the vector being subscripted create NAs (or
empty strings) in the result.

S Poetry (©1998 Patrick J. Burns v1.0

6 CHAPTER 1. ESSENTIALS

If you perform a replacement and a subscript is larger than the length of the
subscripted vector, then the vector will be as long as the largest subscript and
any elements not given a value will be NA. For example:

> jj <= 1:5
> jj[10] <- 34.4
> i
[1] 1.0 2.0 3.0 4.0 5.0 NA NA NA NA 34.4

[with negative numbers

When the vector inside the square brackets contains negative numbers, then all
but the specified elements are selected. The command:

state.name[-c(1, 50)]

returns the names of all of the states except the first and the 50th.

Elements of the subscripting vector that are zero, repeated, or beyond the
length of the vector are ignored. A missing value in the subscripting vector
creates an error. If there is a mix of positive and negative subscripts, you will
get an error.

[with characters

The subscripting vector can be character, in which case it corresponds to the
names of the vector. You do not need the names to match completely, the strings
in the subscripting vector only need enough of the first part of each name so
that it is uniquely identified. It is a general feature of S that if there is a finite
population of character strings from which to pick, then you can abbreviate:

> jjcw
stevie munchkin

4 2
> jjcw["stevie"]
stevie

4
> jjewl"st"]
stevie

4

DANGER. Be careful when performing a replacement. If you do not use the
full name, then you will end up with both the original value and the new value
with the shortened name:

S Poetry (©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 7

> jjew["st"] <- 6

> jjew

stevie munchkin st
4 2 6

[with logicals
The command
x [x>0]

is an example of subscripting with a logical vector. When the subscripting
vector is logical, it is implicitly replicated to be the same length as the vector
being subscripted. The result of the subscripting operation will be as long as
the number of TRUE and NA elements in the subscripting vector. An NA in the
subscripting vector implies an NA in the result.

The naturalness and simplicity of this form of subscripting belie its great
utility. Here are a few tragically inadequate examples:

jjseq <- 1:100
jjeven <- rep(c(F, T), length=100)
jjthree <- rep(c(F, F, T), length=100)
jjseqljjeven]

[1] 2 4 6 8 10 12 14 16 18 20 22 24
[13] 26 28 30 32 34 36 38 40 42 44 46 48
[25] 50 52 54 56 58 60 62 64 66 68 70 72
[37] 74 76 78 80 82 84 86 838 90 92 94 96
[49] 98 100

> jjseqljjeven & jjthree] # divisible by 6

[1] 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
> jjseqljjeven | jjthree]

[1] 2 3 4 6 8 9 10 12 14 15 16 18
[13] 20 21 22 24 26 27 28 30 32 33 34 36
[25] 38 39 40 42 44 45 46 48 50 51 52 54
[37] 56 57 58 60 62 63 64 66 68 69 70 72
[49] 74 75 76 78 80 81 82 84 86 87 88 90
[61] 92 93 94 96 98 99 100

vV V V V

DANGER. Here is a puzzle that you may run into at some point.

> jjwt2
dorothy harold munchkin stevie

S Poetry (©1998 Patrick J. Burns v1.0

8 CHAPTER 1. ESSENTIALS

14 15 2 4
> jjwt2[jjsubw] <- 21:22
Warning messages:
Replacement length not a multiple of number of
elements to replace in: jjwt2[jjsubw] <- 21:22
> length(jjwt2[jjsubw])
(1] 2
> length(21:22)
[1] 2

Both sides of the assignment are the same length, so we think that S must surely
be going crazy. However, once we look at the subscripting vector, the situation
starts to become clear.

> jjsubw

[1] F TNA F

> jjwt2

dorothy harold munchkin stevie
14 21 2 4

The missing value in the subscripting vector counts in extraction, but not in
replacement.

The p.replace function on page 73 contains examples that are perhaps more
enlightening. The match function can be used to perform similar operations with
subscripting—see page 71.

The $ operator

The $ operator is the most common way to extract a component from a list. On
the left is the name of the list, and on the right is the name of the component of
interest. As in subscripting with character vectors, the component name only
needs enough of the start to be uniquely identified.

> .Machine$double.eps
[1] 2.220446e-16

> .Machine$double.ep
[1] 2.220446e-16

> .Machine$double.e
NULL

You may be surprised about the result of the last command. There is more than
one component of .Machine that partially matches "double.e":

> names(.Machine) [grep("double.e", names(.Machine))]
[1] "double.eps" "double.exponent"

S Poetry (©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 9

In such a case, the match has to be exact or NULL is returned. It is of significance
that an error does not occur.

DANGER. The caveat about abbreviating when doing a replacement applies
here also. So don’t do it.

>3]
$abc:
[11 123456789

> jisa

[11 123456789
> jj%a <- 3456

>3]

$abc:

[1] 123456789

$a:
[1] 3456

[l

The $ operator could be removed from the S language without reducing function-
ality. The [[operator does everything that $ does and more. The statement
.Machine$double.eps is precisely the same as .Machine[["double.eps"]].
The former is 5 characters shorter and is prettier—that’s the entire difference.

If the component has no name, then $ can not be used—you must use [[
with a numeric index.

Also use [[if the subscripting object is the name of an object that contains
what you want to subscript. The statement x$compname which is equivalent
to x[["compname"]] is distinct from x[[compname]l]. When the latter is the
correct formulation, compname will be a length 1 vector that is either a positive
integer or a character string of the (start of the) name of one of the components
of x.

DANGER. Although I've presented the [operator as if it worked just on
atomic vectors, it in fact works on lists (and lots of other objects) also. Beware
the difference between x[[1]] and x[1]. The first gives you the first component
of x, and the second gives you a list of length 1 whose component is the first
component of x. Look at the difference:

> .Machine[[1]]

S Poetry (©1998 Patrick J. Burns v1.0

10 CHAPTER 1. ESSENTIALS

[1] 2.220446e-16
> .Machine[1]
$double.eps:

[1] 2.220446e-16

The [[operator always gets a single component (while [may get any num-
ber). A specialized use of [[allows the subscripting vector to have length more
than 1, this is discussed on page 203.

Subscripted arrays

Arrays and data frames have special subscripting capabilities—each dimension
may be subscripted independently. The subscripting vector for each dimen-
sion can be any of the forms given for [above. Note, though, that character
subscripting vectors now refer to dimnames rather than names. An example is:

state.x77[1:5, c("Area", "Pop")]

If you subscript an array and one or more dimensions are only 1 long, then
those dimensions are dropped. For example

state.x77[1:5, "Area"]

will be an ordinary vector and not a matrix. The array iris is three-dimensional,
and

iris[1:2, 1:2, 4]
will be a matrix while
iris[1:2, 2, 4]

will just be a vector. If this is not the behavior you want, then use drop=F in
the subscript. For example

iris[1:2, 2, 4, drop=F]

remains a three-dimensional array.

DANGER. Dimension dropping is a common source of intermittent bugs.
Without the drop=F the code works fine as long as the array keeps the shape
that the programmer expected, but there is trouble as soon as one of the sub-
scripted dimensions has length 1. When subscripting an array in a function
definition, it is good practice to explicitly specify whether drop should be TRUE

S Poetry (©1998 Patrick J. Burns v1.0

1.3. SUBSCRIPTING 11

or FALSE.

When subscripting an array, you can always use just a single subscripting
vector which treats the object as if it did not have dimensions. An array is a
vector with the elements wrapped into the dimensions. A matrix has consecutive
elements running down the columns. So if x is a matrix with 5 rows, then the
expression x[5:7] picks out the 5th row of the first column and the first two
rows of the second column . The first dimension of an array moves fastest and
the last dimension moves slowest. You can see the pattern by issuing a command
like:

array(1:24, 4:2)

This flexibility with subscripting can lead to bugs if commas are forgotten.

Data frames are really lists in which each component is the contents of a
column, so subscripting a data frame with a single subscripting vector is thinking
of the object as this list.

DANGER. Unlike ordinary vectors, arrays may not be assigned an out of
bounds value. Compare:

jj <= 1:3; jjI8] <= 9; jj

>[1] 1 2 3 NA 9

jjm <- as.matrix(1:3); jjm[5,1] <- 9; jjm

Error in jjm[5, 1] <- 9: Array subscript (5) out of
bounds, should be at most 3

vV V V V

The first works while the second creates an error. A logical reason for this dis-
crepancy is that increasing a dimension of an array is much more involved than
increasing the length of a vector. If you want to make sure that assignments
will be in bounds, you can coerce to an array.

[with a matrix

The methods of subscripting arrays that I have described have the constraint
that the result also looks like an array. But we may want to select elements that

S Poetry (©1998 Patrick J. Burns v1.0

12 CHAPTER 1. ESSENTIALS

appear “at random”. It is possible to think of the problem in terms of a single
subscripting vector, but there may be information from the array that is useful.

Here’s an example. Suppose that we want to replace the smallest value in
each row of a matrix. So we know that we want to subscript once from each
row, but there is no one column to pick.

The solution is to subscript with a matrix. A matrix can be used only as the
subscripter of an array. The number of columns of the subscripting matrix must
equal the number of dimensions in the array being subscripted, and the number
of rows of the subscripting matrix is the number of elements being subscripted.
The numbers in the subscripting matrix should be positive.

Here is a function that solves the smallest value replacement problem.

"fjjrowmin"<-
function(xmat, new=-Inf)

{
rmin <- apply(xmat, 1, function(x) order(x)[1])
xmat [cbind(1:nrow(xmat), rmin)] <- new
xmat

}

In this function rmin has an element corresponding to each row of the in-
put xmat. Each element of rmin is the position (column) within the row that
contains the smallest value in that row of xmat. A two-column matrix is then
created with cbind.

The incidmat.mathgraph function on page 312 provides another example
of this form of subscripting.

DANGER. Many versions of S do not allow a subscripting matrix to be char-
acter. This is a bug (in my opinion) since character subscripts are equivalent to
positive numeric subscripts.

Note that a logical matrix as a subscript is treated the same as if it were an
ordinary vector. Otherwise

xmat [xmat < 0] <- NA

would not work in the useful way it does.

Empty subscripts
Subscripting vectors may be missing—meaning (perhaps ironically) everything

is included as is. The most common use of this is when subscripting arrays.
The command

S Poetry (©1998 Patrick J. Burns v1.0

1.4. OBJECT-ORIENTED PROGRAMMING 13

state.x77[1:5, 1]

returns the first 5 rows and all of the columns of state.x77.

An empty subscript can be useful for ordinary vectors also. The command
x[1 <=0

replaces each element of x with 0, but leaves its attributes (such as names)
alone. Thus it is often different than

x <- rep(0, length(x))

DANGER. A missing subscripting vector is decidedly different than a zero
length vector such as NULL. If the subscripting vector is NULL (actually atomic
and zero length), then the result has zero length.

1.4 Object-Oriented Programming

The idea of object-oriented programming is simple, but carries a lot of weight.
Here’s the whole thing: if you told a group of people “dress for work”, then
you would expect each to put on clothes appropriate for that individual’s job.
Likewise it is possible for S objects to get dressed appropriately depending on
what class of object they are.

When a data frame is printed, it looks like a matrix. The print function
is using object-orientation to make that happen. Though the actual structure
of a data frame and a matrix is very different, the concepts of data frame and
matrix are almost identical. Thus it is appropriate that they look the same
when printed.

Object-orientation simplifies. If you want to print an object, you don’t need
to find out what type of object it is, then try to remember the proper function
to use on that type of object, then do it. You merely use print and the right
thing happens.

It can also simplify programming. Programming is simplified for the reason
above, plus it also suggests a proper ensemble of functions to write for a par-
ticular application. Furthermore, inheritance allows a very productive way to
leverage existing code.

Version 4 of S has changed some of the mechanics of how object-orientation
is achieved, but the version 3 approach works in version 4. What follows is
how version 3 does it.

Some functions are generic—print is an example—meaning that the action
depends on the type of object given as an argument. Generic functions have

S Poetry (©1998 Patrick J. Burns v1.0

14 CHAPTER 1. ESSENTIALS

one or more methods. A method is the function that is actually used when a
generic function is called. It is the "class" attribute of an argument (usually
the first argument) that determines which of the possible methods will be used.

If the object does not have a "class" attribute, then the default method
is indicated. The class of an object is a character vector. Each element of
the class is examined in turn until one matches a method. If no element of
the class matches a method, then the default method is used. (Whenever the
default method is called for and it does not exist, an error occurs.) In version
3 the name of a method is the name of the generic function followed by a
period followed by the name of the class. So the print method for data frames
(class "data.frame") is print.data.frame and the default print method is
print.default. Version 4 allows more flexible naming.

Inheritance results from a class attribute longer than 1. If an object’s class
has length 2, then the first class inherits from the second. Suppose that you
want to create a class of object that looks like a data frame, but contains a
specific type of data. Remember that the class vector goes from specific to
general, so the class could be something like:

c("my.dframe", "data.frame")

You could write methods for some generic functions, perhaps print and summary,
but not others that you plan to use, like [(subscripting), so that the data frame
method is used. The loan function presented on page 226 is almost like this.

Inheritance should be based on similarity of the structure of the objects,
not on conceptual similarity. For example, objects of class "terms" are digested
formulas (class "formula"). It would be advantageous in spots if terms inherited
from formulas since they are conceptually very similar. However, they are not
structurally very similar at all, so the decision was that there be no inheritance.

A generic print threatens ill. Since what you see is not what you get, it
means that OOP can stand for “Obfuscation-Oriented Programming” as well as
“Object-Oriented Programming”. The onus is on the programmer of the print
method to eliminate as much confusion as possible. I think there is room for
improvement in many of the print methods that now exist (including ones that
I have written).

This leads to the issue of private versus public views. Data frames are
a good example to take up. A data frame is implemented as a list with each
component containing the contents of a column. Since it is a list, I can use
lapply on it to apply a function to each column. The idea of a data frame is
that it be a rectangular arrangement of elements in which the type of element
in one column need not be the same as the elements in other columns. This
is the public view—that it looks like a matrix. The private view is that it is
implemented as a list. Data frames could be changed so that the public view
remains the same, but their implementation is different so that my lapply trick
would not work. Ideally the user of a class of objects (as opposed to the creator
of the class) should be able to use only generic functions, and hence need no

S Poetry (©1998 Patrick J. Burns v1.0

1.5. GRAPHICS 15

information about the precise structure of the object, that is, of the private
view.

S does not enforce object-orientation in any way. Objects that you create
need not have a class attribute; and you can use a method function (with few
exceptions) as an ordinary function on any objects you choose.

More on object-orientation starts on page 223.

1.5 Graphics

Graphics are an integral part of S. The topic deserves a book of its own, and is
only skimmed in this one. Here I describe the basics of how graphics work in S.

Two principles that S graphics follow is that they are device independent,
and that each graph can be built up with numerous commands. Device in-
dependence means that the same commands are used to create a graph on a
PostScript printer as on a monitor running Motif—the only difference is what
type of graphics device the user has set to listen for graphics commands. The
ability to add to plots means that complex graphics can be created easily.

A graphics device is an S function that arranges for graphics to be rendered.
For example, the postscript function makes it so that a file of PostScript
commands will result when a graphics command is given. Graphics devices are
put into one of three categories. Hard-copy devices are for creating a physical
picture; the most common is the postscript device. Window devices produce
graphics when you are running a window system on the network where S is
running; the S-PLUS motif device is an example. Finally there are terminal
devices that are used when S is run remotely. For instance, I can slouch in
front of my Macintosh at home, telnet to a Unix machine where I run S, and
get graphics on my Macintosh screen using tek4105, which performs Tektronics
emulation. There should be a “Devices” help file that informs you of graphics
devices available to you.

A graphics device has a state that is queried and modified by the par func-
tion. The state is described by a reasonably large number of graphics parameters.
Examples of graphics parameters include cex (character expansion) which gives
the size of the text relative to the standard font, and mfcol which controls the
number of plots per page of output.

Graphics functions—functions that say what to draw, as opposed to graph-
ics devices—are divided into high-level and low-level functions. High-level
functions, like plot and barplot, create an entire new figure. Low-level func-
tions (points and lines, for example) merely add to the existing figure. Some
functions have an add argument so that they can function in either capacity.
You can create your own high-level graphics function from scratch by starting
with a call to frame and then using whatever low-level functions you like.

The surface of a device (to be concrete, think of a page of hard-copy output)
is called a graphics frame, and contains a number of conceptual regions. Within

S Poetry (©1998 Patrick J. Burns v1.0

16 CHAPTER 1. ESSENTIALS
Operator Associativity Task
$ left to right component subscript
[[C left to right subscript
- right to left exponentiation
- right to left unary minus
none sequence

%% hwhatevery,

left to right

left to right

in-built and user-defined

x / left to right multiply and divide
+ - left to right addition and subtraction
== < > >= <= |I= left to right comparison
! right to left not
& | && || left to right and, or
- none formula
<- _ k- right to left assignment

statement end

Table 1.1: Precedence table for the S language, version 3.

the frame there are one or more figures. Surrounding the set of figures is the
outer margin; this often contains zero area. Within each figure is a plot area.
Surrounding the plot area within the figure is the margin for that figure. The
plot area is where the points in a scatter plot go. The margin contains titles,
tick labels and axis labels.

Some of the graphics functions are listed on page 113, and the par function
is discussed briefly on page 48.

1.6 Precedence
As in many languages, operators in S obey precedence. The command
6 +8 %9

will perform the multiplication before the addition. If you want the addition
done first, use parentheses:

(6 +8) 9

For the most part, the precedence in S is intuitive, the one I have the hardest
time with is the : operator. See table 1.1.

When operators have equal precedence, almost all of them associate from
left to right—that is, the leftmost operation is performed first. The exceptions
are the assignment operators <- and <<- plus exponentiation with ~ which each
associate from right to left.

S Poetry (©1998 Patrick J. Burns v1.0

1.7. COERCION HAPPENS 17

Somewhat related to precedence is the brace. A pair of braces ({ }) bundles
a number of statements into a single statement. For example, you need to use
braces when you write a function that contains more than one statement. The
same is true in if statements and loops.

1.7 Coercion Happens

The order of the atomic modes is: logical, numeric, complex, character. This is
ordered by the amount of information possible. There are only three possible
logical values, any logical value can be represented as a numeric value, any
numeric value can be represented as a complex value, and any of the above plus
the contents of the Library of Congress can be represented by a character value.

Whenever an atomic vector is created with elements of more than one mode,
then the result will have the mode of the most general element. For example,
the mode of c(T, "cat") will be character and the mode of c(3, 4i) will be
complex.

The expression c(T, NA) implies that the mode of a solitary NA must have
mode logical. This, by the way, implies that if a single NA is used as a sub-
scripting vector, then that is a logical subscript, not a numeric one. Compare:

> c(T, NA)
[1] T NA
> c(T, as.numeric(NA))
[1] 1 NA

Although most coercions are obvious, the ones involving logicals are not.
When coercing logical to numeric or complex, a TRUE becomes 1, and a FALSE
becomes 0. A number coerced to logical is TRUE unless it is zero (or NA).

In many operations coercion occurs automatically. This is the grease that
allows S to run smoothly (and sometimes a slimy trick if the result is not what
you expected). A common use of coercion is in an expression like

if (length(x))

where if is expecting a logical value but it gets a numeric one. The expression
is equivalent to

if (length(x) != 0)

but more compact and almost as intuitive.

A very useful coercion occurs in sum(x > 0); the result of x > 0 is a logical
vector the same length as x, but sum expects numeric or complex arguments so
it coerces the logical vector to numeric (the least general mode that it needs).
The result is the number of positive values in x.

S Poetry (©1998 Patrick J. Burns v1.0

18 CHAPTER 1. ESSENTIALS

DANGER. Notice:

> 50 < II7I|
(11 T

This shows that the coercion must be to character, and that you want to think
carefully about comparisons on characters.

1.8 Looping

The only places where actual work gets done in S functions are inside calls to
.C, .Fortran or .Internal. That is, in calls to C routines, Fortran routines, or
the special routines (written in C) that understand S objects. The more directly
you get to these endpoints, the more efficient your code will be.

It is well-known to users of S that using for loops and its cousins can be
quite slow. Fundamentally, this is not the fault of the looping mechanism itself,
but that a lot of calls to S functions are being made. There is a fair amount of
overhead for each call to an S function; if a loop does hundreds or thousands of
iterations, the overhead adds up to a noticeable amount. So the general rule is
that the less that is in loops, the faster your code.

Here are three situations: no loop is used; apply, lapply or a relative is
used; a loop is used.

No loop is required if the same operation is done on each element of an
object. If you want to replace each negative element of a matrix with zero, then
you could loop over the rows, loop over the columns and change each element
individually. A faster, more direct way would be:

xmat [xmat < 0] <- 0

If the same operation is done on sections of an object, then a call to apply
or lapply or a similar function is probably a good choice. The apply function
operates on arrays, and lapply operates on lists. In older versions of S, the
apply family of functions was implemented as for loops, but version 3.2 of S-
PLUS changed them so that they are more efficient than a for loop. When
these internal apply functions are available to you, they can speed execution
substantially compared to the equivalent for loop. A section on the apply
family begins on page 75, in particular, see the sorting example on page 76.

When one iteration requires results from previous iterations, there is usually
no alternative to using a loop. Loops can be eliminated in a few special cases of
this through the use of functions like cumsum and the S-PLUS functions cumprod,
cummax, filter. When you do use a loop, try to put as little in the loop as

S Poetry (©1998 Patrick J. Burns v1.0

1.9. FUNCTION ARGUMENTS 19

possible. Also try to loop as few times as possible—sometimes there is a choice
of how to loop.

1.9 Function Arguments

Arguments to functions can be divided into required arguments and optional
arguments. The ability to have optional arguments is yet another powerful
feature of S. You can look at it either as getting more flexibility without any
complication, or as getting simplicity with no reduction of functionality.

Since not all arguments need to be given in a call to a function, there needs
to be a mechanism to match the function arguments to the arguments in the
call. Arguments may be specified by name (and since there is a limited set of
arguments for a function, the usual convention of abbreviation may be used).
Arguments may also be specified by their position in the call.

Here is the general rule for matching the call arguments to the function
arguments: First, names that match exactly are paired up. Second, names that
partially match are paired. Finally, remaining arguments in the call are matched
to the remaining arguments in the function in order. Come live with me and be
my love 3

There is a complication. The ... construct (called “ellipsis” but more
commonly “three-dots”) allows a function to have an arbitrary number of ar-
guments. There is a distinction between arguments that appear in the function
before the three-dots and those that appear after it. Arguments before the
three-dots are matched as usual—by partial name matching and/or by posi-
tion. Arguments that appear after the three-dots are matched only by full
name. All unmatched arguments go into the three-dots. Carefully written help
files indicate arguments that may only be matched by full name by placing an
equal sign after the argument name when it is described (the paste help is an
example). It does not matter where these arguments appear in the call—there
is no requirement that they be last.

1.10 A Model of Computation

It is advantageous to be able to visualize what is happening when an S function
(or any program) runs. The description I'm about to give is not accurate in
every detail, but should serve the purpose of helping you to picture what is
happening between the time you hit the return key and you get back an S
prompt. That maps are of time, not place *

As in business, the three most important things in computing are location,
location, location. There are three types of space that are important for S
objects: disk-space, RAM and swap-space. Disk-space is where permanent S
objects live. RAM (random access memory) is where S objects that are being

S Poetry (©1998 Patrick J. Burns v1.0

20 CHAPTER 1. ESSENTIALS

used in a calculation must be. Swap-space is an extension of RAM for when
things get rough.

If we multiply the permanent dataset prim9 by 2, S first finds prim9 in disk-
space and makes a copy of it in RAM. Then the multiplication of each element
is performed. The multiplications can take place because the computer knows
the address in RAM of each element of the copy of prim9. More particularly,
the situation is probably that it knows that all of the elements are lined up side
by side, it knows how many there are, it knows how much space each one takes,
and it knows the address of the first one.

We can envision RAM as a long line of boxes, where each has an address.

At any one time some of these boxes are in use, and probably some are empty.
When S needs to bring another object into RAM, the computer finds a place for
the object and remembers the address where it was put. If there is not enough
room in RAM for the new object, then the operating system guesses about
what in RAM won’t be needed for a while, and puts that in the swap-space
(storage area). At a point when something that is in swap-space is needed, then
something else needs to be put in swap-space and what is needed is “swapped”
or “paged” into that place in RAM.

When computations are small, then everything fits in RAM and there are
no problems. If RAM fills up, then paging starts; this dramatically slows the
progress of computations, as the computer spends most of its time trying to
solve the puzzle of how to get all of the necessary ingredients into RAM at the
same time. If the computation needs more memory than RAM plus the swap-
space can hold, then the computer has to give up—sometimes the exit from this
situation is less than graceful. Here is an example of an error message from
running out of memory:

Error in 1:11: Unable to obtain requested dynamic memory
Dumped

DANGER. Do not confuse this with trying to create an object that is larger
than the current limit:

Error in 1:11: Trying to allocate a vector with too many
elements (40000000)
Dumped

This latter error can be fixed by increasing the object.size option. The former
error can only be solved by changing the computations or using a machine that
has more memory.

Humans tend to make a distinction between data like 2 and prim9, versus

S Poetry (©1998 Patrick J. Burns v1.0

1.11. THINGS TO DO 21

operations like multiplication. But at the RAM level, functions are also just a
collection of addresses.

We are now in a position to examine why S is so slow, or more positively,
why C is so fast. Each object in a C program is declared to be of a certain type,
so the computer knows how much space each object (or at least each element of
the object) takes. C is compiled so that it has a clear map of which addresses
it needs to visit in which order before it starts. In comparison with this, S is
on a treasure hunt—S goes to one spot, then gets a clue to where it has to go
next, where it gets a new clue, and so on.

So why doesn’t S do what C does? Flexibility. An input to an S function is
not restricted to a particular type. S functions do not care when functions that
they call are changed; the definition of functions at the time of use are used,
not the definition at the time that the calling function was created. And so on,
etcetera.

S and C should not be thought of as competitors, with C winning because it
is faster or with S winning because it is more flexible. They should be thought
of as associates, each with its own strengths, that should each be employed as
appropriate.

1.11 Things To Do

Write a function that uses each form of subscripting.

What happens when you subscript with complex numbers? Is this the most
useful behavior?

Write a command that uses at least one operator from each line of the precedence
table.

Read each S function available to you, and try to understand how it works.

1.12 Further Reading

Becker, Chambers and Wilks (1988) The New S Language is the fundamental
document for the S language. Chambers and Hastie (1992) Statistical Models
in S discusses object-orientation as it first appeared in S—Appendix A may be
of particular interest.

Spector (1994) An Introduction to S and S-Plus provides a gentler introduc-
tion to S than this book as well as covering graphics more thoroughly. Venables
and Ripley (1994, 1997) Modern Applied Statistics with S-Plus also discuss the
S language in a few chapters and then go on to provide examples of statistical
analyses in S.

S Poetry (©1998 Patrick J. Burns v1.0

22

If you are a historian or you want to see how far S has come, then you
can look at Becker and Chambers (1984) S: An Interactive Environment for
Data Analysis and Graphics; and Becker and Chambers (1985) Extending the
S System. These two books are obsolete for the purposes of computing.

1.13 Quotations

!Theodore Roethke “I Knew a Woman”

2Henry David Thoreau “I Am a Parcel of Vain Strivings Tied”
3Christopher Marlowe “The Passionate Shepherd to His Love”
“Henry Reed “Lessons of the War: Judging Distances”

S Poetry (©1998 Patrick J. Burns v1.0

