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> storks=c(2,6,3,6,2,8)

> babies=c(6,8,5,9,4,9)

> par(mfrow=c(1,1),mai=c(1.4, 1.4, 0.9, 0.9),cex=1.5)

> plot(storks, babies)
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Workshop Schedule

	
	NOTE:  We will adjust times depending on the interests of the people in the workshop, but here is a general schedule

	9:00 am 
	Meet at Forest Sciences Centre, Rm 1406 (large computer lab in Atrium)

	9:00 to 9:30 am
	What is R?   Why use it?  Why not use it? Useful things to know.  Exercise 1.

	9:30 to 10:30 am
	Exercise 2.  Bringing data in.  Basic Statistics and Simple Linear regression

	10:30 to 11:30 
	Exercise 3:  Using R for multiple linear regression

	11:30 to 12:30  pm
	Data structures in R,   indexing, other programming information.   Exercise 4

	12:30 to 1:00 pm
	BREAK

	1:00 to 2:00  pm
	Data structures in R,   indexing, other programming information.   Exercise 4 (continued)

	2:00 to 3:00
	Exercise 5:  Using R for graphics.
R programming for graphics.

	3:00 to 3:30 pm
	Exercise 6:  Stepwise tools to select variables.

	3:30 to 4:00 pm
	Exercise 7: Completely randomized design, one-factor using R

	4:00 to 4:30 pm
	Exercise 8: Completely randomized design, two-factors using R

	4:30 to 5:00
	Exercise 9: Mixed effects experiments using R


 Installing R and Some Basics about R
Background:

R is a free software package that has been designed to analyze and graph data.  A collection of people worldwide have developed libraries of functions that you can use to analyze data.  Because this is freeware, there may be “bugs” in the software.  However, many of the library functions have now been tested by many users, and compared to other commercially available software packages such as SAS and SPSS.  

Installing R on your home or laptop computer:  

To run R, first you need to load the software.  Generally, to load the software, you can go to R website directly.  There are instructions for downloading software on the site.  You will need to find a Cran near to your location, for faster service.  A list of these can be found on the R website.  This loads the standard package, with a number of libraries.  Here are the steps you would follow:

Go to the R  website:  http://www.r-project.org/ 

Select CRAN, which is under Download, on the left hand side of the screen

From the list (centre and right side of the screen), select the closest location 

Then, select Download and Install R, and select Windows
Under Subdirectories, select Base
R-2.7.0-win32.exe     [or whatever the latest version of R is]
You will be asked if you want to run or to save this file.  If you are ready to install the package, click on Run.

You will then be prompted for where you wish to save the file (pick a simple path on you home or laptop computer e.g.  C:/R  ).  Use the default settings.  

When you are done, there should be the R icon on your desktop and R should be ready for your use.  

Running R: After you install R for Windows, you will have an R icon on your desktop.  To run R, click on the icon .  You get a work session window.    You could type in your commands here and they would run as you enter them.    Instead, you can enter your commands into a separate file called script.  The script is just R commands, organized and put into a text file. Then, you can open your script  file while you are running R.  You will get a separate window with the script.  You can then run this all at once (only if you are very confident), or in segments (preferred).  
To run the R commands in the session window, simple press Enter on your keybroad.

To run the R commands in your script, simple highlight the parts you want to run and press Ctrl and R at the same time OR, click on Edit and and find Run in the list.  

The outputs from running your commands will also appear in the session window.  You can also highlight any part of the session window you wish to keep, and then press Ctrl and C at the same time to copy this, and then open a Word file and copy this in using Ctrl and V at the same time.  

If part of your script involves getting a graph, another window opens up if you get a graph using R.  If you run another graph, the original graph disappears and you get the new graph.  
Useful things to know:  R is case sensitive. This means that the variable Trees is not the same as the variable trees for example.  Also, R does not like spaces nor special characters.  Instead, use a ‘.’  For example, trees.pine identifies a variable.  

R uses two slashes instead of one to indicate a subfolder.  For example, if your data in Windows are in:  E:\measurements\trees.txt  then in R you would use E:\\measurements\\trees.txt  since the single slash has a different meaning.  

Any R commands that start with # are just comments that you can add to explain what the script does. 

Saving and cleaning up

You can save the work session, the script, and the graph window anytime you wish by  using File and Save for the session window when that window is active, or to save the script when the script window is active, or to save the graph when the graph window is active.

To save the objects you have created, you can use File and Save Workspace to save all objects (ie all the data and outputs you have put into objects).     You can then later on use File and Load Workspace to bring the objects back in and continue your work.  You can also cut and paste any of the outputs from your session window into WORD or other files.
If you have created a graph, you can use File and Copy to Clipboard and then As a Metafile (gives a better graph then as a Bitmap).  You can also save the file as a picture using File and Save As..
At any time, you can use Edit and Clear Console to clean out the session window.  However, the data you brought in, and any variables and objects wil still be there. To remove all of these, click on Misc and then select Remove all objects, OR type rm(list=ls(all=TRUE)) in the session window.    When you begin an R session with new data, it is always a good idea to start with no objects.  
Graphs:  R is very good at graphs.  The main way to make a graph is to use the function plot( ), where there are a number of arguments in the brackets (i.e., the x variable, the y variable, labels, type of graph, etc.  However, only one graph appears at once, in a separate window. When you graph in R, you should save the graph (e.g., as a .jpg file or as a metafile), before moving to the next graph.  R can also do multiple graphs on the same graph window.
Types of Objects (more on this later in the course):

Factor:  a class variable, often represented as letters but maybe represented as numbers

Vector:   a “column” of numbers

Matrix:  several columns of numbers

Dataframe:  Like a matrix, but can have columns of numbers and columns of letters

List:  Can be several objects all stored together such as regression outputs, matrices, etc.

Help:   The R website has a number of manuals that you might find useful, including an introduction:  http://cran.r-project.org/doc/manuals/R-intro.pdf  and http://cran.r-project.org/doc/contrib/usingR.pdf   There are also a number of very useful books published by Springer, and Chapman and Hall publishers that are very useful.  Dr. Andrew Robinson, University of Melbourne, Melbourne, Australia, produced an introduction to R that is very useful and can be found at:  http://www.ms.unimelb.edu.au/~andrewpr/r-users/icebreakeR.pdf 
At any time, you can also use help( )  where the function is given in the brackets.  This help is a bit hard to follow, and is really met to tell you the specific options for a function.  However, there are also a few examples with the help that you might find useful as you are using R.  

Expanding the R package:   When you run R, only some of the functions are brought into the work session automatically to save memory.  To add others, you can use require(  ) where the package is given in brackets.  Also, there are many other parts of R that are extra to the main package.  To bring these in, you will need to access the website and get the software package.  This then can be downloaded to the R directory in a sub-folder under library.  For example, if you installed R in:  C:\Program Files\R\R-2.8.0\, then you can add more software into C:\Program Files\R\R-2.8.0\library\   You can then use library( ) to bring in these other packages for your analysis.   

Learning R:  Many people have put documentation and examples using R code or script on the web.   Also, Springer book publishers and Chapman Hall/CRC book publishers have published many books on using R in the last 2 years (See list of e-books at UBC Library included in these notes).  Examples are very helpful for reducing the time you spend in getting R to do what you would like.   However, the best way to learn R is really to use it.  The course materials provided by Dr. Andrew Robinson are excellent to help you practice and learn R and become more comfortable with using it for your analyses.   The exercises provided here are very brief and just give you a taste of using R for forestry problems.
Exercise 1: Vectors, Dataframes, and a Basic Plot

1. Type the commands given on the coverpage into the session window (without the > ).

2. Then type in each of these commands to see what each one does:

ls()
mymatrix<-cbind(storks,babies)
dim(mymatrix)

mymatrix[1 :4,1]

mydata<-data.frame(storks,babies)

ls()

plot(mydata$storks,mydata$babies)

rm(storks,babies)

ls()

attach(mydata)

names(mydata)

dim(mydata)

plot(storks,babies)

3. Now detach the dataframe and try to plot storks versus babies once more:

Then:

detach(mydata)

plot(storks,babies)

4. Use the up and down arrow on your keyboard.  What does this do?
5. Clean up the console (the session window), any graphs, and also remove all objects.
Exercise 2: Basic Statistics and Regression Analysis Using R

Objectives:   In this exercise you will be introduced to R, including how to get a copy of R and documentation that can be found on web sites.  The exercises then use R to get basic statistics and a linear regression using tree data.   

Files Needed: You will need the files:  ht_dbh.xls and ht_dbh.txt (the tree data) and ht_dbh.R (R commands, called R script).   

Exercise:  A forest land owner measures the outside bark diameters at 1.30 m above ground (dbh) and total tree height from ground to tree tip for a sample of 20 trees on a small piece of land.  The trees are equally spaces over the land area.  The measures are:

	Tree Number
	Dbh (cm)
	Height (m)

	1
	10.1
	14.2

	2
	11.2
	15.1

	3
	19.7
	25.3

	4
	20.5
	21.2

	5
	17.8
	21.5

	6
	17.0
	18.0

	7
	11.0
	12.1

	8
	4.1
	5.2

	9
	6.0
	6.3

	10
	8.0
	9.1

	11
	2.3
	10.1

	12
	20.1
	19.2

	13
	18.0
	16.0

	14
	22.1
	26.3

	15
	16.3
	17.3

	16
	20.5
	19.8

	17
	17.0
	20.1

	18
	18.0
	22.3

	19
	17.0
	19.5

	20
	19.7
	18.6


Before we can do any analysis, we need to bring these data into the R environment. We can do this by:

1. Typing the data right into the R script (Parts I to IV of this Exercise)
2. Entering the data into EXCEL (eg., ht_dbh.xls) and then saving this as a tab delimited text file (e.g., ht_dbh.txt) or comma delimited file (e.g., ht_dbh.csv) (Part V of this Exercise).
Once the data are in the R environment, we can get basic statistics, fit models, get graphs, etc.  
For this exercise, R script was provided as ht_dbh.R.    The script is organized in parts using comments (the # denotes comments).  To learn what the script is doing, you should run this in pieces and determine what the R code is doing before you move on to the next step.  

To run this in segments, you can copy and past a part of the R script into the work session, and then running that part. Another way that we will use is to highlight a part of the script and using Ctrl+R to run that part of the script.  
The work session window will include the R commands, and the outputs.  At any time, you can copy and paste any part of the session window into a WORD file, or store the entire work session window.

1. First, start R, and bring the script in by using File and then Open Script.   Browse until you find the ht_dbh.R file and click on it to bring it into R.  You will see that there are comments added to the script to explain what each line of code does.  Remember, comments begin with # .
2. Part I: Using the R script provided as ht_dbh.R, highlight Part I of the code that brings the data into R.  This is done by 1) highlighting that part of the code, and 2) using Ctrl+R to run the code.  You should see results in the “session” window.

What did each line do?  Try to understand how each line of code was used to bring the data into the R environment.
3. Part II.  Run the next part of the R code provided to calculate simple statistics for the heights. For each item in this list, 1) find the R code, highlight the code, and use Ctrl+R to run the code.  Write down the answers you obtain.  

a. The sample mean

b. The variance

c. The standard error of the mean

d. The mode

e. The median

f. The coefficient of variation as a percent

g. A 95% confidence interval for the true mean (all of the trees).

h. Given the sample data, and no assumptions about the probability distribution, what is the estimated probability that a tree will be more than 10.0 cm in dbh?

i. Given the sample data, and the assumption that it follows a normal distribution, what is the estimated probability that a tree will be more than 10.0 cm in dbh?

3. Before running more of the provided R code, modify this to obtain the same statistics for dbh. To do this, use File and New Script to open a new window for your script that you will create.  Then, copy and paste the code for the height basic statistics into the file, save it, and modify it for dbh instead of height.  Again, write down the answers as you get them OR copy and paste them from the console to a WORD file.  
4. Parts III and IV.  Now, we would like a model to predict height from dbh, since height is harder to measure.   The fitted model can then be used where only dbh was measured.  Using the R code provided, locate and run the part of the code fits the model.  Run this in parts, as before and write down your answers as you go.  
a. Graph the height versus dbh for these sample data.  NOTE:  This will appear in a Graph window.  Save the graph as picture for future reports.  
b. Since this is not a linear relationship, transformations are needed to linearize the relationship before using linear regression.   NOTE:  Part III does height versus dbh (no transformations) whereas Part IV uses transformations.  
c. Fit a simple linear regression of height versus your transformed dbh NOTE: There is no need to change units to be the same for both variables.    Write down the answers that you get as you use the script to get:  
i. The estimated intercept and slope.  Use the estimated slope and intercept and overlay your equation over the selected graph in part c.

ii. Calculate the standard errors and 95% confidence intervals for the intercept and for the slope.  
iii. The coefficient of determination (r2) and the standard error of the estimate (SEE), also called the root mean squared error (Root MSE).  What do these mean?

iv. Graph the fitted line over the original points.  
v. Based on the graph, are the assumptions that the line fits the data and that variances of y’s around the x’s are equal met for your selected equation? (i.e., you need the residual plot).
vi. Are errors normally distributed?

vii. How would you check the assumption that the observations are independent for these data?  

5. In forestry, we sometimes measure height on photographs, or using LiDAR.  In that case, dbh is the expensive variable.  Using the same data, assume that the heights were measured using LiDAR and we then want an equation to predict dbh from LiDAR height.  Use File and Open Script to open another window for some new script.  Copy and paste the R code for the height vs dbh equation to New Script and modify the script to instead obtain an equation for dbh vs height.  Using your outputs, answer the same questions as in 4c but for this model.  
6. Before going to Part V, clean up your all of your work and remove all objects. This is done by using Edit and Clear console and alsoMisc and then Remove all objects. This allows you to start fresh, getting rid of any variables and data you brought in, and any outputs you have created. This can prevent errors, but you must bring in new data after clearing out all the objects.   
7. Part V:   In this part, the data come from an EXCEL file instead of being entered into the R code itself.   These data were entered into EXCEL and then saved as a tab delimited text file to be used in R (ht_dbh.txt ).   You must give the full path for your data, and NOTE that the folders are given after \\ instead of the usual \ used by Microsoft Windows.  Run this other script, and again write down your answers as with Question 4 c.  
More Exercises:

1. Close R to get rid of all script and datasets. 
2. Open R again, and open the ht_dbh.R script.

3. Using File and New Script to open a new window for your script.  Using the code provided in ht_dbh.R script as your model:

a. Bring the ht_dbh.txt data into the R environment.  
b. Create two new variables and plot these by:
loght<-log(height)
logdbh<-log(dbh)

plot(loght,logdbh)

How strong is this relationship?  Is it a linear relationship?  Could you fit a linear regression to this relationship based on the graph?  NOTE:  You cannot compare the R square for this model to that where the y variable was height instead of loght.
c. Using the R script as an example, get a linear regression of loght versus logdbh.   Does the residual plot indicate that this is a good regression (i.e., are the points balanced around zero across the range of predicted heights?
d. Copy your regression results from the session window into WORD, and copy and paste any graphs to go with your regression results.   Add a few points on why this model is a good model or not based on these outputs. 
e. Save your R script for future use. 

# Part I. FIRST WAY TO BRING DATA INTO R.  Type the numbers directly into R, each variable separately, and 

# then append these together.  Each variable will be a column in a matrix called treedat.  

# Then, put this into a dataframe for use later (another way to store the data) called treedat2.

####################################################################################

# enter in the tree numbers first

treeno<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)

treeno

# list the first entry of trees

treeno[1:1]

#

# enter in the dbh data

dbh<-c(10.1,11.2,19.7,20.5,17.8,17.0,11.0,4.1,6.0,8.0,2.3,20.1,18.0,22.1,16.3,20.5,17.0,18.0,17.0,19.7)

dbh

#

# enter in the height data

height<-c(14.2,15.1,25.3,21.2,21.5,18.0,12.1,5.2,6.3,9.1,10.1,19.2,16.0,26.3,17.3,19.8,20.1,22.3,19.5,18.6)

height

#

treedat<-data.frame(treeno,dbh,height)

treedat

# to select the dbh column of the dataframe, only, use

col2<- treedat[,"dbh"]

col2

########################################################################################################

# Clean up the workspace before going to the next part

#######################################################################################################

ls()      # This lists all of the objects in the workspace

rm(col2,treeno,dbh,height)    # Remove these since they are now part of treedat and treedat2 objects.

ls()

#######################################################################################################

# Part II. Basic statistics. for dbh values, get a. the mean; b. the variance; 

#  c the standard error of the mean; d. the mode; e. the median;   f. The CV as a percent;   

#  g.  A 95% CI for the true mean;  h.  proportional of obs > 10.9 cm dbh; 

#  i.  Prob. of > 10.0 cm dbh assuming a normal distribution;

#######################################################################################################

n<-length(treedat[,"dbh"])

n                   # no. of observations

dbhbar<- sum(treedat[,"dbh"])/n

dbhbar              # a.  mean dbh

ssdbh<- sum((treedat[,"dbh"]-dbhbar)^2)  #  corrected sums of squares, dbh

vardbh<-ssdbh/(n-1)

vardbh             #  b.  variance of dbh

sterrordbh<- (vardbh/n)^0.5   

sterrordbh       # c.  standard error of the mean dbh

sorteddbh<-sort(treedat[,"dbh"])

mediandbh<-sorteddbh[n/2]  # find the dbh at n/2, the middle

mediandbh            #d. median dbh

quantile(treedat[,"dbh"])  #  to get all the quantiles

cvdbh<-100*((vardbh^0.5)/dbhbar)

cvdbh                #e. cv as a percent

df<-(n-1)  # degrees of freedom is no of samples - 1

tvalue=qt(0.975,df) # get the tvalue for 1-alpha/2 to get a (1-alpha)*100 confidence interval

lowerCI<- (dbhbar-(tvalue*sterrordbh))  # g.  A 95% CI for the true mean

upperCI<- (dbhbar+(tvalue*sterrordbh))

df; tvalue; lowerCI; upperCI

dbh<- treedat[,"dbh" ]

nobs<- length(dbh [dbh > 10.9])  

proplarge<- (nobs/n)*100 

sorteddbh

proplarge    #  h.  proportional of obs > 10.9 cm dbh 

sddbh<- (vardbh^0.5)   

zvalue<- (10.0 - dbhbar)/sddbh 

zvalue   

problarge<- 1-pnorm(zvalue)  

problarge #  i.  Prob. of > 10.0 cm dbh assuming a normal distribution

##############################################################################################

# statistics using built in functions, useful for data in general

##############################################################################################

#  means and other stats of all variables using built in stats functions

mean(treedat[,"dbh"])

mean(treedat[,"height"])

sd(treedat)

# histograms of variables

hist(treedat[,"dbh"])  # note that this graph will be replaced by the next one, unless it is saved

# The histogram will appear in a separate window. Can use File, and Save As, to save the histogram

# as a .jpg or other picture file

hist(treedat[,"height"])   # The dbh histogram disappears, and the height histogram appears

hist(treedat[,"height"],plot=FALSE)  # calculates frequencies but no histogram is drawn

# Sort the trees by dbh first and then by height.  First step is to calculate the indexes for this order.

indexsort<-order(treedat$dbh,treedat$height)

# use these indices to then sort the trees

sorttreedat<-treedat[indexsort,]

sorttreedat                 # data sorted by dbh and height afterward

# summary statistics for each of the files-- all the same data just stored differently

require(stats)   # This is another R pack with other functions in it.

summary(treedat)

summary(sorttreedat)

#######################################################################################################

# Clean up the workspace before going to the next part

#######################################################################################################

ls()      # This lists all of the objects in the workspace

rm(cvdbh, dbh,dbhbar,df,indexsort,lowerCI,mediandbh,n,nobs,problarge,

proplarge,sddbh,sorteddbh,sorttreedat,ssdbh,sterrordbh,tvalue,upperCI,vardbh,

zvalue)    # Remove these since they are now part of treedat and treedat2 objects.

ls()

###############################################################################################

Part III.  linear regression of height vs. dbh

###############################################################################################

# Obtain the regression using the dataframe, treedat2. lm calculates the linear regression.

# Summary prints out some of the results obtained.

summary(lm(treedat$height~treedat$dbh))

# plot the original data and the fitted line.

plot(treedat$height~treedat$dbh)

abline(lm(treedat$height~treedat$dbh))

# since treedat was created as a dataframe, the names can be attached for simpler commands

attach(treedat)  # this allows you to use the dataframe, treedat2, with shorter names for variables

names(treedat)

cor(treedat)   # correlations first

plot(height~dbh)   # simple plot of height (y) versus dbh (x)

lm.height=lm(height~dbh)  # fit the linear model and store it as an object

lm.height

summary(lm(height~dbh))  # can use the fitted linear model that was stored as an object instead

summary(lm.height)

anova(lm.height)

plot(height~dbh)

abline(lm.height)  # plot the height versus dbh and overlay the regression line

yhat<-fitted(lm.height) # store the predicted values in an object, yhat. 

resid<-resid(lm.height) # store the observed - predicted values, called the residuals, in resid

cbind(height,yhat,resid)  # list measured and predicted height and differences (i.e. residuals)

plot(yhat~height)

abline(a=0,b=1)   # plot a reference line where yhat equals height 

plot(resid~yhat)  # residual plot

plot(resid~dbh)    #different residual plot

qqnorm(resid)     # normality plot

qqline(resid,col=2)

hist(resid, freq=FALSE,breaks = 8, density=10,col="green", border="black") # draws a histogram

#############################################################################################

#  Clean up your files, etc.

############################################################################################

detach(treedat)  # This just detaches the dataframe, treedat, but it can be reattached

ls()      # This lists all of the objects in the workspace

          # keep the treedat, lm.height, resid,and yhat objects

##############################################################################################

# Part IV. Fixing problems using transformations.  Do the transformations using the dbh and 

# height objects, and then put this into a new dataframe.

##############################################################################################

attach(treedat)  # reattach treedat dataframe

dbhsq<-dbh^2    # get dbh squared

logdbh<-log(dbh) # get log of dbh

treedat2<-data.frame(treedat,dbhsq,logdbh) # add these to treedat and save in treedat3

treedat2

detach(treedat)

rm (dbhsq,logdbh)

attach(treedat2) # This attaches treedat2 to the session, meaning that you can now use the variable names

names(treedat2)

# regression using dbh squared.  This gives a parabola shape.  

lm.height2<-lm(height~dbhsq)

lm.height2

summary(lm.height2)

anova(lm.height2)

yhat2<-fitted(lm.height2)

resid2<-resid(lm.height2)

cbind(height,yhat2,resid2)  # list measured and predicted height and differences (i.e. residuals)

plot(yhat2~height)

abline(a=0,b=1)   # plot a reference line where yhat equals height 

plot(resid2~yhat2)  # residual plot

plot(resid2~dbh)    #different residual plot

qqnorm(resid2)     # normality plot

qqline(resid2,col=2)

hist(resid2, freq=FALSE,breaks = 8, density=10,col="green", border="black") # draws a histogram

#############################################################################################

#  Clean up your files, etc.

############################################################################################

detach(treedat2)  # This just detaches the dataframe, treedat2, but it can be reattached

ls()      # This lists all of the objects in the workspace

rm(lm.height,lm.height2,resid,resid2,treedat,treedat2,yhat,yhat2)    # remove all objects

ls()

##############################################################################################

# Part V. SECOND and THIRD WAY to bring in data, and CI's for predicted heights

#  1.  bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#  2.  If EXCEL saved as comma delimited, then change this to:

#      treedat4<-read.csv("E:\\R_workshop\\workshop 2009\\data\\ht_dbh.csv",header=TRUE)

##############################################################################################

treedat3<- read.table("E:\\R_workshop\\workshop 2009\\data\\ht_dbh.txt",header=TRUE)

attach(treedat3)

names(treedat3)

treedat3

dbhsq<-dbh^2  # dbh squared

logdbh<-log(dbh) #log dbh

treedat4<-data.frame(treedat3,dbhsq,logdbh)

treedat4

detach(treedat3)

rm(treedat3,dbhsq,logdbh)

attach(treedat4)

lm.height<-lm(height~dbhsq)

lm.height

summary(lm(height~dbhsq))

anova(lm(height~dbhsq))

yhat<-fitted(lm.height)

resid<-resid(lm.height)

cbind(height,yhat,resid)  # list measured and predicted height and differences (i.e. residuals)

plot(yhat~height)

abline(a=0,b=1)   # plot a reference line where yhat equals height 

plot(resid~yhat)  # residual plot

plot(resid~dbh)    #different residual plot

qqnorm(resid)     # normality plot

qqline(resid,col=2)

hist(resid, breaks =8 , density=10,col="green", border="black") # draws a histogram

# get 95% confidence intervals for the average height, given each of the dbh's in the data, using the equation

predCI<- predict(lm.height, treedat4,interval="confidence")

predCI

# plot the orginal data, the predicted values and 95% confidence interval bands

rank<- order(dbh)

sortedpredCI=predCI[rank,]

dbhsort<-dbh[rank]

plot(dbh,height)

matlines(dbhsort,sortedpredCI,lty=c(1,2,2),color="black") #overlay the predicted values and CI using linetypes given

# get confidence intervals for the average heights for dbh=20 cm

dbhnew<-20.0

dbhsqnew<-dbhnew^2

new <- data.frame(dbh=dbhnew,dbhsq=dbhsqnew) 

# default is for a 95 percent confidence interval for mean y given the x.  Can change the percent by including the level

pred.w.clim <- predict(lm(height~ dbhsq), new, interval="confidence",level=0.90) 

pred.w.clim

pred.w.plim <- predict(lm(height ~dbhsq), new, interval="prediction",level=0.90)

pred.w.plim

Exercise 3: Multiple Linear Regression Using R

Background:

Multiple linear regression uses more than one x-variable to predict the variable of interest, the y-variable.  The x’s can be several different variables that we have measured, or can be the originally measures variables, plus transformations of these variables.  For example, we may use dbh and dbh squared to predict height, rather then just dbh or just dbh squared.  In the case of the transformed variables, we are trying to meet the assumption that the linear model is correct.

Objective:  Practice bringing in data that originally in an EXCEL file, and practice using R to get an equation with more than one predictor variable (x-variable) in a multiple linear regression.

Files:  For this, you will use data gathered for a few African trees (provided by Dr. Akindele).   The data can be found in african_trees.xls.  There is also R script provided as mlr.R

1. Getting the data into R: 

a. In EXCEL, bring up the data file.  
b. Save this as a tab delimited text file called african_trees.txt.

c. Start R.  
d. Bring in the R script found in mlr.R.
e. Modify the R script by correcting the path for the datafile.  
2. Use the script to run a multiple linear regression to predict height (Ht)  from dbh (Dbh) and transformations of dbh.   As with Exercise 1, run this in segments and relate what happens to the R code that you have run (i.e., highlight a part of the code and use Ctrl+R to run that part).   There are blank lines in the code to indicate a “part” of the code that should be run at the same time.  

NOTE: In R, the variable dbh is different from the variable Dbh – captial letters matter.

##############################################################################################

# bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#

##############################################################################################

rm(list=ls(all=TRUE))  # remove anything that might be remaining from prior analyses

# change this to read in the correct data file with the full path ############################

treedat<- read.table("E:\\R_workshop\\workshop 2009\\data\\african_trees.txt",header=TRUE)

attach(treedat)

names(treedat)

Dbhsq<-Dbh^2  # Dbh squared

logDbh<-log(Dbh) #log Dbh

loght<- log(Ht)  # log height

treedat2<- data.frame(treedat,Dbhsq,logDbh,loght)

detach(treedat)

rm(treedat,logDbh,loght,Dbhsq)

attach(treedat2)

names(treedat2)

ls()

treedat2[1:5,]

lm.height<-lm(Ht~Dbh+Dbhsq)  # parabola shape

lm.height

summary(lm(Ht~Dbh+Dbhsq))

anova(lm(Ht~Dbh+Dbhsq))

yhat<-fitted(lm.height)

resid<-resid(lm.height)

cbind(Ht,yhat,resid)  # list measured and predicted height and differences (i.e. residuals)

plot(yhat~Ht)

abline(a=0,b=1)   # plot a reference line where yhat equals height 

plot(resid~yhat)  # residual plot

plot(resid~Dbh)    #different residual plot

qqnorm(resid)     # normality plot

qqline(resid,col=2)

hist(resid, breaks =6 , density=10,col="green", border="black") # draws a histogram

# get 95% confidence intervals for the average height, given each of the Dbh's in the data, using the equation

predCI<- predict(lm.height, treedat2,interval="confidence")

predCI

# plot the orginal data, the predicted values and 95% confidence interval bands

rank<- order(Dbh)

sortedpredCI=predCI[rank,]

Dbhsort<-Dbh[rank]

plot(Dbh,Ht)

matlines(Dbhsort,sortedpredCI,lty=c(1,2,2),color="black") #overlay the predicted values and CI using linetypes given

# get confidence intervals for the average heights for Dbh=20 cm

Dbhnew<-20.0

Dbhsqnew<-Dbhnew^2

new <- data.frame(Dbh=Dbhnew,Dbhsq=Dbhsqnew) 

# default is for a 95 percent confidence interval for mean y given the x.  Can change the percent by including the level

pred.w.clim <- predict(lm(Ht~ Dbh+Dbhsq), new, interval="confidence",level=0.90) 

pred.w.clim

pred.w.plim <- predict(lm(Ht ~ Dbh+Dbhsq), new, interval="prediction",level=0.90)

pred.w.plim

lm.height2<-lm(Ht~Dbhsq)

anova(lm(Ht~Dbhsq)) 

anova(lm.height2,lm.height)                # partial F test to compare the two nested models

#############################################################################################

#  Clean up all of your files, or shut down R before doing another exercise

#############################################################################################

rm(list=ls(all=TRUE))

Extra Exercise: MLR Using R

Computer Lab Exercise

Background:

Data have been gathered on a number of plots in a forest.  In each plot, the tree dbh and height, and the species were measured.  An existing volume function was used to find the volume per tree.  Then, each plot was summarized to obtain summary variables.  The plot data are in stand.txt.
Objective:  

The objective is to find a good equation to estimate volume per ha, from variables that are easier to measure.  Then, in future plots of a similar kind of forest, these other variables can be measured, summarized for the plot, and then used to estimate volume per ha by inputting them into the equation.  
Exercise:
Fit a model that predicts volume per ha from other variables.  Consider X variables that are easier to measure first (e.g, average dbh).  Use the mlr.R code as a guide and modify this for this new data and regression problem. Use any transformations you might need to meet the assumptions of multiple linear regression.

Questions:

1. Which equations did you try?   (Try at most two equations)  Which ones met the assumptions of regression (i.e., normal distribution of residuals, even pattern of residuals around zero indicating that the model fits the data and that the variances are equal across the range of predicted values)

2. Of the equations where the ASSUMPTIONS were met, assess which equation is better in terms of:

a. The R square value (CAREFUL – can only compare those that had the SAME  Y variable!!)

b. The Root MSE

c. The fitted line plot

d. Whether the equation is significant

e. Whether each variable is significant

f. The cost of measuring the X-variables (to use the equation).

3. Based on this assessment, which equation would your recommend for use?

NOTE:  There is R script prepared, in exercise_extra_MLR.R if you do need help with setting up the R script.  In the R script, you will find more code for graphs that you might find useful also!

##############################################################################################

# bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#

##############################################################################################

rm(list=ls(all=TRUE))  # clear any remaining objects from previous R sessions

standdat<- read.table("E:\\R_workshop\\workshop 2009\\data\\stand.txt",header=TRUE)

attach(standdat)

names(standdat)

standdat

lnvolha=log(vol.ha)

lnage=log(age)

lnbaha=log(ba.ha)

detach(standdat)

standdat<-data.frame(standdat,lnvolha,lnage,lnbaha)

rm(lnvolha,lnage,lnbaha)

attach(standdat)

names(standdat)

par(mfrow=c(3,3),cex=0.7)

plot(vol.ha~age,data=standdat)

plot(vol.ha~si,data=standdat)

plot(vol.ha~ba.ha,data=standdat)

plot(vol.ha~stems.ha,data=standdat)

plot(vol.ha~topht,data=standdat)

plot(vol.ha~qdbh,data=standdat)

plot(lnvolha~lnage,data=standdat)

plot(lnvolha~lnbaha,data=standdat)

par(mfrow=c(1,1),cex=1)

##### First model ######################################

model.volha1<-lm(vol.ha~age+si)  

lm.volha1

summary(lm(model.volha1))

anova(lm(model.volha1))

yhat1<-fitted(model.volha1)

resid1<-resid(model.volha1)

cbind(vol.ha,yhat1,resid1) 

par(mfrow=c(2,2),cex=0.7)

plot(yhat1~vol.ha)

abline(a=0,b=1)   # plot a reference line where yhat equals height 

plot(resid1~yhat1)  # residual plot

qqnorm(resid1)     # normality plot

qqline(resid1,col=2)

hist(resid1, breaks =6 , density=10,col="green", border="black") # draws a histogram

par(mfrow=c(1,1),cex=1)

##### Second model ######################################

model.volha2<-lm(vol.ha~ba.ha+stems.ha)  

lm.volha2

summary(lm(model.volha2))

anova(lm(model.volha2))

yhat2<-fitted(model.volha2)

resid2<-resid(model.volha2)

cbind(vol.ha,yhat2,resid2) 

par(mfrow=c(2,2),cex=0.7)

plot(yhat2~vol.ha)

abline(a=0,b=1)   # plot a reference line where yhat equals height 

plot(resid2~yhat2)  # residual plot

qqnorm(resid2)     # normality plot

qqline(resid2,col=2)

hist(resid2, breaks =6 , density=10,col="green", border="black") # draws a histogram

par(mfrow=c(1,1),cex=1)

Data Structures, Indexing and Other Programming Information for R and Exercise 4
Reference:   S Poetry c°1998 Patrick J. Burns v1.0, Chapter 1, The Essentials (included with the course materials)
(Materials to be handed out at the Workshop)

Exercise 5: Graphs Using R

Computer Lab Exercise

Background:

R has some very useful graphics functions.  These can be very helpful for conveying information to audiences in presentations and papers.  We have already used histograms, and scatterplots for regression results.  

Files:

We will use the tree data found in trees.txt for this exercise.  There are 250 Populus trees and 250 Abies trees in this dataset.  We will run some simple plots to visualize this fairly large dataset.  The script can be found in graphs.R.  

Running the R Script:  

1. Start R

2. Use File and Open script to bring in the graphs.R script.  

3. For graphs, a number of lines of the R script must be run together, to set up the graph, and then add data to the graph. These lines of R script are separated by blank lines.  Run the R Script in parts by:  1) highlighting a part of the script and then 2) Using Ctrl+R to run the script. 

4. As you run the script in parts, write down what each section does.  
5. Also, click on the graph window and then File and Save As to save one or more of your graphs.  
For discussion:
Which plot(s) did you find useful in visually describing these data?
##############################################################################################

# bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#

##############################################################################################

rm(list=ls(all=TRUE))   # removes anything that might be restored from previously running R

trees<- read.table("E:\\R_workshop\\workshop 2009\\data\\trees.txt",header=TRUE)

attach(trees)

names(trees)

dim(trees)

# change species name to a class variable, rather than a number #

speciesname<-factor(trees$species)

trees2<- data.frame(trees,speciesname)

detach(trees)

rm(trees,speciesname)

ls()

attach(trees2)

names(trees2)

# get a simple summary of all variables in dataframe trees2 #

summary(trees2)

##############################################################################################

# get simple scatterplots for volume with all variables in trees2           

# notice that the plot changes to a box plot for the class variable, 

# speciesname    (shown in this example)

##############################################################################################

plot(volume~.,data=trees2)

rank<- order(dbh)                        # get the order of trees by dbh

sortedtrees<- trees2[rank,]              # use the order of trees to order the data

plot(volume~dbh,type="p") # points

plot(volume~dbh,type="l",data=sortedtrees) # lines -- data must be sorted by x

plot(volume~dbh,type="b",data=sortedtrees) # both -- data must be sorted by x

plot(volume~dbh,type="h",data=sortedtrees) # histogram

##########################################################################

# normality plots and histograms 

#########################################################################

qqnorm(dbh)     # normality plot

qqline(dbh,col=2)

qqnorm(height)     # normality plot

qqline(height,col=2)

hist(dbh, breaks =20 , density=10,col="green", border="black") # draws a histogram

hist(height, breaks =10 , density=10,col="black", border="black") # draws a histogram

#############################################################################################

#  plots from regression -- standard set.  NOTE: you will need to click on the 

# graph window to bring up each plot (i.e., "Waiting to confirm page change..."

#############################################################################################

model1<-lm(volume~height,data=trees2)

plot(model1)

##########################################################################

#  Box plots:  volume and logarithm of volume

#########################################################################

boxplot(volume~speciesname,data=trees2,col='pink')

boxplot(volume~speciesname,data=trees2,log="y",col='pink')

##########################################################################

# Multiple plots

#########################################################################

require(lattice)

xyplot(volume~height+dbh,data=trees2,scales="free",groups=speciesname,auto.key=TRUE,layout=c(1,2),corner=c(0,0))

##########################################################################

#  Another way to get multiple plots:  2 box plots, one graphics image
#########################################################################

par(mfrow=c(1,2),mai=c(1.4, 1.4, 0.2, 0.2),cex=1.5)
boxplot(volume~speciesname,data=trees2,col='pink')

boxplot(volume~speciesname,data=trees2,log="y",col='pink')

par (mfrow=c(1,1), mai=c(1.0,1.0,1.0,1.0),cex=1.0)

#############################################################################################

#  Clean up all of your files, or shut down R before doing another exercise

#############################################################################################

rm(list=ls(all=TRUE))   # removes anything that might be restored from previously running R

ls()

Graphing Using R
(Materials to be handed out during the Workshop)
Exercise 6: Stepwise Methods to Select Predictor Variables in a Regression Model

Background:

Stepwise methods can be helpful for selecting some x’variables for predicting the y-variable.  Methods can be forward (in only), backward (out only) or both (in and out).  The resulting subset of x variables can be different, depending upon the method used.  Once subsets of x variables are obtained using these selection methods, a full regression can be run, and the assumptions checked, etc. 

Files: We will use the plot data found in stand.txt for this exercise.  The data for each plot were compiled to obtain volume per ha, basal area per ha, stems per ha, top height, quadratic mean dbh, average age, site index. The script can be found in stepwise.R.

Exercise:

Run the script in sections, as before, to be able to understand what the R code does.  Then, using one of the subsets of selected variables, run a full regression analysis and check assumptions, etc.    

For discussion:
How useful were these selection methods for choosing x variables to predict volume per ha?  Did you obtain a good result with your full regression using the subset of x variables?
##############################################################################################

# bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#

##############################################################################################

standdat<- read.table("E:\\R_workshop\\workshop 2009\\data\\stand.txt",header=TRUE)

attach(standdat)

names(standdat)

standdat

ls()

#############################################################################################

#  Using step to do stepwise methods to help in choosing x variables.  Starts with all

#  x variables, as shown by volha ~ . and the specific data frame. First one uses

#  forward (in only), second one uses backward (out only), and last allows

#  variables to be dropped and later to enter back in (both).  

############################################################################################

summary(model1 <- lm(vol.ha ~ .,data = standdat))

step.model1 <- step(model1,direction=c("forward"))

summary(step.model1)

step.model2 <- step(model1,direction=c("backward"))

summary(step.model2)

step.model3 <- step(model1,direction=c("both"))

summary(step.model3)

#############################################################################################

#  Once you have a model, do a full analysis, as you need to check assumptions, etc.  

#############################################################################################

lm.volume<-lm(vol.ha~qdbh+topht)  

lm.volume

summary(lm.volume)

anova(lm.volume))

yhat<-fitted(lm.volume)

resid<-resid(lm.volume)

cbind(vol.ha,yhat,resid)  # list measured and predicted height and differences (i.e. residuals)

plot(yhat~vol.ha)

abline(a=0,b=1)   # plot a reference line where yhat equals volha

plot(resid~yhat)  # residual plot

plot(resid~qdbh)    #different residual plot

qqnorm(resid)     # normality plot

qqline(resid,col=2)

hist(resid, breaks =6 , density=10,col="green", border="black") # draws a histogram

# get 95% confidence intervals for the average vol per ha, given each of the observed x's in the data, using the equation

predCI<- predict(lm.volume, standdat,interval="confidence")

predCI

#############################################################################################

#  Clean up all of your files, or shut down R before doing another exercise

#############################################################################################

Exercise 7: Experiments Using a Completely Randomized Design, One-Factor 
A researcher wants to examine the impacts of thinning (tree removal) on growth of red pine trees in Ontario, Canada.  There are three treatments:  No removal (control), thinning (light – few trees are removed), heavy (many trees are removed).  A plantation of 30 ha is selected, where trees are evenly spaced, with similar dbh’s (diameter outside bark, measured at 1.3 m above ground) and are currently 15 years old.  Fifteen areas are established in the plantation, each 1 ha in size (experimental unit).  Each 1 ha area is then randomly assigned a treatment, resulting in five experimental units having each treatment.  After 5 years, a number of 0.02 ha plots are established, systematically, over the each 1 ha area.  The dbh’s of all live trees are measured in each plot, and entered into an excel file. The average diameters are calculated for each 1 ha experimental unit resulting in the following values (data are in crd.txt):

	Treatment
	Exp_unit
	AveDbh

	None
	10
	7.50

	None
	4
	6.70

	None
	1
	7.20

	None
	14
	8.20

	None
	3
	8.60

	light
	13
	9.60

	light
	8
	8.40

	light
	5
	8.90

	light
	2
	9.60

	light
	12
	11.10

	heavy
	11
	11.40

	heavy
	9
	9.90

	heavy
	6
	10.60

	heavy
	7
	12.70

	heavy
	15
	13.50


Using the script found in crd.R:

1. Obtain a boxplot.  Based on this boxplot, are there differences in AveDbh among the three treatments? 

2. The null hypothesis is that there are no differences in mean of AveDbh among these three treatments?

a. Check the assumptions by getting a histogram and normality plot of the residual values.

b. If assumptions are met, set up your hypothesis (H0 and H1), obtain the F test statistic, the F critical value (or p-value), and make your decision (reject H0?), using the lm output.  Use alpha=0.05.

3. Use pairs of means t-tests to check for differences between pairs of treatments.  Remember to correct this test using a Bonferroni correction (i.e., divide alpha by the number of pairs of means).

Discussion:

Are these tests reliable?  Were assumptions of Analysis of Variance met, or are transformations needed?

If assumptions were met, what are the results of your tests?  Are there differences in AveDbh?  If so, which thinning methods differ? 

##############################################################################################

# bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#

##############################################################################################

rm(list=ls(all=TRUE))  # remove any objects left from previous runs of R

plotdat<- read.table("E:\\R_workshop\\workshop 2009\\data\\crd.txt",header=TRUE)

attach(plotdat)

names(plotdat)

dim(plotdat)

tapply(AveDbh,Treatment,mean)

logAveDbh<-log(AveDbh)

##########################################################################

#  Box plots, one orginal and one log-transformed.  Set this up for two

#  plots on a page.  After, if you just highlight and run one boxplot,

# you will just get that plot.  

#########################################################################

par(mfrow=c(1,2))

boxplot(AveDbh~Treatment,data=plotdat,col='pink', main="Average Dbh by Treatment")

boxplot(logAveDbh~Treatment,data=plotdat,col='pink', main="Log AveDbh by Treatment")

par(mfrow=c(1,1))

##########################################################################

# ANOVA: Use lm to get the analysis of variance table -- and F test for treatments

# Check assumptions of equal variance across treatments, and normality

# of residuals.  Residual here is the observed value - mean for the 

# treatment.  

#########################################################################

model1<-lm(AveDbh~Treatment,data=plotdat)

anova(model1)

summary(model1)

yhat<-fitted(model1)

resid<-resid(model1)

par(mfrow=c(2,2))

plot(resid~yhat)  # residual plot

qqnorm(resid)     # normality plot

qqline(resid,col=2)

hist(resid, breaks =6 , density=10,col="green", border="black") # draws a histogramresid<-resid(lm.model1)

par(mfrow=c(1,1))

##########################################################################

# If treatment means vary, then test which pairs differ

#########################################################################

pairwise.t.test(AveDbh,Treatment,p.adj="bonferroni")

#############################################################################################

#  If assumptions were not met (the graphs show the residuals are not normally 

#  distributed, and/or the residual plot indicates the spread of residuals is

#  not all the same), then repeat the ANOVA using LogAveDbh instead.  

#############################################################################################

#############################################################################################

#  Clean up all of your files, or shut down R before doing another exercise

#############################################################################################

Exercise 8: Experiment Using a Completely Randomized Design, Two Factors

In a second study, the impacts of thinning (tree removal) and fertilization on growth of red pine trees in Ontario are of interest. The three levels for the first factor, thinning, are: No removal (control), thinning (light – few trees are removed), heavy (many trees are removed).  For the second factor, fertilization, there are two levels, from 1 (no fertilizer) to 2(fertilizer).  In total, there are six treatments.  Again, a plantation of 30 ha is selected, where trees are evenly spaced, with similar dbh’s (diameter outside bark, measured at 1.3 m above ground) and are currently 15 years old.  Twelve areas are established in the plantation, each 1 ha in size (experimental unit).  Each 1 ha area is then randomly assigned a treatment, resulting in two experimental units having each treatment.  After 5 years, a number of 0.02 ha plots are established, systematically, over the each 1 ha area.  The dbh’s of all live trees are measured in each plot, and entered into an excel file. The average diameters are calculated for each 1 ha experimental unit resulting in the following values (crd_two_factors.txt):

	Exp_unit
	Thinning
	FertLevel
	AveDbh

	2
	none
	1
	6.7

	4
	none
	1
	7.2

	8
	none
	2
	7.5

	3
	none
	2
	8.2

	12
	light
	1
	8.4

	1
	light
	1
	8.9

	5
	light
	2
	9.6

	9
	light
	2
	9.6

	11
	heavy
	1
	10.6

	6
	heavy
	1
	11.4

	7
	heavy
	2
	12.7

	10
	heavy
	2
	13.5


The researchers would like to know if there are differences in the mean of the AveDbh with different treatments.  

1. Two analyses were run (crd_two_factors.R.  The first used AveDbh as the y- variable, and the second analysis used the logarithm of AveDbh instead.  Which of these should be interpreted (NOTE:  meets assumptions of equal variance and normality of residuals)?

2. Based on the analysis that met the assumptions, is there an interaction between the two factors? Use alpha=0.05.

THEN:

3. If there is an interaction, which treatments differ? (Use pairs of means t-tests at the treatment level, and remember to use the Bonfereonni correction.

OR:

3. If there is no interaction, does thinning change the diameter? In what way (higher or lower average diameter across thinning levels? (Use the pairs of means t-test for thinning levels – remember to use the Bonferonni correction).

4. If there is no interaction, does fertilizer change the average diameter? In what way? (Use the pairs of means t-test for fertilization levels – remember to use the Bonferonni correction).

Discussion:

Was the transformation of AveDbh needed?

Was there an interaction?  If yes, which treatments differed?  

If there was no interaction, is there a difference in mean of AveDbh between thinning levels?  

If there was no interaction, is there a difference in mean of AveDbh between fertilization levels?

##############################################################################################

# bring in data from an outside tab delimited text file, can be converted from a EXCEL file

#     (shown in this example)

#

##############################################################################################

rm(list=ls(all=TRUE))  # remove any objects left from previous runs of R

plotdat<- read.table("E:\\R_workshop\\workshop 2009\\data\\crd.txt",header=TRUE)

attach(plotdat)

names(plotdat)

dim(plotdat)

tapply(AveDbh,Treatment,mean)

logAveDbh<-log(AveDbh)

##########################################################################

#  Box plots, one orginal and one log-transformed.  Set this up for two

#  plots on a page.  After, if you just highlight and run one boxplot,

# you will just get that plot.  

#########################################################################

par(mfrow=c(1,2))

boxplot(AveDbh~Treatment,data=plotdat,col='pink', main="Average Dbh by Treatment")

boxplot(logAveDbh~Treatment,data=plotdat,col='pink', main="Log AveDbh by Treatment")

par(mfrow=c(1,1))

##########################################################################

# ANOVA: Use lm to get the analysis of variance table -- and F test for treatments

# Check assumptions of equal variance across treatments, and normality

# of residuals.  Residual here is the observed value - mean for the 

# treatment.  

#########################################################################

model1<-lm(AveDbh~Treatment,data=plotdat)

anova(model1)

summary(model1)

yhat<-fitted(model1)

resid<-resid(model1)

par(mfrow=c(2,2))

plot(resid~yhat)  # residual plot

qqnorm(resid)     # normality plot

qqline(resid,col=2)

hist(resid, breaks =6 , density=10,col="green", border="black") # draws a histogramresid<-resid(lm.model1)

par(mfrow=c(1,1))

##########################################################################

# If treatment means vary, then test which pairs differ

#########################################################################

pairwise.t.test(AveDbh,Treatment,p.adj="bonferroni")

#############################################################################################

#  If assumptions were not met (the graphs show the residuals are not normally 

#  distributed, and/or the residual plot indicates the spread of residuals is

#  not all the same), then repeat the ANOVA using LogAveDbh instead.  

#############################################################################################

#############################################################################################

#  Clean up all of your files, or shut down R before doing another exercise

#############################################################################################

Exercise 9: Other Designs
Other experimental designs are more difficult to analyze using R.   The textbook:

Pinheiro, J.C. and D. M. Bates.  2000. Mixed-effects models in S and S-Plus.  Springer, New York.

has a number of examples using S and S-Plus, which R was designed to emulate.    Here are three examples from that textbook.  The examples use maximum likelihood to estimate the fixed and random effects of the model, using a procedure called lme found in the package called nlme.  The data used in each of the example is also stored in the nlme library.
Example 1.1:  A simple example of random effects
The y-variable in this example is “longitudinal stress” on train rail lines.  Six rail lines were selected at random, and tested three times each.  Here there is only one factor, “rail” and this is a random-effect.  There is the overall mean (grand mean (ie a fixed-effect labelled as the intercept = 66.5)), the variance due to rail (ie the standard deviation of the “intercept” varying with rail=24.805), and the remaining variance within rails (the “residual” standard deviation=4.0208).

Example 1.2: A randomized block design.  

This example looks at ergonomic stools (ie healthy chairs), where the y variable is the effort to rise from a chair given four particular types of stools (fixed-effects called “Type”).  Each person (a block, labelled as “Subject”) tests each stool, and there are nine persons (ie nine blocks).  The results for the fixed effects are the intercept and how this varies by Type, and then the variance of the intercept for the person (ie the standard deviation of the block = 1.3325) and the left-over variance (ie the block by treatment interaction standard deviation =1.1003).   There is an F-test for H0: means are the same for all types (F=455.01, pvalue<.0001).  Then, the estimated fixed effects coefficients depend upon what contrasts you have included.  Using the “Helmert” contrasts which work well when the treatments are in order:  i) the one labelled “intercept” is the mean of all four Stool Types;  ii) the one labelled “Type 1” is comparing Stool Type 1 with Stool Type 2; iii) the one labelled “Type 2” is comparing Stool Type 3 versus Stool Types 1 and 2; and iv) the one labelled “Type 3” is testing Stool Type 4 versus the other three.   Where the treatments are not in order, other contrasts may be of interest.  Alternatively, using the different contrasts, the fixed-effect coefficients are: i) the one labelled “intercept” is the mean of Stool Type 1; ii) the one labelled “Type 2” is the difference between Stool Type 1 mean and Stool Type 2 mean; iii)  the one labelled “Type 3” is the difference between Stool Type 1 mean and Stool Type 3 mean; and iv) ii) the one labelled “Type 4” is the difference between Stool Type 1 mean and Stool Type 4 mean.  The R code also gives confidence intervals for each fixed-effect and for each variance (actually standard deviation) estimated.  
Example 1.3:  Mixed-effects models for replicated, block designs

Note that the code given with the nlme package was modified for this example.  In this example, the y variable is productivity score.  Six randomly selected workers are tested on each of three machine types.  Each worker uses the machine type three times. The machine types are the treatments (fixed-effect factor), the workers are the blocks (random-effects), and then there are three replicates of each machine in each block.  The model then has Blocks (ie random effects “Worker” with standard deviation estimated as 4.7814), Block by Treatment (“Machine %in% Worker”, with standard deviation estimated as 3.7294) and then replicates within each Block X Treatment (ie “Residual” with standard deviation of 0.96158).  Getting F-tests for the Treatment is a bit more difficult using R.  Instead, two models must be run to get at whether the treatments differ.    There are three models to used test Block X Treatment and the Fixed Effect.  
Example 1.4:  An Analysis of Covariance Model
This shows an example which is an observational study comparing growth curves of the pituitary gland of several boys (16) and several girls (11) based on x-rays of skulls (y=distance).  The data for the girls is used in the code.    The fixed-effect is the age and the random effects are the individuals and the left-over residual.  
Example 1.5: Models for Nested Classification Factors
In this example, there is Dog and Side (right and left) and the y variable is intensity of pixels in the CT scan of the dog, after it is injected with dyes, another observational study.  The Dog is a random-effect, considered to be nested in the Side, and Side is a fixed effect.  Each pixel is a measured over time, so that time is nested in Side and Dog (the residual error term).
Example 1.6: A Split-Plot Experiment
In this experiment, the experimental field is blocked, and divided into plots.  Nitrogen is then applied to the plots (four levels) randomly in blocks. The plots are subdivided (split plot), and a variety (three of these) is randomly assigned within each split-plot.   
#-*- R -*-

library(nlme)

#  pdf(file = 'ch01.pdf')

options( width = 65, digits = 5 )

options( contrasts = c(unordered = "contr.helmert", ordered = "contr.poly") )

# Chapter 1    Linear Mixed-Effects Models: Basic Concepts and Examples

# 1.1 A Simple Example of Random Effects

Rail

fm1Rail.lm <- lm( travel ~ 1, data = Rail )

fm1Rail.lm

fm2Rail.lm <- lm( travel ~ Rail - 1, data = Rail )

fm2Rail.lm

fm1Rail.lme <- lme(travel ~ 1, data = Rail, random = ~ 1 | Rail)

summary( fm1Rail.lme )

fm1Rail.lmeML <- update( fm1Rail.lme, method = "ML" )

summary( fm1Rail.lmeML )

plot( fm1Rail.lme )   # produces Figure 1.4

intervals( fm1Rail.lme )

anova( fm1Rail.lme )

# 1.2 A Randomized Block Design

plot.design( ergoStool )   # produces Figure 1.6

contrasts( ergoStool$Type )

ergoStool1 <- ergoStool[ ergoStool$Subject == "1", ]

model.matrix( effort ~ Type, ergoStool1 )   # X matrix for Subject 1

fm1Stool <-

lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

summary( fm1Stool )

anova( fm1Stool )

options( contrasts = c( factor = "contr.treatment",

                        ordered = "contr.poly" ) )

contrasts( ergoStool$Type )

fm2Stool <-

  lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

summary( fm2Stool )

anova( fm2Stool )

model.matrix( effort ~ Type - 1, ergoStool1 )

fm3Stool <-

 lme(effort ~ Type - 1, data = ergoStool, random = ~ 1 | Subject)

summary( fm3Stool )

anova( fm3Stool )

intervals( fm1Stool )

plot( fm1Stool,   # produces Figure 1.8

      form = resid(., type = "p") ~ fitted(.) | Subject,

      abline = 0 )

# 1.3  Mixed-effects Models for Replicated, Blocked Designs

with(Machines, interaction.plot( Machine, Worker, score, las = 1))   # Figure 1.10

fm1Machine <-

lme( score ~ Machine, data = Machines, random = ~ 1 | Worker,method="ML" )

fm1Machine

fm2Machine <- update( fm1Machine, random = ~ 1 | Worker/Machine, method="ML" )

fm2Machine

anova( fm1Machine, fm2Machine )

fm3Machine <- update( fm2Machine, score~1,method="ML")

summary( fm3Machine )

anova( fm1Machine, fm2Machine, fm3Machine )
# 1.4 An Analysis of Covariance Model

names( Orthodont )

levels( Orthodont$Sex )

OrthoFem <- Orthodont[ Orthodont$Sex == "Female", ]

fm1OrthF.lis <- lmList( distance ~ age, data = OrthoFem )

coef( fm1OrthF.lis )

intervals( fm1OrthF.lis )

plot( intervals ( fm1OrthF.lis ) )   # produces Figure 1.12

fm2OrthF.lis <- update( fm1OrthF.lis, distance ~ I( age - 11 ) )

plot( intervals( fm2OrthF.lis ) )    # produces Figure 1.13

fm1OrthF <-

  lme( distance ~ age, data = OrthoFem, random = ~ 1 | Subject )

summary( fm1OrthF )

fm1OrthFM <- update( fm1OrthF, method = "ML" )

summary( fm1OrthFM )

fm2OrthF <- update( fm1OrthF, random = ~ age | Subject )

anova( fm1OrthF, fm2OrthF )

random.effects( fm1OrthF )

ranef( fm1OrthFM )

coef( fm1OrthF )

plot( compareFits(coef(fm1OrthF), coef(fm1OrthFM)))   # Figure 1.15

plot( augPred(fm1OrthF), aspect = "xy", grid = TRUE )   # Figure 1.16

# 1.5  Models for Nested Classification Factors

fm1Pixel <- lme( pixel ~ day + I(day^2), data = Pixel,

  random = list( Dog = ~ day, Side = ~ 1 ) )

intervals( fm1Pixel )

plot( augPred( fm1Pixel ) )   # produces Figure 1.18

VarCorr( fm1Pixel )

summary( fm1Pixel )

fm2Pixel <- update( fm1Pixel, random = ~ day | Dog)

anova( fm1Pixel, fm2Pixel )

fm3Pixel <- update( fm1Pixel, random = ~ 1 | Dog/Side )

anova( fm1Pixel, fm3Pixel )

fm4Pixel <- update( fm1Pixel, pixel ~ day + I(day^2) + Side )

summary( fm4Pixel )

# 1.6  A Split-Plot Experiment

fm1Oats <- lme( yield ~ ordered(nitro) * Variety, data = Oats,

  random = ~ 1 | Block/Variety )

anova( fm1Oats )

fm2Oats <- update( fm1Oats, yield ~ ordered(nitro) + Variety )

anova( fm2Oats )

summary( fm2Oats )

fm3Oats <- update( fm1Oats, yield ~ ordered( nitro ) )

summary( fm3Oats )

fm4Oats <-

  lme( yield ~ nitro, data = Oats, random = ~ 1 | Block/Variety )

summary( fm4Oats )

VarCorr( fm4Oats )

intervals( fm4Oats )

plot(augPred(fm4Oats), aspect = 2.5, layout = c(6, 3),

     between = list(x = c(0, 0, 0.5, 0, 0))) # produces Figure 1.21

R Electronic Books from UBC Library
There are a number of very useful books on how to use R for analysis of data.  Through UBC library, you can access electronic copies of these books by:

1) Go to http://www.library.ubc.ca

2) Select “e-resources” 

3) Select “indexes and databases”

4) Type in “Springer” to get books published by Springer or “StatsNetBase” to get books published by Chapman & Hall/CRC.

Then, you can search for the book that you want.  Here is a list of books that I have used.

StatsNetBase

Everitt, B. S. , and T. Hothorn. 2006. A handbook of statistical analyses using R.  Chapman & Hall/CRC, New York.

Faraway, J.J.   2006.  Extending the linear model with R:  Generalized linear, mixed effects, and nonparametric regression models.  Chapman & Hall/CRC, New York.

Murrell, P.  2006.  R graphics. Chapman & Hall/CRC, New York.

West, B.T., K.B. Welch, and A. T. Galecki.  2007.  Linear Mixed Models:  A Practical Guide Using Statistical Software.  Chapman & Hall/CRC, New York. 

Wood, S.N.  2006.  Generalized additive models with R.  Chapman & Hall/CRC, New York.

Springer
Albert, J. 2007.  Bayesian analysis with R. Springer, New York.

Bivand, R.S., E.J. Pebesma, and V. Gómez-Rubio.  2008.  Applied spatial data analysis with R. Springer, New York.

Dalgaard, P.  2002.  Introductory statistics with R. Springer, New York.

Everitt, B.S.  2005.  An R and S-Plus companion to multivariate analysis.  Springer-Verlag, London.

Gentlemen, R., K. Hornik, G. Parmigiani.   2008.  Data manipulation with R.  Springer, New York.

Muenchen, R.A.  2009.  R for SAS and SPSS users.  Springer, New York.

Pfaff, B.  2006.  Analysis of integrated and cointegrated time series with R.    Springer, New York.

Shumway, R. H. and D. S. Stoffer.  2006.  Time series analysis and its applications with R examples, 2nd edition.    Springer, New York.

Zuur, A. F., E. N. Ieno and E.H.W.G. Meesters.  2009.  A beginner’s guide to R.    Springer, New York.

Zurr, A.F., E. N. Ieno, and G.M. Smith.  2007.  Analyzing ecological data.  Springer, New York.

Zurr, A.F., E. N. Ieno, N. J. Walker, A.A. Saveliev, and G.M. Smith.  2009.  Mixed dffects models and extensions in ecology with R.  Springer, New York.
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