
ice breakeR

Andrew Robinson
Department of Mathematics and Statistics

University of Melbourne
Parkville, Vic. 3010

A.Robinson@ms.unimelb.edu.au

February 15 and 17, 2006

Contents

List of Figures 4

1 Introduction 4
1.1 R . 4
1.2 Why R? . 4
1.3 Why not R? . 5
1.4 The Open Source Ideal . 5

2 Infrastructure 6
2.1 Using this Document . 6
2.2 Getting Help . 6
2.3 Working Directory . 7
2.4 Work Spaces . 7
2.5 History . 8
2.6 Writing scripts . 8

3 Interface 9
3.1 Importing and Exporting Data . 9

3.1.1 Import . 10
3.1.2 Export . 11

4 Manipulating your Data 12
4.1 Classes of Data . 12

4.1.1 Numeric . 12
4.1.2 String . 12
4.1.3 Factor . 13
4.1.4 Logical . 13
4.1.5 Missing Data . 13

4.2 Structures for Data . 14
4.2.1 Vector . 14
4.2.2 Dataframe . 15

4.3 Data References . 16

5 Graphics 18
5.1 Organization Parameters . 19
5.2 Permanence . 19

6 Linear Regression 21
6.1 Preparation . 21
6.2 Fitting . 23
6.3 Diagnostics . 23
6.4 Other Tools . 25
6.5 Examining the Model . 25

1

icebreakeR

6.6 Other Angles . 26
6.7 Other Models . 26
6.8 Other Ways of Fitting . 26

7 More Graphics 27
7.1 Trellis . 27

8 Hierarchical Models 30
8.1 Introduction . 30

8.1.1 Methodological . 30
8.1.2 General . 31

8.2 Some Theory . 31
8.2.1 Effects . 31
8.2.2 Model Construction . 32
8.2.3 The Deep End . 36
8.2.4 Maximum Likelihood . 36
8.2.5 Restricted Maximum Likelihood . 37

8.3 A Simple Example . 37
8.4 Case Study . 39

8.4.1 Height/Diameter Data . 40
8.4.2 Extensions to the model . 60

8.5 The Model . 61
8.5.1 Z . 63
8.5.2 b . 63
8.5.3 D . 63

9 Extensibility - R Packages 64

10 Programming 66
10.1 Functions . 66
10.2 Scoping . 66
10.3 S3 Objects . 67
10.4 Control . 68
10.5 Other languages . 68

10.5.1 Write . 69
10.5.2 Compile . 70
10.5.3 Attach . 70
10.5.4 Call . 71
10.5.5 Benefit . 71

Bibliography 71

2

List of Figures

5.1 Diameter/Height plot for all species of Upper Flat Creek inventory data. 18

6.1 Diagnostic plots for the regression of diameter against height. 24
6.2 Parameter estimate change as a result of dropping the outliers. 25

7.1 A random plot of coloured dots. 28
7.2 A lattice plot of height against predicted height by species for the four species that have the

most trees. 29

8.1 Al Stage’s Grand Fir stem analysis data: height (ft) against diameter (in). These were
dominant and co-dominant trees. 34

8.2 Al Stage’s Grand Fir Stem Analysis Data: height (ft, vertical axes) against diameter (inches,
horizontal axes) by National Forest. These were dominant and co-dominant trees. 35

8.3 A simple dataset to show the use of mixed-effects models. 38
8.4 An augmented plot of the basic mixed-effects model with random intercepts fit to the sample

dataset. 39
8.5 A sample plot showing the difference between basic.1 (single line), basic.2 (intercepts are

fixed), and basic.4 (intercepts are random). 39
8.6 Regression diagnostics for the ordinary least squares fit of the Height/Diameter model with

habitat type for Stage’s data. 42
8.7 Selected diagnostics for the mixed-effects fit of the Height/Diameter ratio against habitat type

and national forest for Stage’s data. 46
8.8 The parameter estimates for the fixed effects and predictions for the random effects resulting

from omitting one observation. 48
8.9 Cook’s Distances for outermost and innermost residuals. Values greater than 1 appear in red

and are identified by the tree number. The corresponding observations bear further examina-
tion. 49

8.10 Selected overall diagnostics for the mixed-effects fit of the Height/Diameter model for Stage’s
data. 52

8.11 Selected quantile-based diagnostics for the mixed-effects fit of the Height/Diameter model for
Stage’s data. 53

8.12 Selected random-effects based diagnostics for the mixed-effects fit of the Height/Diameter
model for Stage’s data. 54

8.13 Height against diameter by tree, augmented with predicted lines. 55
8.14 Selected diagnostics for the mixed-effects fit of the Height/Diameter model for Stage’s data. 56
8.15 Selected diagnostics for the mixed-effects fit of the Height/Diameter model for Stage’s data. 57
8.16 Innermost Pearson residuals against fitted values by habitat type. 58
8.17 Quantile plots of innermost Pearson residuals against the normal distribution, by habitat type. 58
8.18 Height against diameter by tree, augmented with predicted lines. 59
8.19 Added-variable plot for Age against the ratio of Height over Diameter. 61
8.20 Plot of predicted height against observed height, by habitat type. The solid line is 1:1, as

predicted by the model. The dotted line is the OLS line of best fit within habitat type. . . . 62

3

Chapter 1

Introduction

1.1 R

R is a programming language that has been optimized for data analysis and modeling. R can be used as an
object-oriented programming language, or as a statistical environment within which lists of instructions can
be performed automatically.

We interact with R by typing commands into a command line in the console, or by creating them in a
syntactically aware editor1 and sending then to the console. The exclusive use of a command-line interface
(CLI) makes the learning curve steeper. However, it also allows us to store collections of commands and run
them without intervention, which simplifies the process of making templates for graphics or reports. Some
interaction with R can be done through menus for some operating systems, but this is mainly administrative
stuff. A principal advantage of the CLI is that it simplifies the development and use of scripts. These allow
us to keep a permanent, documented record of the steps that we have done. This is also possible with a
GUI, but it is much more cumbersome.

You can find and download the executables and source code at: http://www.r-project.org.

1.2 Why R?

1. R runs on Windows, Mac-OS, and Unix variants (FreeBSD, Linux)

2. R provides a vast number of useful statistical tools, many of which have been painstakingly tested.

3. R produces publication-quality graphics in a variety of formats, including JPEG, postscript, eps, pdf,
and bmp, from a flexible and easily enhanced interface.

4. R plays well with LATEX via the Sweave package.

5. R plays well with FORTRAN, C, and shell scripts.

6. R scales, making it useful for small and large projects.

7. R eschews the GUI.

Anecdote: I was telecommuting from New Haven (CT) to Moscow (ID). I developed and trialled simulation
code on my laptop, ssh-ed into a FreeBSD server in Moscow and ran the full code inside a screen2 session.
Any time I wanted to monitor progress I could log in to the session remotely, from anywhere. When it had
concluded, R sent me an email to let me know.

1I use Xemacs.
2Screen is a very useful open-source terminal multiplexor.

4

http://www.r-project.org

icebreakeR

1.3 Why not R?

1. R cannot do everything.

2. R will not hold your hand.

3. The documentation can be opaque.

4. R can drive you crazy, or age you prematurely.

5. The contributed packages have been exposed to varying degrees of testing and analysis.

6. There is no guarantee that it is worth more than you paid for it.

7. R eschews the GUI.

Anecdote: I was developing a relatively large-scale data analysis that required numerous steps. One of
them was to run a third-party forest growth model (ORGANON) 180 times with 180 different configurations,
scoop up the results and assimilate them. As this had to run numerous times, and required identifiable
temporary files, I decided to include intermediate cleaning-up steps, which involved deleting certain files. If
you run such code as a script, and a command fails, then the script stops. This is a feature. If you run
such code by copying it from your document and then pasting it as as group of commands to the console,
and a command fails, it goes to the next command. The failed command was a change of directory. My
script wiped itself out, and all its companion scripts. A classic case of the power of ones tool exceeding ones
competence. R is very powerful.

1.4 The Open Source Ideal

R is free, as in: you can download the executables and the source code at no cost. However, this is not
the most important kind of freedom at stake in computer programming. There is also freedom as in lack of
constraints.

The phrase most commonly used to describe this particular principle of freedom is: think of free speech,
not free beer. You can make any alterations with only one obligation: further distribution must be under
the identical license and must include the source code. But, you can still be charged a reasonable cost for it.

There are numerous flavors of “Open Source”, which are commonly bundled together, mistakenly. The
label refers to the license under which the code is released, or not, to the public domain. There are at least
three distinct licensing approaches to open source materials: GNU, BSD, and OSI.

R is released under the GNU license, which essentially says that the source code is freely available, and
that you can modify it as you like, but if you distribute any modifications then they must be distributed
under the same license. A nominal fee may be charged. This license means that R will always be available,
and will always be open-source – it can’t be “corrupted”.

5

Chapter 2

Infrastructure

R provides several tools to help us keep organized and efficient. I showcase the simple and important ones
below. The complicated and important stuff, such as environments, scoping, and so on, will wait.

2.1 Using this Document

This document is in pdf format. The Acrobat Reader gives you the ability to copy any text to the clipboard,
by choosing the Select Text Tool, marking the text you want, and pressing Ctrl-c. You can then paste it
to the R console by right-clicking in the console and selecting the “Paste commands only” option. This will
save you a lot of tedious typing for the workshop.

The R commands are printed in a slanting typewriter font. It can be a little misleading, for example
when the vertical bar | is used and appears to be a slash. Copying and pasting is safer than typing for
yourself.

Finally, you will commonly see in later chapters the commands print(plot(...)). The plot com-
mand is nested inside the print command in order to make the lattice graphics available for this document.
You do not need to include the print command if you only want to see the graphics on your screen. However,
there is no problem if you include it anyway.

2.2 Getting Help

There are three main sources of assistance: the help files, the R-help archive, and R-help itself. The help
files can be accessed using the help() command, which has ? as a prefix-style shortcut. We can get help on
commands this way; for example

> ?mean # Works! mean is an R command

> help(mean) # Works! mean is an R command

However, we can’t get information on concepts unless they have been specifically registered with the help
system.

> help(regression) # Fails! regression is not an R command

This is because“regression” isn’t an R command. If we want to know which commands refer to regression,
we use

> help.search("regression")

This will tell us to try help(lm), which is one among a great deal of other commands that refer to
regression. The level of help provided about the different commands is patchy.

I have found that the best way to get a feel for what information the commands are expecting is to try
out the examples that often appear at the end of the help information. For most help files we can just copy

6

icebreakeR

those example commands and paste them to the console, and see what happens. The commands can then
be altered to suit ones own needs.

We can also access the files that are installed with R using a WWW browser. Again inside R, execute
the following command.

> help.start()

This opens a browser (or a window inside an existing browser) in to which help results will be piped, and
within which you can then point, click, and search for keywords.

There is a thriving community of programmers and users who will be happy to answer questions and,
in fact, may well have already done so. Questions and answers can be easily found from inside R using the
following commands:

> RSiteSearch("{logistic regression}") # matches exact phrase

> RSiteSearch("Baron Liaw", res = "Rhelp02") # restricts search to year

If you don’t find an answer after a solid search, then you should consider asking the community, using the
email list R-help. There is a posting guide to help people write questions that are most likely to obtain useful
answers - it is essential reading! Point your browser to: http://www.r-project.org/posting-guide.html

Details on joining the email list group can be found at: https://stat.ethz.ch/mailman/listinfo/
r-help. I recommend the digest option; emails arrive at a rate of up to 100 per day.

2.3 Working Directory

The working directory is the default location to and from which one writes and reads files. If one wants to
read or write to a different location, one must explicitly say so. Life is therefore much easier if all the data
and scripts for an analysis are kept in a single (frequently backed up!) location.

On Windows, there is a menu item that allows for selecting the working directory, as well as the command
line. In the CLI versions of R one can use only the command line.

> getwd() # What is the working directory?

> setwd("C:/Temp") # Set this to be the working directory.

The forward slashes are used regardless of the underlying operating system. This is distracting in Win-
dows, but it is again a feature, as it provides a level of portability for our code.

2.4 Work Spaces

R uses the concept of work spaces to help us keep our objects organized. All the objects that we make,
whether directly or indirectly, are stored within a workspace. We can save, load, share, or archive these
workspaces. We can also list the contents of our workspace using ls(), and clear items from it using rm().
For example,

> test <- 1:10 # Create an object

> ls() # List all objects in workspace

> save.image(file="Andrew.RData") # Save all objects to a binary file

> save(test, file="Andrew.RData") # Save named objects to a binary file

> rm(test) # Delete the "test" object.

> ls() # List the objects that we have

> rm(list=ls()) # Delete them all

> load(file="Andrew.RData") # Load them again

> ls() # List the objects that we have

7

http://www.r-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help

icebreakeR

The binary files to which the save.image() command writes the objects in our workspace are readable
by R under all operating systems. They are considerably compressed compared with, say, comma delimited
files, but further space savings can be gained from further compression, such as provided by the zip family
of functions.

Work spaces can be very useful, but also hide nefarious traps for the unwary. It is possible for one user,
let’s say a student, to construct a script containing numerous steps of analysis, and try to share it with
another user, let’s say a supervisor, only for the latter to find that the success of the script requires an
object stored and long forgotten in the first user’s workspace! This is a common pitfall for collaboration.
My students and I will, as much as possible, preface all our code with:

> rm(list=ls())

This ensures a clean workspace.

2.5 History

R’s history facility keeps track of every command that we type in, even the dumb ones. This can be very
helpful, especially as one can access it through the up and down arrows. So, if we mistype a command the
remedy is as simple as hitting the up arrow, editing the command, and hitting enter.

This is just fine for small problems; it is quick and effective. It rapidly becomes very inefficient, though,
when you want to repeat a number of commands with small alterations. It will drive you insane. Write
scripts. See Section 2.6.

It’s sometimes useful after a session to save the history to a file.

> savehistory(file="History.txt") # History saved as a text document

> loadhistory(file="History.txt") # Text document loaded into History

We can then use this history as the basis for writing a script (see Section 2.6). Comments can be inserted
as we have seen above, and then the whole thing can be read in to R using the source() command.

I almost never develop scripts inside R. I prefer to use an external editor that is optimized for script
development - examples are Emacs, XEmacs, and WinEdit.

2.6 Writing scripts

Using R effectively is as simple as writing scripts. We write the scripts in any text editor - MS Word, Open
Office, Emacs, or Xemacs. Some editors, for example Emacs and Xemacs, will make our lives easier by
providing us with syntactically aware tabbing, text colours, and command completion, which are delicious,
as well as running R as a sub-process, which means that the R output is also a manipulatable buffer.

Regardless of our editor, we save the scripts to a known directory, and then either copy and paste them
into the R console, or read them in using the one of the following commands:

> source(file="C://path/to/filename/file.R", echo=T)

> source(file="../directory/file.R", echo=T)

> source(file="file.R", echo=T) # If file.R is in working directory

Note again the use of forward slashes to separate the directories. Also, the directory names are case-
sensitive and are permitted to contain blank spaces.

Writing readable, well-commented scripts is a really good habit to get into early; it just makes life much
easier in the future. Large projects are vastly simplified by rigorous script-writing.

A key element of good script-writing is commentary. In R the comment symbol is the # symbol. Every-
thing on a line after a # is ignored. Some editors will tab comments based on the number of #’s used.

Instructions can be delimited by line feeds or semi-colons. R is syntactically aware, so if you insert a
return before your parentheses or brackets are balanced, it will politely wait for the rest of the statement.

Script-writing is a very powerful collaborative tool. It’s very nice to be able to send your code and a raw
data file to a cooperator, and know that they can just source() the code and run your analysis on their
machine.

8

Chapter 3

Interface

So, what does it mean to say that R is object oriented? Simply, it means that all interaction with R is
through objects. Data structures are objects, as are functions, as are scripts. This seems obscure right now,
but as you become more familiar with it you’ll realize that this allows great flexibility and intuitiveness in
communication with R, and also is occasionally a royal pain in the bum.

We create objects and assign names to them using the left arrow: “<-”.

> a <- 1 # Create an object "a" and

assign to it the value 1.

> a <- 1.5 # Wipe out the 1 and make it 1.5 instead.

> a <- "Andrew" # Wipe out the 1.5 and make it "Andrew" instead.

> b <- a # Create an object "b" and assign to it

whatever is in object a.

> a <- c(1,2,3) # Wipe out the "Andrew" and make it a vector

with the values 1, 2, and 3.

This is a specific use for c! Never make c an object!

> a <- c(1:3) # Wipe out the "Andrew" and make it a vector

with the values 1, 2, and 3.

> b <- mean(a) # Assign the mean of the object a to the object b.

A couple of points are noteworthy: we didn’t have to declare the variables as being any particular class.
R coerced them into whatever was appropriate. Also we didn’t have to declare the length of the vectors.
That is convenient for the user.

3.1 Importing and Exporting Data

There is no better way to become familiar with a new program than to spend time with it using data that
you already know. It’s so much easier to learn how to interpret the various outputs when you know what
to expect! Importing and exporting data from R can seem a little confronting when you’re accustomed to
Microsoft Wizards, but it’s easy to pick up, and there’s much more control and flexibility. Whole manuals
have been written on the topic, because there are so many different formats, but we’ll focus on the simplest
one: comma-delimited files.

Comma-delimited files have become the lingua franca of data communication: pretty much every database
can input and output them. They’re simply flat files, meaning that they can be represented as a two-
dimensional array; rows and columns, with no extra structure. The columns are separated by commas and
the rows are separated by line feeds and possibly carriage returns, depending on your operating system. The
column names and the row names may or may not be stored in the first row and column respectively. It’s
always a good idea to check!

9

icebreakeR

Plot, Tree, Species, DBH, Height, Damage, Comment
1, 1, PiRa, 35.0, 22, 0,
1, 2, PiRa, 12.0, 120, 0, "Surely this can't be a real tree!"
1, 3, PiRa, 32.0, 20, 0,

... and so on.

3.1.1 Import

R needs a few things to import data. Firstly, it has to know where they are, secondly, where you want to
put them, and finally, whether there are any special characteristics. I always start by examining the data in
a spreadsheet - Excel does fine - because I’d like to know several things:

1. Are the rows and columns consistent? Excel spreadsheets can be problematic to import, as users often
take advantage of their flexibility to include various things that R won’t understand.

2. Are the columns or rows labeled? Will the labels be easily processed? (i.e. they should avoid under-
scores or spaces, percentage signs, etc).

3. Are any of the data missing? Are missing data explicitly represented in the data? If so, what symbol(s)
represent(s) the missing values?

4. Are there any symbols in the database that might make interpretation difficult?

We should also know the location of the file to be added. Then we can tell R how to load the data.
Assuming that the data are indeed appropriate and comma-delimited, we use the read.csv command. Note
that we have to give R the object name - in this case, ufc - in order for it to store the data.

> ufc <- read.csv(file="C://path/to/filename/ufc.csv")

Note the use of forward slashes to separate the directory names. The directory names are case sensitive
and are permitted to contain blank spaces. If you use read.csv then R assumes that the first row will be
the column names; tell it otherwise by using the option header=F. See ?read.csv for details.

Other commands are useful when the data have a more general structure: read.table will accommodate
a broader collection of arrays, and scan will read arbitrary text-based data files.

When the data are imported, a few other useful tools help us to check the completeness of the dataset
and some of its attributes. Use these regularly to be sure that the data have come in as you had intended.

> dim(ufc)

[1] 637 5

> names(ufc)

[1] "Plot" "Tree" "Species" "Dbh" "Height"

> ufc[1:5,]

Plot Tree Species Dbh Height
1 1 1 NA NA
2 2 1 DF 390 205
3 2 2 WL 480 330
4 3 1 WC 150 NA
5 3 2 GF 520 300

The last among the commands hints at one of the most useful elements of data manipulation in R:
subscripting. We’ll cover that in Section 4.3.

10

icebreakeR

3.1.2 Export

Exporting data from R is less commonly done than importing, but fortunately it is just as straightforward.
Again we prefer to use the csv file format unless there is any reason not to.

> write.csv(ufc, file="C://path/to/filename/file.csv")

> write.csv(ufc, file="path/to/filename/file.csv")

Exporting graphics is every bit as simple. Skipping ahead a little, we will use the plot() command to
create two-dimensional graphs of variables. To save a graph as a pdf, for example, we will write

> pdf("fileName.pdf") # Opens a pdf device and declares the file name

> plot(1:10,1:10) # ... or something more sophisticated ...

> dev.off() # Closes the pdf device and saves the file

Similarly simple protocols are available for postscript(), jpeg() etc. You can learn more via

> ?Devices

11

Chapter 4

Manipulating your Data

Strategies for convenient data manipulation are the heart of the R experience. The object-orientation ensures
that useful and important steps can be taken with small, elegant pieces of code.

4.1 Classes of Data

There are two fundamental kinds of data: numbers and strings. There are several types of strings, each of
which has unique properties. R knows what these different classes are and what each is capable of. You
can find out what the nature of any object is using the class() command. Alternatively, you can ask if
it is a specific class using the is.className () command. You can often change the class too, using the
as.className () command. This process can happen by default, and in that case is called coercion.

4.1.1 Numeric

A number. Could be a integer or a real number. R can generally tell the difference between them using
context. We check by is.numeric() and change to by as.numeric(). R also handles complex numbers,
but they’re not important for this course. We can do all the usual things with numbers:

> a <- 2 # create variable a, assign the number 2 to it.

> class(a) # what is it?

> is.numeric(a) # is it a number?

> b <- 4 # create variable b, assign the number 4 to it.

> a + b # addition

> a - b # subtraction

> a * b # multiplication

> a / b # division

> a ^ b # exponentiation

> (a + b) ^ a # parentheses

> a == b # logical test of equality

> a < b # comparison

> max(a,b) # largest

> min(a,b) # smallest

> order(c(a,b)) # return the indices of a and b in increasing order

> c(a,b)[order(c(a,b))] # return a and b in increasing order

4.1.2 String

A collection of one or more alphanumerics, denoted by double quotes. We check whether or not our object is
a string by is.character() and change to by as.character(). R provides numerous string manipulation
functions, including search capabilities.

12

icebreakeR

> a <- "string" # create variable a, assign the value "string" to it.

> class(a) # what is it?

> is.numeric(a) # is it a number?

> is.character(a) # is it a string?

> b <- "spaghetti" # create variable b, assign the value "spaghetti" to it.

> paste(a, b) # join the strings

> paste(a, b, sep="") # join the strings with no gap

> d <- paste(a, b, sep="")

> substr(d, 1, 4) # subset the string

4.1.3 Factor

A categorical variable. These are not terribly different than strings, except they can take only a limited
number of values, and R knows how to do very useful things with them. We check by is.factor() and
change to by factor(). Factors can create considerable heartburn unless they’re closely watched. This
means: whenever you do an operation involving a factor you must make sure that it did what you wanted,
by examining the output and intermediate steps. For example, factor levels are ordered alphabetically by
default. This means that if your levels start with numbers, as many plot identifiers do, you might find that
R thinks that plot 10 comes before plot 2. Not a problem, if you know about it!

> a <- c("A","B","A","B") # create vector a

> class(a) # what is it?

> is.character(a) # is it a string?

> is.factor(a) # is it a factor?

> a <- factor(a) # make it so

> levels(a) # what are the options?

There will be much more on factors when we start manipulating vectors (Section 4.2.1).

4.1.4 Logical

A special kind of factor, that has only two levels: True and False. Logical variables are set apart from factors
in that these levels are interchangeable with the numbers 1 and 0 (respectively) via coercion. The output of
several useful functions are logical (also called boolean) variables. We can construct logical statements using
the and (&), or (|), not (!) operators.

> a <- 2 # create variable a, assign the number 2 to it.

> b <- 4 # create variable b, assign the number 4 to it.

> d <- a < b # comparison

> class(d) # what is it?

> e <- T # create variable e, assign the value T to it.

> d + e # what should this do?

> d & e # d AND e is True

> d | e # d OR e is also True

> d & !e # d AND (NOT e) is not True

We can ask for the vector subscripts of all objects for which a condition is true via which().

4.1.5 Missing Data

The last and oddest kind of data is called a missing value (NA). This is not a unique class, strictly speaking.
They can be mixed in with all other kinds of data. It’s easiest to think of them as place holders for data
that should have been there, but for some reason, aren’t. Unfortunately their treatment is not uniform in
all the functions. Sometimes you have to tell the function to ignore them, and sometimes you don’t. And,
there are different ways of telling the function how to ignore them depending on who wrote the function and
what its purpose is.

13

icebreakeR

There are a few functions for the manipulation of missing values. We can detect missing values by
is.na().

> a <- NA # assign NA to variable A

> is.na(a) # is it missing?

> class(a) # what is it?

> a <- c(11,NA,13) # now try a vector

> mean(a) # seems fine

> var(a) # agh!

> var(a, na.rm=T) # Phew!

> is.na(a) # is it missing?

> a[!is.na(a)] # what are the elements of a that aren't missing?

> which(!is.na(a)) # what are the locations of the non-missing elements of a?

4.2 Structures for Data

Having looked at the most important data types, let’s look at the mechanisms that we have for their collective
storage and manipulation. There are more than we cover here - some of which (matrix, list) can be very
useful.

4.2.1 Vector

A vector is a one-dimensional collection of atomic objects (atomic objects are objects which can’t be broken
down any further). Vectors can contain numbers, characters, factors, or logicals. All the objects that we
created earlier were vectors, although some were of length 1. The key to vector construction is that all the
objects must be of the same class. The key to vector manipulation is in using its subscripts. The subscripts
are accessed by using the square brackets [].

> a <- c(11,12,13) # a is a vector

> a[1] # the first object in a

> a[2] # the second object in a

> a[-2] # a, but without the second object

> a[c(2,3,1)] # a, but in a different order

> length(a) # the number of units in the vector a

Notice that we were able to nest a vector inside the subscript mechanism of another vector! This is
a clue to the power of object orientation. This also introduces a key facility in R for efficient processing:
vectorization.

Vectorization

The concept underlying vectorization is simple: processing can be made more efficient. Recall that in section
4.1.5 when we applied the is.na() function to the vector a it resulted in the function being applied to each
element of the vector, and the output itself being a vector. This is vectorization. It only works for some
functions; e.g. it won’t work for mean(), that makes no sense. But when it works it makes life easier, code
cleaner, and processing time faster. Just think: otherwise we’d have had to write a loop that examined each
element of the vector.

Anecdote: I have been working with a graduate student to simulate some of the processing of a large-
scale forest growth model within R. Specifically, we wish to frequently apply the diameter growth model,
which is an ordinary least squares regression, to 60,000 tree records. Using a loop takes a few hours. Using
vectorization takes 15 minutes.

14

icebreakeR

4.2.2 Dataframe

A dataframe is a powerful two-dimensional vector-holding structure. It is optimized for representing multi-
dimensional datasets: each column corresponds to a variable and each row corresponds to an observation.
A dataframe can hold vectors of any of the basic classes of objects at any given time. So, one column could
be characters whilst another could be a factor, and a third be numeric.

We can still refer to the objects within the dataframe through their subscripts: using the square brackets.
Now there are two dimensions: row, and column. If either is left blank, then the whole dimension is assumed.
That is, test[1:10,] will grab the first ten rows of all the columns of dataframe test, using the above-noted
expansion that the colon fills in the integers. test[,c(2,5,4)] will grab all the rows for only the second,
fifth and fourth columns. These subscripts can be nested or applied sequentially.

Each column, or variable, in a dataframe has a unique name. We can extract that variable by means of
its name, the dataframe name, and a dollar sign as: dataframe$variable.

If a comma-delimited file is read in using the commands in section 3.1.1, R will assume that it is
meant to be a dataframe. The command to check is is.data.frame(), and the command to change it
is as.data.frame(). There are many functions to examine dataframes; we showcase some of them below.

> ufc <- read.csv("../data/ufc.csv")

> is.data.frame(ufc)

[1] TRUE

> dim(ufc)

[1] 637 5

> names(ufc)

[1] "Plot" "Tree" "Species" "Dbh" "Height"

> ufc$Height[1:5]

[1] NA 205 330 NA 300

> ufc$Species[1:5]

[1] DF WL WC GF
Levels: DF ES F FG GF HW LP PP SF WC WL WP

We can also create new variables within a dataframe, by naming them and assigning them a value. Thus,

> ufc$dbh.cm <- ufc$Dbh/10

> ufc$height.m <- ufc$Height/10

Finally, if we want to construct a dataframe from already existing variables, which is quite common, we
use the data.frame() command, viz :

> temp <- data.frame(my.species = ufc$Species, my.dbh = ufc$dbh.cm)

> temp[1:5,]

my.species my.dbh
1 NA
2 DF 39
3 WL 48
4 WC 15
5 GF 52

15

icebreakeR

4.3 Data References

Dataframes are the most useful data structures as far as we are concerned. We can use logical vectors that
refer to one aspect of the dataframe to extract information from the rest of the dataframe, or even another
dataframe. And, it’s possible to extract pretty much any information using the tools that we’ve already seen.

> ufc$height.m[ufc$Species == "LP"]

[1] 24.5 NA NA NA 16.0 25.0 NA

> mean(ufc$height.m[ufc$Species == "LP"])

[1] NA

Now, let’s try something a little more involved. How would we ask: what are the species of the three
tallest trees? This command is best constructed piecemeal. Notice that we are able to nest the subscripts.
R starts at the left and works its way right.

1. order(ufc$height.m, decreasing = T) provides the indices of the observations in order of increasing
height.

2. ufc$Species[order(ufc$height.m, decreasing = T)] provides the species corresponding to those
heights.

3. ufc$Species[order(ufc$height.m, decreasing = T)][1:3] provides only the first three.

> ufc$Species[order(ufc$height.m, decreasing = T)][1:3]

[1] WP GF WL
Levels: DF ES F FG GF HW LP PP SF WC WL WP

The next useful command is called tapply(). This lovely little function allows us to vectorize the appli-
cation of certain functions to groups of data. In conjunction with factors, this makes for some exceptionally
efficient code. tapply() requires three things: the target vector to which the function will be applied, the
vector by which the target vector will be grouped, and the function.

> tapply(ufc$height.m, ufc$Species, mean)

DF ES F FG GF HW LP PP SF WC WL WP
NA NA NA 27.0 27.5 NA 19.8 NA NA NA NA NA NA

Ah. Many heights are missing. Let’s fix that.

> tapply(ufc$height.m, ufc$Species, mean, na.rm = T)

DF ES F FG GF HW LP
NaN 25.43036 28.00000 27.00000 27.50000 24.26522 19.80000 21.83333
PP SF WC WL WP

33.00000 15.41000 23.48777 25.25714 25.13939

And let’s pretty it up a little.

> format(tapply(ufc$height.m, ufc$Species, mean, na.rm = T), dig = 3)

DF ES F FG GF HW LP PP SF WC
" NaN" "25.4" "28.0" "27.0" "27.5" "24.3" "19.8" "21.8" "33.0" "15.4" "23.5"

WL WP
"25.3" "25.1"

16

icebreakeR

Now, let’s try something a little more involved. How would we pull out the identity of the median height
tree of the species that was second tallest on average? Ok that is ridiculous, but let’s stretch the language.
Again, piecemeal.

1. First get the mean height by species.

> ht.bar.by.species <- tapply(ufc$height.m, ufc$Species, mean,

+ na.rm = T)

> ht.bar.by.species

DF ES F FG GF HW LP
NaN 25.43036 28.00000 27.00000 27.50000 24.26522 19.80000 21.83333
PP SF WC WL WP

33.00000 15.41000 23.48777 25.25714 25.13939

2. then get the index order of the species, sorted by average height.

> species.order.by.ht <- order(ht.bar.by.species, decreasing = T)

> species.order.by.ht

[1] 9 3 5 4 2 12 13 6 11 8 7 10 1

3. The species names in order of the average height by species are:

> species.by.ht <- levels(ufc$Species)[species.order.by.ht]

> species.by.ht

[1] "PP" "ES" "FG" "F" "DF" "WL" "WP" "GF" "WC" "LP" "HW" "SF" ""

4. The second tallest is

> species.by.ht[2]

[1] "ES"

5. The median of the heights of all the trees of that species is then

> median(ufc$height.m[ufc$Species == species.by.ht[2]], na.rm = T)

[1] 28

These things must be tackled strategically. If we pursue a rigorous naming policy then these intermediate
objects become vital debugging tools as well.

Of course, this can all be expressed as a single operation:

> median(ufc$height.m[ufc$Species == levels(ufc$Species)[order(tapply(ufc$height.m,

+ ufc$Species, mean, na.rm = T), decreasing = T)][2]], na.rm = T)

[1] 28

But why would we want to do that?

17

Chapter 5

Graphics

One major selling point for R is that it has better graphics-producing capabilities than many of the com-
mercial alternatives. The graphics are controlled by scripts, and start at a very simple level, for example

> plot(ufc$dbh.cm, ufc$height.m)

will open a graphical window and draw a scatterplot of dbh against height for the Upper Flat Creek data,
labeling the axes appropriately. A small addition will provide more informative labels (Figure 5.1).

> plot(ufc$dbh.cm, ufc$height.m, xlab = "Diameter (cm)", ylab = "Height (m)")

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

20 40 60 80 100

0
10

20
30

40

Diameter (cm)

H
ei

gh
t (

m
)

Figure 5.1: Diameter/Height plot for all species of Upper Flat Creek inventory data. Each point represents
a tree.

18

icebreakeR

The plot() command offers a wide variety of options for customizing the graphic. Each of the following
can be used in the plot() statement, singly or together, separated by commas.

� xlim=c(a,b) will set the lower and upper limits of the x-axis to be a and b respectively.

� ylim=c(a,b) will set the lower and upper limits of the y-axis to be a and b respectively.

� xlab="X axis label goes in here"

� ylab="Y axis label goes in here"

� main="Plot title goes in here"

� col="red" makes it all red. Especially attractive for overlaid plots.

� col=swatch[color.id] makes the colour correspond to the colours listed in swatch corresponding to
the rows in the variable color.id.

5.1 Organization Parameters

From here we have great flexibility in terms of symbol choice, color, size, axis labeling, over-laying, etc. We’ll
showcase a few of the graphical capabilities in due course. These options can be further studied through
?par.

The cleanest implementation is to open a new set of parameters, create the graph, and restore the original
state, by means of the following simple but rather odd commands:

> opar <- par({parameter instructions go here, separated by commas})

> plot({plot instructions go here})

> par(opar)

There are several options for affecting the layout of the graphs on the page. These can all be used in
conjunction with one another. There are more than I note below, but these are the ones that I end up using
the most often.

� par(mfrow=c(a,b)) where a and b are integers will create a matrix of plots on one page, with a rows
and b columns

� par(mar=c(s,w,n,e)) will create a space of characters around the inner margin of the plot(s)

� par(oma=c(s,w,n,e)) will create a space of characters around the outer margin of the plot(s)

� par(las=1) rotates the axis labels to be horizontal rather than vertical

� par(pty="s") forces the plot shape to be square. The alternative, which is the default, is "m".

� par(new=T) when inserted between plots will plot the next one on the same place as the previous,
effecting an overlay. It will not match the axes unless forced to do so.

� Various character expansion factors may also be set.

5.2 Permanence

Producing more permanent graphics is just as simple. For example, to create the graphic as a pdf file, which
can be imported into various documents, we do the following:

> pdf(file="graphic.pdf")

> plot(ufc$dbh.cm, ufc$height.m)

> abline(lm(height.m ~ dbh.cm, data=ufc), col="red")

> dev.off()

19

icebreakeR

This will place the pdf in your working directory. This is an especially good option if the graphics that
you want to produce would ordinarily cover more than one page, for example, if you are producing graphs in
a loop. The pdf format is well accepted on the Internet as well, so the graphics are portable. Encapsulated
postscript is also supported.

Under Windows, you can also copy directly from the plot window to the clipboard as either a metafile or
a bmp (bitmap) image. Either can then be pasted directly into a Word document, for example. Alternatively
using a similar approach to that noted above, one can create a JPEG image which can be imported into
Word documents. My experience has been that the vividness of the colour suffers using JPEG, and some
ameliorative action might be required.

20

Chapter 6

Linear Regression

This chapter focuses on the R tools that can be used for fitting ordinary linear regression, in various guises.
I do not present the theory here as that will have been covered much more effectively elsewhere.

6.1 Preparation

The data are forest inventory data from the Upper Flat Creek area of University of Idaho Experimental
Forest. They were collected as a systematic random sample of variable radius plots. We have measures
of diameter at breast height, 1.37 m, on all the sample trees and measures of height on a subset. Our
immediate goal is to construct a relationship between height and diameter to allow us to predict the former
from the latter. For the moment, we will ignore the mechanism by which trees were selected for each phase
of measurement, and assume that they were selected equal probability. Some plots had no measured trees;
to ensure that they are correctly accounted for an “empty” tree has been used to represent them.

Read in the data, having examined it within a spreadsheet.

> rm(list = ls())

> ufc <- read.csv("../data/ufc.csv")

How big is it?

> dim(ufc)

[1] 637 5

What are the variable names?

> names(ufc)

[1] "Plot" "Tree" "Species" "Dbh" "Height"

Let’s take a snapshot - I usually eyeball the first 100-200 observations and choose a few sets of 100 at
random. E.g. ufc[1:100,], and ufc[201:300,]. These square brackets are fabulously useful, permitting
great flexibility in data manipulation in a very simple format.

> ufc[1:10,]

Plot Tree Species Dbh Height
1 1 1 NA NA
2 2 1 DF 390 205
3 2 2 WL 480 330
4 3 1 WC 150 NA
5 3 2 GF 520 300

21

icebreakeR

6 3 3 WC 310 NA
7 3 4 WC 280 NA
8 3 5 WC 360 207
9 3 6 WC 340 NA
10 3 7 WC 260 NA

Let’s do some unit conversion: diameter at 1.37 m converted to cm and height to meters.

> ufc$dbh.cm <- ufc$Dbh/10

> ufc$height.m <- ufc$Height/10

Now we’ll count the trees in each species, a few different ways

> table(ufc$Species)

DF ES F FG GF HW LP PP SF WC WL WP
10 77 3 1 2 185 5 7 4 14 251 34 44

> tapply(ufc$dbh.cm, ufc$Species, length)

DF ES F FG GF HW LP PP SF WC WL WP
10 77 3 1 2 185 5 7 4 14 251 34 44

> aggregate(x = list(num.trees = ufc$dbh.cm), by = list(species = ufc$Species),

+ FUN = length)

species num.trees
1 10
2 DF 77
3 ES 3
4 F 1
5 FG 2
6 GF 185
7 HW 5
8 LP 7
9 PP 4
10 SF 14
11 WC 251
12 WL 34
13 WP 44

Note the 10 non-trees that mark empty plots - we don’t need them for this purpose. Let’s clean them
up. Here, we do that by setting the species to be missing instead of its current value, which is a blank. (It’s
actually redundant with the following command, so you can ignore it if you wish).

> ufc$Species[is.na(ufc$Dbh)] <- NA

> ufc$Species <- factor(ufc$Species)

We redefine the species factor in order to drop the empty levels. Drop the trees with missing height
measures

> ufc <- ufc[!is.na(ufc$height.m),]

Graph the tree data (see Figure 5.1). It’s always informative. We see some evidence of curvature, and
some peculiar points. What might have caused those? Nonetheless, an encouraging plot - we should be able
to get a fix on the height within a fair range.

What kind of underlying variability do we have to work with?

22

icebreakeR

> sd(ufc$height.m, na.rm = T)

[1] 7.498069

Here’s the flexibility of tapply, showing us standard deviation by species:

> tapply(ufc$height.m, ufc$Species, sd, na.rm = TRUE)

DF ES F FG GF HW LP PP
6.6193084 5.6568542 NA 0.7071068 7.6939261 2.4899799 5.0579970 9.8994949

SF WC WL WP
3.6564859 6.9728507 9.0074176 9.1776202

6.2 Fitting

Now let’s see if we can produce some kind of regression line to predict height as a function of diameter. Note
that R is object oriented, so we can create objects that are themselves model fits.

> hd.lm.1 <- lm(height.m ~ dbh.cm, data = ufc)

6.3 Diagnostics

First, let’s examine the model diagnostics (Figure 6.1).

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 4, 1))

> plot(hd.lm.1)

> par(opar)

There are some worrying points there, corresponding to the peculiar points we noted earlier. The di-
agnostics imply that they shouldn’t change things very much. None of them are in the danger zone of the
Cook’s Distances.

Let’s see how we might examine them. The easiest route is probably to use the residuals to locate the
offenders. It’s a bit tricky - in order to be able to match the residuals with the observations, first we have to
order them by the magnitude of the residual, then take the first two. The square brackets provide access to
subscripting, which is one of the absolute engines of S convenience.

> ufc[order(abs(residuals(hd.lm.1)), decreasing = TRUE),][1:2,

+]

Plot Tree Species Dbh Height dbh.cm height.m
415 78 5 WP 667 0 66.7 0.0
376 67 6 WL 575 34 57.5 3.4

It’s clear that they’re pretty odd looking trees! If we wish to exclude them from the model, we can do so
via

> hd.res.1 <- abs(residuals(hd.lm.1))

> hd.lm.1a <- lm(height.m ~ dbh.cm, data = ufc, subset = (hd.res.1 <

+ hd.res.1[order(hd.res.1, decreasing = TRUE)][2]))

How did things change? Here’s a nice little plot that shows that things changed very little. we can do
this only because everything is about the same scale.

23

icebreakeR

15 20 25 30 35 40 45

−
30

−
10

0
10

Fitted values

R
es

id
ua

ls

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●●
●

●

●
●

●
●

●
●
●●●

●●
● ● ● ●

●

●
●

●

●
●

●

●
●

● ●
●

●

●

● ●
●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

● ●●
● ●

●

●
●

●
●

●

●●

●
●

● ●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●
●●●

● ●

● ●

●●

●
●

●●

●
●

●

●
● ●

●

●●

●●

●

●
●

●

●
●

●

●

●●
●

●
●
●●

●

●

●●● ●

●●
●

●
●

●

●

●
●

●● ● ● ●
●●

●●●
●

●●

● ●
●

●

●
●●

●

●
● ●●

●
●

●

●

●

●
●

● ●●●●

●

●

●

●

● ●
●

●

●

●● ●●
●

●● ●
●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●● ●

●
●

●

●●

●●

● ●●

●
●

● ●
●

●
●

●

●
●

●

● ●●

●

●

●●

●

● ●

●
● ●

●

●
●

●
●

●

●

●

●
●

●

●

●●●

●

●●● ●
●

●●
●

●
●

●●

●
●

●
●

●
●

●

●
●●

●

●● ●

●
●●

●
●●

●

●
●

●
●●

●

●
●

●

●

●●

●● ●
●

●

●
● ●

●

●

● ●

●

Residuals vs Fitted

415

376

117

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●●
●

●

●
●

●
●

●
●

●● ●

●●
●●●●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●●●
● ●

●

●

●

●

●

●

●●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●
●

●●
●●

● ●

● ●

●
●

● ●

●
●

●

●
●●

●

●
●

● ●

●

●
●

●

●
●

●

●

●●
●

●
●

●●

●

●

●●● ●

●●
●

●
●

●

●

●
●

●●●●●
●●

● ●●
●

●●

●●
●

●

●
● ●

●

●
●

●●

●
●

●

●

●

●
●

●●●
●●

●

●

●

●

● ●
●

●

●

●●●●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●●●

●
●

●

●●

●●

●●●

●

●

●●
●

●
●

●

●
●

●

●●●

●

●

●●

●

●●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●●●

●

●●●
●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●●
●

●
●●

●

●●

●

●
●

●

●●

●

●
●

●

●

●●

●●●
●

●

●
●●

●

●

●●

●

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q plot

415

376

117

15 20 25 30 35 40 45

0.
0

1.
0

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●
●

●●

●
● ● ●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●●●

●

●
●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●
●●

●

●

●●
●

● ●

●●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

● ●●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●

●

●

●
●

●

Scale−Location plot
415

376

117

0 100 200 300 400

0.
00

0.
10

0.
20

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance plot

415

376245

Figure 6.1: Diagnostic plots for the regression of diameter against height.

> opar <- par(las = 1)

> plot(coef(hd.lm.1), coef(hd.lm.1a), xlab = "Parameters (all data)",

+ ylab = "Parameters (without outliers)")

> text(coef(hd.lm.1)[1] - 2, coef(hd.lm.1a)[1] - 0.5, expression(hat(beta)[0]),

+ cex = 2, col = "blue")

> text(coef(hd.lm.1)[2] + 2, coef(hd.lm.1a)[2] + 0.5, expression(hat(beta)[1]),

+ cex = 2, col = "blue")

> points(summary(hd.lm.1)$sigma, summary(hd.lm.1a)$sigma)

> text(summary(hd.lm.1)$sigma + 1, summary(hd.lm.1a)$sigma, expression(hat(sigma)[epsilon]),

+ cex = 2, col = "darkgreen")

> abline(0, 1, col = "darkgrey")

24

icebreakeR

> par(opar)

●

●

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Parameters (all data)

P
ar

am
et

er
s

(w
ith

ou
t o

ut
lie

rs
)

β̂0

β̂1

● σ̂ε

Figure 6.2: Parameter estimate change as a result of dropping the outliers.

6.4 Other Tools

Other tools for examining regressions should be mentioned:

> ?influence.measures

6.5 Examining the Model

In any case, they don’t affect the model very strongly. Let’s take a look at the model summary.

> summary(hd.lm.1)

Call:
lm(formula = height.m ~ dbh.cm, data = ufc)

Residuals:
Min 1Q Median 3Q Max

-33.59633 -2.86331 0.08956 2.81206 13.29113

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.64340 0.56124 22.53 <2e-16 ***
dbh.cm 0.31414 0.01383 22.72 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.915 on 387 degrees of freedom
Multiple R-Squared: 0.5714, Adjusted R-squared: 0.5703
F-statistic: 516 on 1 and 387 DF, p-value: < 2.2e-16

25

icebreakeR

We see that already, there is a big difference between the marginal variability, which is 7.50, and the
conditional variability, which is 4.91.

6.6 Other Angles

The process of model interrogation is simplified if we realize that the model fit is an object, and the summary
of that model fit is a different object.

> names(hd.lm.1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

> names(summary(hd.lm.1))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

Some high-level functions exist to enable the reliable extraction of moel information, for example,
residuals() and fitted(), but these are not exhaustive. We extract the attributes of the objects by
means of the $ sign:

> hd.lm.1$call

lm(formula = height.m ~ dbh.cm, data = ufc)

> summary(hd.lm.1)$sigma

[1] 4.914947

6.7 Other Models

We can add further complexity to our model as follows. Try these and see what you learn.

> hd.lm.2 <- lm(height.m ~ dbh.cm + Species, data = ufc)

> hd.lm.3 <- lm(height.m ~ dbh.cm * Species, data = ufc)

6.8 Other Ways of Fitting

We can also use other tools to fit the regression. For example, what do you imagine the following values are?
I include a little more about writing your own functions in Chapter 10.

> objective.function <- function(parameters, x, y) {

+ -sum(dnorm(y - parameters[1] - parameters[2] * x, 0, parameters[3],

+ log = T))

+ }

> good.fit <- optim(c(1, 1, 1), objective.function, hessian = TRUE,

+ x = ufc$dbh.cm, y = ufc$height.m)

> good.fit$par

[1] 12.6350150 0.3142022 4.9025639

> sqrt(diag(solve(good.fit$hessian)))

[1] 0.55982729 0.01379412 0.17577988

26

Chapter 7

More Graphics

The joy of advanced graphics in R is that all the good images can be made using the tools that we’ve
already discussed. And, because the interface is scripted, it’s very easy to take graphics that were created
for one purpose and evolve them for another. Looping and judicious choice of control parameters can create
informative and attractive output. For example ...

> opar <- par(oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0))

> x1 <- rep(1:10, 10)

> x2 <- rep(1:10, each = 10)

> x3 <- 1:100

> interesting.colour.numbers <- c(1:152, 253:259, 362:657)

> plot.us <- sample(interesting.colour.numbers, size = max(x3))

> plot(x1, x2, col = colors()[plot.us], pch = 20, cex = 10, axes = F,

+ ylim = c(0, 10), xlim = c(0, 10.5))

> text(x1, x2 - 0.5, colors()[plot.us], cex = 0.3)

> text(x1 + 0.4, x2 - 0.4, plot.us, cex = 0.5)

> par(opar)

7.1 Trellis

Trellis is a more formal tool for graphical virtuosity. Trellis allows great flexibility for producing conditioning
plots. The R implementation of trellis is called lattice. We load the lattice package by means of the require
function, which is explained in greater detail in Chapter 9.

> require(lattice)

Loading required package: lattice
[1] TRUE

For example, if we were to wish to plot the height against the predicted height for the four species with
the largest number of trees, and add some lines to the graphs, then we could do it with this code:

We can change the order of the panels using the index.cond option. We can also add other commands
to each panel. ?xyplot is very helpful here, as are the following documents:

� http://zoonek2.free.fr/UNIX/48_R/04.html.

� http://addictedtor.free.fr/graphiques/

� http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/stats/fichiers/_gallery.pdf

27

http://zoonek2.free.fr/UNIX/48_R/04.html
http://addictedtor.free.fr/graphiques/
http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/stats/fichiers/_gallery.pdf

icebreakeR

darkolivegreen4 lemonchiffon gold4 red1 yellowgreen navajowhite3 darkorange3 springgreen2 khaki3 lightcyan2

green3 darkseagreen2 lightsteelblue3 lavenderblush1 firebrick pink3 maroon lightsalmon seashell3 darkgoldenrod1

gold2 rosybrown3 seashell1 slateblue3 olivedrab3 lemonchiffon1 paleturquoise2 magenta3 hotpink1 purple4

antiquewhite4 rosybrown1 olivedrab1 darkslateblue cadetblue1 indianred coral1 pink orangered darkgray

lightsalmon4 plum2 thistle1 whitesmoke darkturquoise cornsilk rosybrown2 plum4 rosybrown4 cadetblue

brown2 salmon2 palegreen2 lightgoldenrodyellow burlywood seashell4 orange1 lightsteelblue1 darkorchid3 honeydew3

sienna1 goldenrod3 lightsteelblue thistle royalblue lightcoral darkorange deeppink1 paleturquoise1 darksalmon

aquamarine2 cadetblue4 lightslateblue red2 ivory2 chocolate2 tomato1 palevioletred4 darkgoldenrod4 mediumvioletred

lightsalmon3 peachpuff2 thistle2 darkgrey chartreuse3 mediumorchid2 bisque4 lavenderblush4 firebrick4 lightcyan

chocolate1 blue1 mediumpurple2 lightblue4 navajowhite lightblue3 olivedrab2 wheat1 orchid4 orange4

89 394 146 553 657 488 93 612 385 407

257 104 441 389 133 539 455 424 582 76

144 560 580 597 496 395 521 453 368 551

7 558 494 107 43 372 58 536 503 80

428 543 626 651 114 63 559 545 561 42

34 570 516 415 37 583 499 439 98 365

585 150 438 625 562 404 90 117 520 101

10 46 435 554 379 54 631 528 79 476

427 532 627 82 50 464 23 392 137 405

53 27 469 403 485 402 495 647 512 502

Figure 7.1: A random plot of coloured dots.

> ufc$height.hat <- fitted(hd.lm.1)

> top.nine <- levels(ufc$Species)[order(table(ufc$Species), decreasing = T)][1:9]

> print(xyplot(height.m ~ height.hat | Species, data = ufc, xlab = "Predicted Height (m)",

+ ylab = "Measured Height (m)", panel = function(x, y) {

+ panel.xyplot(x, y)

+ panel.abline(lm(y ~ x), col = "red")

+ panel.abline(0, 1, col = "blue", lty = 2)

+ }, subset = ufc$Species %in% top.nine))

28

icebreakeR

Predicted Height (m)

M
ea

su
re

d
H

ei
gh

t (
m

)

20 30 40

0

10

20

30

40

50

●
●

●
●

●

●
●●●●

●

●●

●

●

●● ●
●

●

●

●

●
●

●
●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

DF

●

●

ES

20 30 40

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
● ●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●● ●●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●
●●

● ●

●●
●

●

●

●

●●
●

GF

●
●

●●●

HW

●

●

●

LP

0

10

20

30

40

50

●

●

●
●●

●
●

●
●
●

SF
0

10

20

30

40

50

●●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

● ●
●

●
●

●
●

●
●

●

●
● ●

●
●

●●

●
● ●

●●

●

●

●

●

●

●●

●●

●
●

● ●●

●
● ●

●

●

●●●

●
●●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●●

●●●
●
●

●

●
●

●●
●

●

●

● ●●

●

●●

●

●

●

●
●

●

WC

20 30 40

●

●

●
●
●

●

●●

●

● ●●

●

●

●

●

●
●

●●

●

WL

●

●

●

● ●●●

●

●

●●
●

●

● ●●
●

●

●●
●

● ●

●

●

●

●
●

●

●
●

●

●

WP

Figure 7.2: A lattice plot of height against predicted height by species for the four species that have the
most trees. The blue dashed line is 1:1, and the red solid line is the panel-level regression.

29

Chapter 8

Hierarchical Models

We now shift to the analysis of hierarchical data using mixed-effects moels. These models are a natural
match for many problems that occur commonly in natural resources.

8.1 Introduction

Recall that for fitting a linear regression using the ordinary techniques that you might be familiar with, you
were required to make some assumptions about the nature of the residuals. Specifically, it was necessary to
assume that the residuals were

1. independent

2. identically distributed, and, more often than not,

3. normally distributed.

The assumption of constant variance (homoscedasticity) lives in the identically distributed assumption
(point 2, above). If these assumptions are true, or even defensible, then life is fine. However, more often than
not, we know they’re not true. This can happen in natural resources data collections because the data may
have a temporal structure, a spatial structure, or a hierarchical structure, or all three1. That structure may
or may not be relevant to your scientific question, but it’s very relevant to the data analysis and modelling!

I mention several references. None are mandatory to purchase or read, but all will be useful at some
point or other. They are mentioned in approximate order of decreasing utility for this level.

8.1.1 Methodological

Pinheiro and Bates (2000) details model fitting in R and Splus, which both provide first-rate graphical
model discrimination and assessment tools through the libraries written by the authors. Good examples
are provided. Schabenberger and Pierce (2002) is a treasure-trove of sensible advice on understanding and
fitting the generalized and mixed-effects models that form the core of this class. There are copious worked
examples and there is plenty of SAS code. You are welcome to interact with the material however you see
fit.

In addition to these books, there are numerous articles that try to explain various elements of these topics
in greater or lesser detail. In the past I have found Robinson (1991) (no relation!) and the discussions that
follow it particularly useful.

1“The first law of ecology is that everything is related to everything else.” – Barry Commoner, US biologist/environmentalist.

30

icebreakeR

8.1.2 General

Venables and Ripley (2002) is a must-have if you’re interested in working with R or Splus. The three previous
editions are now legendary in the R/S community for their thorough explication of modern statistical practice,
with generous examples and code. The R community has also generated some excellent start-up documents.
These are freely available for download at the R project website: http://www.r-project.org. Download
and read any or all of them, writing code all the way. If you’re interested in a deeper exploration of the
programming possibilities in R or S then Venables and Ripley (2000) is very useful. Some larger-scale projects
that I have been involved with have required calling C programs from R; this reference was very helpful then.

8.2 Some Theory

Mixed effects models contain both fixed and random effects. The model structure is usually suggested by the
underlying design or structure of the data. I like to claim that random effects are suggested by the design of
a study, and fixed effects are suggested by the hypotheses, but this is not always true.

8.2.1 Effects

“Effects” are predictor variables in a linear or non-linear model2. The discussion of fixed and random effects
can get a little confusing. “Random” and “fixed” aren’t normally held to be opposite to one another, or even
mutually exclusive (except by sheer force of habit!). Why not “stochastic” and “deterministic”? Or, “sample”
and “population”? Or, “local” and “global”? These labels might tell more of the story.

There are different ways to look at these two properties. Unfortunately, it does affect the data analysis and
the conclusions that can be drawn. Modellers may disagree on whether effects should be fixed or random,
and the same effect can switch depending on circumstances. Certainly, statisticians haven’t agreed on a
strategy. Some will claim that it depends entirely on the inference, and some that it depends entirely on the
design.

As the statistical tools that are used to analyze such data become more sophisticated, and models
previously unthinkable become mainstream, the inadequacies of old vocabularies are increasingly obvious.

Random effects

Random effects are those whose levels are supposedly sampled randomly from a range of possible levels.
Generally, although not always, when random effects are considered it is of interest to connect the results to
the broader population. That is, the levels are assumed to be collectively representative of a broader class of
potential levels, about which we wish to say something. Alternatively, one might say that a random effect is
simply one for which the estimates of location are not of primary interest. Another alternative is that one
might say that a random effect is one that you wish to marginalize, for whatever reason.

Fixed effects

Fixed effects are generally assumed to be purposively selected, and represent nothing other than themselves.
If an experiment were to be repeated, and the exact same levels of an experimental effect were purposively
produced, then the effect is fixed. However, some effects which might vary upon reapplication may also be
fixed, so this is not definitive. Alternatively, one might say that a fixed effect is simply one for which the
estimates of location are of first interest. Another alternative is that one might say that a random effect is
one that you wish to condition on, for whatever reason.

Mixed-up effects

Some variables do not lend themselves to easy classification, and either knowledge of process and/or an
epistemological slant is required. These are common in natural resources. For example, if an experiment
that we feel is likely to be affected by climate is repeated over a number of years, would year be a fixed or

2The use of the label is a hang-over from experimental design, and no longer really suits the application, but that’s how
inertia goes.

31

icebreakeR

a random effect? It is not a random sample of possible years, but the same years would not recur if the
experiment were repeated. Likewise the replication of an experiment at known locations: some would claim
that these should be a fixed effect, others that they represent environmental variation, and therefore they
can be considered a random effect.

8.2.2 Model Construction

The process of model construction becomes much more complex now. We have to balance different approaches
and assumptions, each of which carries different implications for the model and its utility. If we think about
the process of fitting an ordinary regression as being like a flow chart, then adding random effects adds a new
dimension to the flow chart altogether. Therefore it’s very important to plan the approach before beginning.

The number of potential strategies is as varied as the number of models we can fit. Here is one that we
will rely on in our further examples.

1. Choose the minimal set of fixed and random effects for the model.

(a) Choose the fixed effects that must be there. These effects should be such that, if they are not in
the model, the model has no meaning.

(b) Choose the random effects that must be there. These effects should be such that if they are not
in the model, then the model will not adequately reflect the design.

This is the baseline model, to which others will be compared.

2. Fit this model to the data using tools yet to be discussed, and check the assumption diagnostics. Iterate
through the process of improving the random effects, including:

(a) a heteroskedastic variance structure (several candidates)

(b) a correlation structure (several candidates)

(c) extra random effects (e.g. random slopes)

3. When the diagnostics suggest that the fit is reasonable, consider adding more fixed effects. At each
step, re-examine the diagnostics to be sure that any estimates that you will use to assess the fixed
effects are based on a good match between the data, model, and assumptions.

A further layer of complexity is that it may well be that the assumptions will not be met inthe absence
of certain fixed effects or random effects. In this case, a certain amount of iteration is inevitable.

It is important to keep in mind that the roles of the fixed and the random effects are distinct. Fixed
effects explain variation. Random effects organize unexplained variation. At the end of the day you will
have a model that surficailly seems worse than an simple linear regression, by most metrics of model quality.
Our goal is to find a model/assumption combination that matches the diagnostics that we examine. Adding
random effects adds information, and improves diagnostic compatibility, but explains no more variation!

The bottom line is that the goal of the analyst is to find the simplest model that satisfies the necessary
regression assumptions and answers the questions of interest. It is tempting to go hunting for more complex
random effects structures, which may provide a higher maximum likelihood, but if the simple model satisfies
the assumptions and answers the questions then maximizing the likelihood further is a mathematical exercise
- not a statistical one.

Example

In order to illuminate some of these questions, consider the Grand fir stem analysis data. These data are
plotted in Figures 8.1 and 8.2.

> rm(list = ls())

> stage <- read.csv("../data/stage.csv")

> stage$Tree.ID <- factor(stage$Tree.ID)

> stage$Forest.ID <- factor(stage$Forest, labels = c("Kaniksu",

32

icebreakeR

+ "Coeur d'Alene", "St. Joe", "Clearwater", "Nez Perce", "Clark Fork",

+ "Umatilla", "Wallowa", "Payette"))

> stage$HabType.ID <- factor(stage$HabType, labels = c("Ts/Pac",

+ "Ts/Op", "Th/Pach", "AG/Pach", "PA/Pach"))

> stage$dbhib.cm <- stage$Dbhib * 2.54

> stage$height.m <- stage$Height/3.2808399

> stage[1:10,]

Tree.ID Forest HabType Decade Dbhib Height Age Forest.ID HabType.ID
1 1 4 5 0 14.6 71.4 55 Clearwater PA/Pach
2 1 4 5 1 12.4 61.4 45 Clearwater PA/Pach
3 1 4 5 2 8.8 40.1 35 Clearwater PA/Pach
4 1 4 5 3 7.0 28.6 25 Clearwater PA/Pach
5 1 4 5 4 4.0 19.6 15 Clearwater PA/Pach
6 2 4 5 0 20.0 103.4 107 Clearwater PA/Pach
7 2 4 5 1 18.8 92.2 97 Clearwater PA/Pach
8 2 4 5 2 17.0 80.8 87 Clearwater PA/Pach
9 2 4 5 3 15.9 76.2 77 Clearwater PA/Pach
10 2 4 5 4 14.0 70.7 67 Clearwater PA/Pach

dbhib.cm height.m
1 37.084 21.76272
2 31.496 18.71472
3 22.352 12.22248
4 17.780 8.71728
5 10.160 5.97408
6 50.800 31.51632
7 47.752 28.10256
8 43.180 24.62784
9 40.386 23.22576
10 35.560 21.54936

> opar <- par(las = 1)

> plot(stage$dbhib.cm, stage$height.m, xlab = "Dbhib (cm)", ylab = "Height (m)")

> par(opar)

> colours <- c("deepskyblue", "goldenrod", "purple", "orangered2",

+ "seagreen")

> par(mfrow = c(3, 3), pty = "m", mar = c(3, 2, 3, 1) + 0.1)

> for (i in 1:length(levels(stage$Forest.ID))) {

+ thisForest <- levels(stage$Forest.ID)[i]

+ forestData <- stage[stage$Forest.ID == thisForest,]

+ plot(stage$dbhib.cm, stage$height.m, xlab = "", ylab = "",

+ main = thisForest, type = "n")

+ theseTrees <- factor(forestData$Tree.ID)

+ legend(0, max(stage$height.m), unique(as.character(forestData$HabType.ID)),

+ xjust = 0, yjust = 1, bty = "n", col = colours[unique(forestData$HabType)],

+ lty = unique(forestData$HabType) + 1)

+ for (j in 1:length(levels(theseTrees))) {

+ thisTree <- levels(theseTrees)[j]

+ lines(forestData$dbhib.cm[forestData$Tree.ID == thisTree],

+ forestData$height.m[forestData$Tree.ID == thisTree],

+ col = colours[forestData$HabType[forestData$Tree.ID ==

+ thisTree]], lty = forestData$HabType[forestData$Tree.ID ==

+ thisTree] + 1)

33

icebreakeR

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

0 20 40 60 80

0

10

20

30

40

50

60

Dbhib (cm)

H
ei

gh
t (

m
)

Figure 8.1: Al Stage’s Grand Fir stem analysis data: height (ft) against diameter (in). These were dominant
and co-dominant trees.

+ }

+ }

> mtext("Height (m)", outer = T, side = 2, line = 2)

> mtext("Diameter (cm)", outer = T, side = 1, line = 2)

34

icebreakeR

0 20 40 60 80

0
20

40
60

Kaniksu

Ts/Pac
Ts/Op

0 20 40 60 80

0
20

40
60

Coeur d'Alene

AG/Pach
Ts/Pac
PA/Pach

0 20 40 60 80

0
20

40
60

St. Joe

Ts/Pac
PA/Pach
Th/Pach

0 20 40 60 80

0
20

40
60

Clearwater

PA/Pach
Th/Pach

0 20 40 60 80

0
20

40
60

Nez Perce

Th/Pach
AG/Pach
PA/Pach

0 20 40 60 80

0
20

40
60

Clark Fork

PA/Pach
Ts/Pac

0 20 40 60 80

0
20

40
60

Umatilla

AG/Pach
PA/Pach

0 20 40 60 80

0
20

40
60

Wallowa

AG/Pach

0 20 40 60 80

0
20

40
60

Payette

AG/Pach
PA/Pach

Figure 8.2: Al Stage’s Grand Fir Stem Analysis Data: height (ft, vertical axes) against diameter (inches,
horizontal axes) by National Forest. These were dominant and co-dominant trees.

35

icebreakeR

8.2.3 The Deep End

There are numerous different representations of the linear mixed-effects model. We’ll adopt that suggested
by Laird and Ware (1982):

Y = Xβ + Zb + ε

b ∼ N (0,D)
ε ∼ N (0,R)

Here, D and R are preferably constructed using a small number of parameters, which will be estimated
from the data. We’ll think first about estimation using maximum likelihood.

8.2.4 Maximum Likelihood

Recall that the principle behind maximum likelihood was to find the suite of parameter estimates that were
best supported by the data. This began by writing down the conditional distribution of the observations.
For example the pdf for a single observation from the normal distribution is:

f
(
yi | µ, σ2

)
=

1√
2πσ

e
−(yi−µ)2

2σ2

So if Y
d= N(µ,V) then by definition:

f (Y | µ,V) =
|V|−

1
2

(2π)
n
2

e−
1
2 (Y−µ)′V−1(Y−µ)

So in terms of the linear model Y = Xβ, the conditional joint density is

f (Y | X, β,V) =
|V|−

1
2

(2π)
n
2

e−
1
2 (Y−Xβ)′V−1(Y−Xβ)

Reversing the conditioning and taking logs yields:

L (β,V | Y,X) = −1
2

ln (|V|)− n

2
ln (2π)− 1

2
(Y −Xβ)′ V−1 (Y −Xβ) (8.1)

Notice that the parameters we’re interested in are now embedded in the likelihood. Solving for those
parameters should be no more difficult than maximizing the likelihood. In theory. Now, to find β̂ we
take the derivative of L (β,V | y,X) with regards to β:

dL
dβ

=
d
dβ

[
−1

2
(y −Xβ)′ V−1 (y −Xβ)

]
this leads to, as we’ve seen earlier

β̂MLE =
(
X′V−1X

)−1
X′V−1Y

but this only works if we know V!
Otherwise, we have to maximize the likelihood as follows. First, substitute

(X′V−1X)−1X′V−1Y

for β in the likelihood. That is, remove all the instances of β, and replace them with this statement. By
this means, β is profiled out of the likelihood. The likelihood is now only a function of the data and the
covariance matrix V . This covariance matrix is itself a function of the covariance matrices of the random

36

icebreakeR

effects, which are structures that involve hopefully only a few unknown parameters, and that are organized
by the model assumptions.

Maximize the resulting likelihood in order to estimate V̂ , and then calculate the estimate of the fixed
effects via:

β̂MLE =
(
X′V̂−1X

)−1

X′V̂−1Y (8.2)

After some tedious algebra, which is well documented in Schabenberger and Pierce (2002), we also get the
BLUP s.

b̂MLE = DZ′V̂
(
Y −Xβ̂

)
(8.3)

where D is the covariance matrix of the random effects.

8.2.5 Restricted Maximum Likelihood

It was noted earlier that maximum likelihood estimators of covariance parameters are usually negatively
biased. This is because in profiling out the fixed effects, we’re effectively pretending that we know them,
and therefore we are not reducing the degrees of freedom appropriately. Restricted or Residual Maximum
Likelihood will penalize the estimation based on the model size, and is therefore a preferred strategy. ReML
is not unbiased, except under certain circumstances, but it is less biased than maximum likelihood.

Instead of maximizing the conditional joint likelihood of Y we do so for an almost arbitrary linear
transformation of Y, which we shall denote K. It is almost arbitrary inasmuch as there are only two
constraints: K must have full column rank, or else we would be creating observations out of thin air, and K
must be chosen so that E[K′Y] = 0.

The easiest way to guarantee that these hold is to ensure that [K′X] = 0, and that K has no more than
n− p independent columns, where p is the number of independent parameters in the model. Notice that we
would like K to have as many columns as it can because this will translate to more realizations for fitting
the model. This removes the fixed effects from consideration and in so doing also penalizes the estimation
for model size. So, the likelihood is restricted by the fixed effects being set to 0, thus, restricted maximum
likelihood. Finally, notice that having a 0 column in K doesn’t actually add any information to the problem.

So, briefly, ReML involves applying ML, but replacing Y with KY, X with 0, Z with K′Z, and V with
K′VK.

8.3 A Simple Example

We start with a very simple and abstract example. First we have to load the package that holds the mixed-
effects code, nlme.

> require(nlme)

Loading required package: nlme
[1] TRUE

Now, we generate a simple dataset.

> straw <- data.frame(y = c(10.1, 14.9, 15.9, 13.1, 4.2, 4.8, 5.8,

+ 1.2), x = c(1, 2, 3, 4, 1, 2, 3, 4), group = factor(c(1,

+ 1, 1, 1, 2, 2, 2, 2)))

Let’s plot the data (Figure 8.3).

> colours = c("red", "blue")

> plot(straw$x, straw$y, col = colours[straw$group])

For each model below, examine the output using summary() commands of each model, and try to ascertain
what the differences are between the models, and whether increasing the complexity seems to be worthwhile.
Use anova() commands for the latter purpose.

37

icebreakeR

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

5
10

15

straw$x

st
ra

w
$y

Figure 8.3: A simple dataset to show the use of mixed-effects models.

Ordinary Least Squares

This model is just trying to predict y using x.

> basic.1 <- lm(y ~ x, data = straw)

Let’s let each group have its own intercept.

> basic.2 <- lm(y ~ x + group, data = straw)

Let’s let each group have its own intercept and slope.

> basic.3 <- lm(y ~ x * group, data = straw)

Mixed Effects

Now we need to convert the data to a grouped object - a special kind of dataframe that allows special nlme()
commands. The group will hereby be a random effect. One command that we can now use is augPred, as
seen below. Try it on a few models.

> straw.mixed <- groupedData(y ~ x | group, data = straw)

Let’s fit the basic mixed-effects model that allows the intercepts to vary randomly between the groups.

> basic.4 <- lme(y ~ x, random = ~1 | group, data = straw.mixed)

We can examine the model in a useful graphic called an augmented prediction plot. This plot provides a
scatterplot of the data, split up by group, and a fitted line which represents the model predictions (Figure
8.4).

> print(plot(augPred(basic.4)))

Next let’s fit a unique variance to each group.

38

icebreakeR

> basic.5 <- lme(y ~ x, random = ~1 | group, weights = varIdent(form = ~1 |

+ group), data = straw.mixed)

Finally let’s allow for temporal autocorrelation within each group.

> basic.6 <- lme(y ~ x, random = ~1 | group, weights = varIdent(form = ~1 |

+ group), correlation = corAR1(), data = straw.mixed)

We can summarize some of these differences in a graph (Figure 8.5).

> opar <- par(las = 1)

> colours <- c("blue", "darkgreen", "plum")

> plot(straw$x, straw$y)

> for (g in 1:2) lines(straw$x[straw$group == levels(straw$group)[g]],

+ fitted(basic.1)[straw$group == levels(straw$group)[g]], col = colours[1])

> for (g in 1:2) lines(straw$x[straw$group == levels(straw$group)[g]],

+ fitted(basic.2)[straw$group == levels(straw$group)[g]], col = colours[2])

> for (g in 1:2) lines(straw$x[straw$group == levels(straw$group)[g]],

+ fitted(basic.4)[straw$group == levels(straw$group)[g]], col = colours[3])

> legend(2.5, 13, lty = rep(1, 3), col = colours, legend = c("Mean Only",

+ "Intercept Fixed", "Intercept Random"))

> par(opar)

x

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0

5

10

15

●

●

●

●

2

1.0 1.5 2.0 2.5 3.0 3.5 4.0

●

●

●

●

1

Figure 8.4: An augmented plot of the basic mixed-
effects model with random intercepts fit to the sample
dataset.

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

5

10

15

straw$x

st
ra

w
$y

Mean Only
Intercept Fixed
Intercept Random

Figure 8.5: A sample plot showing the difference
between basic.1 (single line), basic.2 (intercepts are
fixed), and basic.4 (intercepts are random).

8.4 Case Study

Recall our brutal exposition of the mixed-effects model:

39

icebreakeR

Y = Xβ + Zb + ε

b ∼ N (0,D)
ε ∼ N (0,R)

D and R are covariance matrices, constructed using a small number of parameters, and the structure of
which is suggested by what is known about the data and can be tested by comparing nested models.

8.4.1 Height/Diameter Data

A brief synopsis: a sample of 66 trees was selected in national forests around northern and central Idaho.
According to Stage (pers. comm. 2003), the trees were selected purposively rather than randomly. Stage
(1963) notes that the selected trees “. . . appeared to have been dominant throughout their lives” and “. . .
showed no visible evidence of crown damage, forks, broken tops, etc.” The habitat type and diameter at 4’6”
were also recorded for each tree, as was the national forest from which it came. Each tree was then split,
and decadal measures were made of height and diameter inside bark at 4’6”.

First, eyeball the data in your spreadsheet of choice. Then import the data as follows:

> rm(list = ls())

> stage <- read.csv("../data/stage.csv")

> dim(stage)

[1] 542 7

> names(stage)

[1] "Tree.ID" "Forest" "HabType" "Decade" "Dbhib" "Height" "Age"

> sapply(stage, class)

Tree.ID Forest HabType Decade Dbhib Height Age
"integer" "integer" "integer" "integer" "numeric" "numeric" "integer"

Some cleaning will be necessary. Let’s start with the factors.

> stage$Tree.ID <- factor(stage$Tree.ID)

> stage$Forest.ID <- factor(stage$Forest, labels = c("Kaniksu",

+ "Coeur d'Alene", "St. Joe", "Clearwater", "Nez Perce", "Clark Fork",

+ "Umatilla", "Wallowa", "Payette"))

> stage$HabType.ID <- factor(stage$HabType, labels = c("Ts/Pac",

+ "Ts/Op", "Th/Pach", "AG/Pach", "PA/Pach"))

The measurements are all imperial (this was about 1960, after all).

> stage$dbhib.cm <- stage$Dbhib * 2.54

> stage$height.m <- stage$Height/3.2808399

> stage[1:10,]

Tree.ID Forest HabType Decade Dbhib Height Age Forest.ID HabType.ID
1 1 4 5 0 14.6 71.4 55 Clearwater PA/Pach
2 1 4 5 1 12.4 61.4 45 Clearwater PA/Pach
3 1 4 5 2 8.8 40.1 35 Clearwater PA/Pach
4 1 4 5 3 7.0 28.6 25 Clearwater PA/Pach
5 1 4 5 4 4.0 19.6 15 Clearwater PA/Pach
6 2 4 5 0 20.0 103.4 107 Clearwater PA/Pach
7 2 4 5 1 18.8 92.2 97 Clearwater PA/Pach

40

icebreakeR

8 2 4 5 2 17.0 80.8 87 Clearwater PA/Pach
9 2 4 5 3 15.9 76.2 77 Clearwater PA/Pach
10 2 4 5 4 14.0 70.7 67 Clearwater PA/Pach

dbhib.cm height.m
1 37.084 21.76272
2 31.496 18.71472
3 22.352 12.22248
4 17.780 8.71728
5 10.160 5.97408
6 50.800 31.51632
7 47.752 28.10256
8 43.180 24.62784
9 40.386 23.22576
10 35.560 21.54936

Height/Diameter

The prediction of height from diameter provides useful and inexpensive information. It may be that the
height/diameter relationship differs among hibitat types, or climate zones, or tree age. Let’s examine the
height/diameter model of the trees using a mixed-effects model. We’ll start with a simple case, using only
the oldest measurement from each tree that provides one.

> stage.old <- stage[stage$Decade == 0,]

Note that this code actually drops a tree, but we can afford to let it go for this demonstration.
To establish a baseline of normalcy, let’s first fit the model using ordinary least squares. We drop the

sole observation from the Ts/Op habitat type. It will cause trouble otherwise (the leverage will prove to be
very high).

> hd.lm.1 <- lm(height.m ~ dbhib.cm * HabType.ID, data = stage.old,

+ subset = HabType.ID != "Ts/Op")

Formally, I think it is good practice to examine the diagnostics upon which the model is predicated
before examining the model, tempting though it may be, so see Figure 8.6. The graph of the residuals vs.
fitted values plot (top left) seems good. There is no suggestion of heteroskedasticity. The Normal Q-Q plot
suggests a little wiggle but seems reasonably straight. There seem to be no points of egregious influence
(bottom left; all Cook’s Distances < 1).

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 4, 1))

> plot(hd.lm.1)

> par(opar)

So, having come this far, we should examine the model summary.

> summary(hd.lm.1)

Call:
lm(formula = height.m ~ dbhib.cm * HabType.ID, data = stage.old,

subset = HabType.ID != "Ts/Op")

Residuals:
Min 1Q Median 3Q Max

-10.3210 -2.1942 0.2218 1.7992 7.9437

Coefficients:
Estimate Std. Error t value Pr(>|t|)

41

icebreakeR

20 30 40 50 60

−
10

−
5

0
5

10

Fitted values

R
es

id
ua

ls

●

●

●
●

●
● ●

● ●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

Residuals vs Fitted

91

390

468
●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 −1 0 1 2

−
3

−
1

0
1

2

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q plot

91

390

468

20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●
●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scale−Location plot
91

390

468

0 10 20 30 40 50 60

0.
00

0.
04

0.
08

0.
12

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance plot

91

148

390

Figure 8.6: Regression diagnostics for the ordinary least squares fit of the Height/Diameter model with
habitat type for Stage’s data.

(Intercept) 8.33840 4.64118 1.797 0.0778 .
dbhib.cm 0.58995 0.08959 6.585 1.67e-08 ***
HabType.IDTh/Pach 2.42652 5.78392 0.420 0.6764
HabType.IDAG/Pach 0.29582 5.13564 0.058 0.9543
HabType.IDPA/Pach 0.02604 5.96275 0.004 0.9965
dbhib.cm:HabType.IDTh/Pach -0.03224 0.10670 -0.302 0.7637
dbhib.cm:HabType.IDAG/Pach -0.08594 0.10116 -0.850 0.3992
dbhib.cm:HabType.IDPA/Pach -0.10322 0.11794 -0.875 0.3852

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

42

icebreakeR

Residual standard error: 3.551 on 56 degrees of freedom
Multiple R-Squared: 0.8748, Adjusted R-squared: 0.8591
F-statistic: 55.89 on 7 and 56 DF, p-value: < 2.2e-16

For comparison: the following quantities are in metres. The first is the standard deviation of the height
measures. The second is the standard deviation of the height measures conditional on the diameter measures
and the model.

> sd(stage.old$height.m)

[1] 9.468042

> summary(hd.lm.1)$sigma

[1] 3.551062

It’s also interesting to know how much variation is explained by the habitat type information. We can
assess this similarly. Here we will not worry about diagnostics, although it should be done.

> summary(lm(height.m ~ dbhib.cm, data = stage.old, subset = HabType.ID !=

+ "Ts/Op"))$sigma

[1] 4.101350

Not much!

Mixed effects

Based on our knowledge of the locations of national forests, it seems reasonable to believe that there will be
similarities between trees that grow in the same forest relative to the population of trees.

However, we’d like to create a model that doesn’t rely on knowing the national forest, that is, a model
that can plausibly be used for trees in other forests. This is acceptable as long as we are willing to believe
that the sample of trees that we are using is representative of the conditions for which we wish to apply the
model. In the absence of other information, this is a judgement call. Let’s assume it for the moment.

Then, based on the above information, national forest will be a random effect, and habitat type a fixed
effect. That is, we wish to construct a model that can be used for any forest, that might be more accurate if
used correctly within a named national forest, and provides unique estimates for habitat type. We can later
ask how useful the knowledge of habitat type is, and whether we want to include that in the model.

So, we’ll have two random effects: national forest and tree within national forest. We have one baseline
fixed effect: diameter at breast height inside bark, with to potential additions: age and habitat type. The
lowest-level sampling unit will be the tree, nested within national forest.

It is convenient to provide a basic structure to R. The structure will help R create useful graphical
diagnostics later in the analysis.

> require(nlme)

[1] TRUE

> stage.old <- groupedData(height.m ~ dbhib.cm | Forest.ID, data = stage.old)

Now, let’s look to our model.

yij = β0 + b0i + β1 × xij + εij (8.4)

yij is the height of tree j in forest i, xij is the diameter of the same tree. β0 and β1 are fixed but unknown
parameters and b0i are the forest-specific random and unknown intercepts. Later we might see if the slope
also varies with forest. So, in matrix form,

43

icebreakeR

Y = βX + bZ + ε (8.5)

Y is the column of tree heights, X will be the column of diameters, with a matrix of 0s and 1s to allocate
the observations to different habitat types, along with a column for the ages, if necessary. β will be a vector
of parameter estimates. Z will be a matrix of 0s and 1s to allocate the observations to different forests. b
will be a vector of means for the forests and trees within forests. Finally, we’ll let D be a 9 × 9 identity
matrix multiplied by a constant σ2

h, and R be a 66× 66 identity matrix multiplied by a constant σ2.

> hd.lme.1 <- lme(height.m ~ dbhib.cm, random = ~1 | Forest.ID,

+ data = stage.old)

Automatic functions are available to extract and plot the different pieces of the model. I prefer to extract
them and choose my own plotting methods. I recommend that you do the same. For the pre-programmed
versions see Pinheiro and Bates (2000).

A quick burst of jargon: for hierarchical models there is more than one level of fitted values and residuals.
Pinheiro and Bates (2000) adopt the following approach: the outermost residuals and fitted values are
conditional only on the fixed effects, the innermost residuals and fitted values are conditional on the fixed
and all the random effects, and there are as many levels between these extremes as are necessary. So, in a
two-level model like this,

� the outermost residuals are the residuals computed from the outermost fitted values, which are com-
puted from only the fixed effects. Let’s refer to them as r0.

r0 = yij − β̂0 − β̂1 × xij (8.6)

� the innermost residuals are the residuals computed from the innermost fitted values, which are com-
puted from the fixed effects and the random effects. Let’s refer to them as r1.

r1 = yij − β̂0 − b̂0i − β̂1 × xij (8.7)

Furthermore, the mixed-effects apparatus provides us with three kinds of innermost and outermost resid-
uals:

1. response residuals, simply the difference between the observation and the prediction;

2. Pearson residuals, which are the response residuals scaled by dividing by their standard deviation; and

3. normalized residuals, which are the Pearson residuals pre-multiplied by the inverse square-root of the
estimated correlation matrix from the model.

The key assumptions that we’re making for our model are that:

1. the model structure is correctly specified;

2. the random effects are normally distributed;

3. the innermost residuals are normally distributed;

4. the innermost residuals are homoscedastic within and across the groups; and

5. the innermost residuals are independent within the groups.

Notice that we’re not making any assumptions about the outermost residuals. However, they are useful
for summarizing the elements of model performance.

We should construct diagnostic graphs to check these assumptions. Note that in some cases, the as-
sumptions are stated in an untenably broad fashion. Therefore the sensible strategy is to check for the
conditions that can be interpreted in the context of the design, the data, and the incumbent model. For
example, there are infinite ways that the innermost residuals could fail to have constant variance. What are

44

icebreakeR

the important ways? The situation most likely to lead to problems is if the variance of the residuals is a
function of something, whether that be a fixed effect or a random effect.

Rather than trust my ability to anticipate what the programmers meant by the labels etc., I want to
know what goes into each of my plots. The best way to do that is to put it there myself. To examine each
of the assumptions in turn, I have constructed the following suite of graphics. These are presented in Figure
8.7.

1. A plot of the outermost fitted values against the observed values of the response variable. This graph
allows an overall summary of the explanatory power of the model.

(a) How much of the variation is explained?

(b) How much remains?

(c) Is there evidence of lack of fit anywhere in particular?

2. A plot of the innermost fitted values against the innermost Pearson residuals. This graph allows a
check of the assumption of correct model structure.

(a) Is there curvature?

(b) Do the residuals fan out?

3. a qq-plot of the estimated random effects, to check whether they are normally distributed with constant
variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

4. a qq-plot of the Pearson residuals, to check whether they are normally distributed with constant
variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

5. a notched boxplot of the innermost Pearson residuals by the grouping variable, to see what the within-
group distribution looks like.

(a) Do the notches intersect 0?

(b) Is there a trend between the medians of the within-group residuals and the estimated random
effect?

6. a scatterplot of the variance of the Pearson residuals within the forest against the forest random effect.

(a) Is there a distinct positive or negative trend?

We use the following code to produce Figure 8.7. Of course there is no need to pack all the graphical
diagnostics into one figure.

> opar <- par(mfrow = c(3, 2), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> plot(fitted(hd.lme.1, level = 0), stage.old$height.m, xlab = "Fitted Values (height, m.)",

+ ylab = "Observed Values (height, m.)", main = "Model Structure (I)")

> abline(0, 1, col = "blue")

> scatter.smooth(fitted(hd.lme.1), residuals(hd.lme.1, type = "pearson"),

+ main = "Model Structure (II)", xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(h = 0, col = "red")

> ref.forest <- ranef(hd.lme.1)[[1]]

> ref.var.forest <- tapply(residuals(hd.lme.1, type = "pearson",

+ level = 1), stage.old$Forest.ID, var)

> qqnorm(ref.forest, main = "Q-Q Normal - Forest Random Effects")

45

icebreakeR

> qqline(ref.forest, col = "red")

> qqnorm(residuals(hd.lme.1, type = "pearson"), main = "Q-Q Normal - Residuals")

> qqline(residuals(hd.lme.1, type = "pearson"), col = "red")

> boxplot(residuals(hd.lme.1, type = "pearson", level = 1) ~ stage.old$Forest.ID,

+ ylab = "Innermost Residuals", xlab = "National Forest", notch = T,

+ varwidth = T, at = rank(ref.forest))

> axis(3, labels = format(ref.forest, dig = 2), cex.axis = 0.8,

+ at = rank(ref.forest))

> abline(h = 0, col = "darkgreen")

> plot(ref.forest, ref.var.forest, xlab = "Forest Random Effect",

+ ylab = "Variance of within-Forest Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col = "purple")

> par(opar)

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

20 30 40 50

20

30

40

50

60

Model Structure (I)

Fitted Values (height, m.)

O
bs

er
ve

d
V

al
ue

s
(h

ei
gh

t,
m

.)

●

●

●●
●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

20 30 40 50

−2

−1

0

1

2

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

Q−Q Normal − Forest Random Effects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

Q−Q Normal − Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

Umatilla Wallowa Kaniksu Clark Fork

−2

−1

0

1

2

National Forest

In
ne

rm
os

t R
es

id
ua

ls

−1.030 −0.466 −0.027 0.544 0.858

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

0.0

0.5

1.0

1.5

Forest Random Effect

V
ar

ia
nc

e
of

 w
ith

in
−

F
or

es
t R

es
id

ua
ls

Figure 8.7: Selected diagnostics for the mixed-effects fit of the Height/Diameter ratio against habitat type
and national forest for Stage’s data.

Cross-reference these against Figure 8.7. In fact, all of these residual diagnostics look good.
The next important question is whether there are any outliers or high-influence points. In a case like this

it is realtively easy to see from the diagnostics that no point is likely to dominate the fit in this way. However,

46

icebreakeR

a more formal examination of the question is valuable. To date, there is little peer-reviewed development of
the problem of outlier and influence detection. Schabenberger (2005) provides an overview of the extensive
offerings available in SAS, none of which are presently available in R. ? also provide some alternatives.

The simplest thing, in the case where a model fit is relatively quick, is to refit the model dropping each
observation one by one, and collecting the results in a vector for further analysis. This is best handled by
using the update() function.

> all.betas <- data.frame(labels = names(unlist(hd.lme.1$coefficients)))

> cook.0 <- cook.1 <- rep(NA, dim(stage.old)[1])

> p.sigma.0 <- length(hd.lme.1$coefficients$fixed) * var(residuals(hd.lme.1,

+ level = 0))

> p.sigma.1 <- length(hd.lme.1$coefficients$fixed) * var(residuals(hd.lme.1,

+ level = 1))

> for (i in 1:dim(stage.old)[1]) {

+ try({

+ hd.lme.n <- update(hd.lme.1, data = stage.old[-i,])

+ new.betas <- data.frame(labels = names(unlist(hd.lme.n$coefficients)),

+ coef = unlist(hd.lme.n$coefficients))

+ names(new.betas)[2] <- paste("obs", i, sep = ".")

+ all.betas <- merge(all.betas, new.betas, all.x = TRUE)

+ cook.0[i] <- sum((predict(hd.lme.1, level = 0, newdata = stage.old) -

+ predict(hd.lme.n, level = 0, newdata = stage.old))^2)/p.sigma.0

+ cook.1[i] <- sum((predict(hd.lme.1, level = 1, newdata = stage.old) -

+ predict(hd.lme.n, level = 1, newdata = stage.old))^2)/p.sigma.1

+ })

+ }

We can then examine these results with graphical diagnostics (Figures 8.8 and 8.9). The Cook’s Distances
presented here are only approximate.

> all.betas <- t(all.betas[, -1])

> len.all <- length(unlist(hd.lme.1$coefficients))

> len.fixed <- length(hd.lme.1$coefficients$fixed)

> len.ran <- length(hd.lme.1$coefficients$random$Forest.ID)

> opar <- par(mfrow = c(len.all, 1), oma = c(2, 0, 1, 0), mar = c(0,

+ 4, 0, 0), las = 1)

> for (i in 1:len.fixed) {

+ plot(all.betas[, i], type = "l", axes = F, xlab = "", ylab = "")

+ text(length(all.betas[, i]) - 1, max(all.betas[, i], na.rm = T),

+ names(unlist(hd.lme.1$coefficients))[i], adj = c(1, 1),

+ col = "red")

+ axis(2)

+ box()

+ }

> for (i in (len.fixed + 1):(len.all)) {

+ plot(all.betas[, i], type = "l", axes = F, xlab = "", ylab = "")

+ text(length(all.betas[, i]) - 1, max(all.betas[, i], na.rm = T),

+ names(unlist(hd.lme.1$coefficients))[i], adj = c(1, 1),

+ col = "red")

+ axis(2)

+ box()

+ }

> axis(1)

> par(opar)

47

icebreakeR

fixed.(Intercept)

6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4

fixed.dbhib.cm

0.555
0.560
0.565
0.570
0.575
0.580
0.585

random.Forest.ID1

−0.7
−0.6
−0.5
−0.4
−0.3
−0.2

random.Forest.ID2

−1.0
−0.8
−0.6
−0.4

random.Forest.ID3

0.4
0.6
0.8
1.0
1.2

random.Forest.ID4

0.1
0.2
0.3
0.4
0.5

random.Forest.ID5

−0.8
−0.6
−0.4
−0.2

0.0

random.Forest.ID6

−1.4
−1.2
−1.0
−0.8
−0.6

random.Forest.ID7

0.2
0.4
0.6
0.8
1.0

random.Forest.ID8

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

random.Forest.ID9

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

0 10 20 30 40 50 60

Figure 8.8: The parameter estimates for the fixed effects and predictions for the random effects resulting
from omitting one observation.

> cook <- data.frame(id = stage.old$Tree.ID, fixed = cook.0, forest = cook.1)

> influential <- apply(cook[, 2:3], 1, max) > 1

> plot(cook$fixed, cook$forest, type = "n", xlab = "Outermost (Fixed effects only)",

+ ylab = "Innermost (Fixed effects and random effects)")

> points(cook$fixed[!influential], cook$forest[!influential])

> if (sum(influential) > 0) text(cook$fixed[influential], cook$forest[influential],

+ cook$id[influential], col = "red", cex = 0.85)

And, what about the removal of entire forests? We can compute the effects similarly. But, let’s accept
the model as it stands for the moment, and go on to examine the summary.

Linear mixed-effects model fit by REML
Data: stage.old

AIC BIC logLik
376.6805 385.2530 -184.3403

Random effects:

48

icebreakeR

0.00 0.05 0.10 0.15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Outermost (Fixed effects only)

In
ne

rm
os

t (
F

ix
ed

 e
ffe

ct
s

an
d

ra
nd

om
 e

ffe
ct

s)

●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

Figure 8.9: Cook’s Distances for outermost and innermost residuals. Values greater than 1 appear in red
and are identified by the tree number. The corresponding observations bear further examination.

Formula: ~1 | Forest.ID
(Intercept) Residual

StdDev: 1.151436 3.937481

Fixed effects: height.m ~ dbhib.cm
Value Std.Error DF t-value p-value

(Intercept) 6.58238 1.7763600 55 3.705544 5e-04
dbhib.cm 0.57036 0.0335347 55 17.008069 0e+00
Correlation:

(Intr)
dbhib.cm -0.931

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.91216370 -0.70233864 0.04308706 0.81188545 1.99134351

Number of Observations: 65
Number of Groups: 9

1. Here we have the overall metrics of model fit, including the log likelihood (recall that this is the quantity
we’re maximizing to make the fit), and the AIC and BIC statistics. The fixed effects are profiled out
of the log-likelihood, so that the log-likelihood is a function only of the data and two parameters: σ2

h

and σ2.

2. The formula reminds us of what we asked for: that the forest be a random effect, and that a unique
intercept be fit for each level of Forest. The square roots of the estimates of the two parameters are
also here.

3. Another metric of model quality is RMSE, which is the estimate of the standard deviation of the
response residuals conditional on only the fixed effects. Note that 3.94 is not the RMSE, it is instead
an estimate of the standard deviation of the response residuals conditional on the fixed and the random

49

icebreakeR

effects. Obtaining the RMSE is relatively easy because the random effects and the residuals are assumed
to be independent.

RMSE =
√

σ2
h + σ2 = 4.1

The last metric of model quality we can get here is the intra-class correlation. This is the variance of
the random effect divided by the sum of the variances of the random effects and the residuals.

ρ =
σ2

h

σ2
h + σ2

= 0.0788

so about 7.9 % of the variation in height (that isn’t explained by diameter) is explained by forest. Not
very much.

4. Now we have a reminder of the fixed effects model and the estimates of the fixed effects. We have
several columns:

(a) the value of the estimate,

(b) its standard error (not identical here because of the lack of balance),

(c) the degrees of freedom (53 = 66 trees - 1 - (9-1) national forests - (5-1) habitat types)

(d) the t-value associated with the significance test of the null hypothesis that the estimate is 0 against
the two-tailed alternative that it is not 0, which is really rather meaningless for this model, and

(e) the p-value associated with that rather meaningless test.

5. This is the correlation matrix for the estimates of the fixed effects. It is estimated from the design
matrix. This comes from the covariance matrix of the fixed effects, which can be estimated by

(X′V−1X)−1

6. Information about the within-group residuals. Are they symmetric? Are there egregious outliers?
Compare these values to what we know of the standard normal distribution, for which the median
should be about 0, the first quartile at −0.674, and the third at 0.674.

7. And finally, confirmation that we have the correct number of observations and groups. This is a useful
conclusion to draw; it comforts us that we fit the model that we thought we had!

A compact summary of the explanatory power of the model can be had from:

> anova(hd.lme.1)

numDF denDF F-value p-value
(Intercept) 1 55 2848.3870 <.0001
dbhib.cm 1 55 289.2744 <.0001

Deeper design

Let’s now treat the Grand fir height/diameter data from Stage (1963) in a different way. We actually have
numerous measurements of height and diameter for each tree. It seems wasteful to only use the largest.

Let’s still assume that the National Forests represent different, purposively selected sources of climatic
variation, and that habitat type represents a randomly selected treatment of environment (no, it’s probably
not true, but let’s assume that it is). This is a randomized block design, where the blocks and the treatment
effects are crossed. This time we’re interested in using all the data. Previously we took only the first
measurement. How will the model change? As always, we begin by setting up the data.

50

icebreakeR

> stage <- groupedData(height.m ~ dbhib.cm | Forest.ID/Tree.ID,

+ data = stage)

Let’s say that, based on the above information, national forest will be a random effect, and habitat type
a potential fixed effect. So, we’ll have one to three fixed effects (dbhib, age, and habitat) and two random
effects (forest and tree within forest). The response variable will now be the height measurement, nested
within the tree, nested within habitat type. Let’s assume, for the moment, that the measurements are
independent within the tree (definitely not true). Now, let’s look to our model.

yijk = β0 + b0i + b0ij + β1 × xijk + εijk (8.8)

yijk is the height of tree j in forest i at measurement k, xijk is the diameter of the same tree. β0 and β1

are fixed but unknown parameters, b0i are the forest-specific random and unknown intercepts, and b0ij are
the tree-specific random and unknown intercepts. Later we might see if the slope also varies with forest. So,
in matrix form, we have:

Y = βX + bZ + ε (8.9)

� Y is the vector of height/diameter measurements. The basic unit of Y will be a measurement within
a tree within a forest. It has 542 observations.

� X will be a matrix of 0s, 1s, and diameters, to allocate the observations to different national forests
and different tree diameters at the time of measurement.

� β will be a vector of parameter estimates.

� Z will be a matrix of 0s and 1s to allocate the observations to different forests, and trees within forests.

� b will be a vector of means for the forests and the trees.

� D will be a block diagonal matrix comprising a 9× 9 identity matrix multiplied by a constant σ2
f , and

then a square matrix for each forest, which will be a diagonal matrix with variances on the diagonals.

� R will now be a 542× 542 identity matrix multiplied by a constant σ2.

> hd.lme.3 <- lme(height.m ~ dbhib.cm, random = ~1 | Forest.ID/Tree.ID,

+ data = stage)

Now, the key assumptions that we’re making are that:

1. the model structure is correctly specified

2. the tree and forest random effects are normally distributed,

3. the tree random effects are homoscedastic within the forest random effects.

4. the inner-most residuals are normally distributed,

5. the inner-most residuals are homoscedastic within and across the tree random effects.

6. the innermost residuals are independent within the groups.

We again construct diagnostic graphs to check these assumptions. To examine each of the assumptions
in turn, I have constructed the earlier suite of graphics, along with some supplementary graphs.

1. an extra qq-plot of the tree-level random effects, to check whether they are normally distributed with
constant variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

51

icebreakeR

2. a notched boxplot of the tree-level random effects by the grouping variable, to see what the within-group
distribution looks like.

(a) Do the notches intersect 0?

(b) Is there a trend between the medians of the within-group residuals and the estimated random
effect?

3. a scatterplot of the variance of the tree-level random effects within the forest against the forest random
effect.

(a) Is there a distinct positive or negative trend?

4. an autocorrelation plot of the within-tree errors.

As a rule of thumb, we need four plots plus three for each random effect. Cross-reference these against
Figure ??. Each graphic should ideally be examined separately in its own frame. Here’s the code:

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> plot(fitted(hd.lme.3, level = 0), stage$height.m, xlab = "Fitted Values",

+ ylab = "Observed Values", main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.3), residuals(hd.lme.3, type = "pearson"),

+ main = "Model Structure (II)", xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(h = 0, col = "gray")

> acf.resid <- ACF(hd.lme.3, resType = "normal")

> plot(acf.resid$lag[acf.resid$lag < 10.5], acf.resid$ACF[acf.resid$lag <

+ 10.5], type = "b", main = "Autocorrelation", xlab = "Lag",

+ ylab = "Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5], stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5], -stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> abline(0, 0, col = "gray")

> par(opar)

●
●

●
●

●

●
●

●●●
●

●
●●

●

●

●
●

●●
●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●●●
●

●

●

●

●
●

●
●

●

●

●

●●●●●●●●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●

●●●●●
●●●●

●
●

●

●

●

●

●

●●●
●●

●●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●●
●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●●●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●
●

●

●
●●

●

●

●
●

●
●●

●
●

●

●
●●●

●
●

●
●

●
●

●

●●●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●●●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●
●

●●●
●●●●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●●●
●

●
●

●

●

●
●

●●

●
●

●●●

●

●
●

●●
●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●
●●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●●●

●
●

●
●

●●●●●
●●

●

●

●

●

10 20 30 40 50 60

0

10

20

30

40

50

60

Model Structure (I)

Fitted Values

O
bs

er
ve

d
V

al
ue

s

●
●●

●

●
●

●●●

●●

●

●
●

● ●

●●
●●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●● ●●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●●●●●
●

●
●●

●
●

●
●

●
●

●
●

●●●

●●●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●●●●

●
●

●●
●

●
●●●●●

●
●

●●

●

●

●

●
●

●●

●

●

●
●

●●
●●●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●
●●●

●

●●

●
●

●
●

●

●

●

●

●●

●●
●●●●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●●

●
●

●●●

●

●
●

●
●●

●●

●
●

●●

●●
●●

●

●

●
●

● ●●●●

●●

●

●
●

●

●
●

●●
●

●
●

●

●●●
●

●

●●
●

●

●

●

●

●●

●

●
●●

●●●●
●

●

●

●●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●
●●

●●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●
●

●

●
●●

●●
●

●
●●

●●
●●●

●
●

●
●

●

●●●●●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●●●●

●
●

●
●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●●●

●●
●

●
●

●

●

●
●

●

●●
●

●
●●

●
●

●

●

● ●●
●

●●

●
●

●●

●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●●
●

●

●
●●

●
●

●

●
●●●

●
●

●

●

●

●

●
●●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

0 10 30 50 70

−3

−2

−1

0

1

2

3

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls ●

●

●

●

●

●

●
● ●

●

●

0 2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0

Autocorrelation

Lag

C
or

re
la

tio
n

Figure 8.10: Selected overall diagnostics for the mixed-effects fit of the Height/Diameter model for Stage’s
data.

52

icebreakeR

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> ref.forest <- ranef(hd.lme.3, level = 1, standard = T)[[1]]

> ref.tree <- ranef(hd.lme.3, level = 2, standard = T)[[1]]

> ref.tree.frame <- ranef(hd.lme.3, level = 2, augFrame = T, standard = T)

> ref.var.tree <- tapply(residuals(hd.lme.3, type = "pearson",

+ level = 1), stage$Tree.ID, var)

> ref.var.forest <- tapply(ref.tree, ref.tree.frame$Forest, var)

> qqnorm(ref.forest, main = "QQ plot: Forest")

> qqline(ref.forest)

> qqnorm(ref.tree, main = "QQ plot: Tree")

> qqline(ref.tree)

> qqnorm(residuals(hd.lme.3, type = "pearson"), main = "QQ plot: Residuals")

> qqline(residuals(hd.lme.3, type = "pearson"), col = "red")

> par(opar)

●

●

●

●

●

●

●

●

●

−1.5 −0.5 0.5 1.5

−1.0

−0.5

0.0

0.5

QQ plot: Forest

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

−2 −1 0 1 2

−2

−1

0

1

2

QQ plot: Tree

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●●

●

●
●

●●●

●●

●

●
●

●●

●●
●●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●●●●
●

●

●

●●

●

●

●
●

●

●

●

●

●●●●●
●

●

●
●●

●
●

●
●

●
●

●
●

●●●

●●●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●●●●

●
●

●●
●

●
●●●●●

●
●

●●

●

●

●

●
●

●●

●

●

●
●

●●
●●●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●
●●●

●

●●

●
●

●
●
●

●

●

●

●●

●●●●●●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●●

●
●

●●●

●

●
●

●
●●

●●

●
●

●●

●●
●●

●

●

●
●

●●●●●

●●

●

●
●

●

●
●

●●
●

●
●

●

●●●
●

●

●●
●

●

●

●

●

●●

●

●
●●

●●●●
●

●

●

●●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●
●●

●●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●●
●

●
●

●

●
●

●

●
●●

●●
●

●
●●

●●
●●●

●
●

●
●

●

●●●●●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●●●
●

●
●

●
●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●●●

●●
●

●
●

●

●

●
●

●

●●
●

●
●●

●
●

●

●

●●●
●

●●

●
●

●●

●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●●
●

●

●
●●

●
●

●

●
●●●

●
●

●

●

●

●

●
●●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

QQ plot: Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 8.11: Selected quantile-based diagnostics for the mixed-effects fit of the Height/Diameter model for
Stage’s data.

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> boxplot(ref.tree ~ ref.tree.frame$Forest, ylab = "Tree Effects",

+ xlab = "National Forest", notch = T, varwidth = T, at = rank(ref.forest))

> axis(3, labels = format(ref.forest, dig = 2), cex.axis = 0.8,

+ at = rank(ref.forest))

> abline(h = 0, col = "darkgreen")

> boxplot(residuals(hd.lme.3, type = "pearson", level = 1) ~ stage$Tree.ID,

+ ylab = "Innermost Residuals", xlab = "Tree", notch = T, varwidth = T,

+ at = rank(ref.tree))

> axis(3, labels = format(ref.tree, dig = 2), cex.axis = 0.8, at = rank(ref.tree))

> abline(h = 0, col = "darkgreen")

> plot(ref.forest, ref.var.forest, xlab = "Forest Random Effect",

+ ylab = "Variance of within-Forest Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col = "purple")

> plot(ref.tree, ref.var.tree, xlab = "Tree Random Effect", ylab = "Variance of within-Tree Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col = "purple")

> par(opar)

Everything in these figures look good except for the residual plots and the correlation of the within-tree
residuals, which show an unacceptably strong signal. At this point one might think that the next step is to

53

icebreakeR

●

7 9 2 8 4 1 3 6 5

−2

−1

0

1

2

National Forest

T
re

e
E

ffe
ct

s
−1.093 −0.492 0.063 0.443 0.764

●
●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

66 28 45 77 42 67 50 1 40

−4

−2

0

2

4

6

Tree
In

ne
rm

os
t R

es
id

ua
ls

−2.200 −0.564 −0.194 0.417 0.984

●
●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

0.0

0.5

1.0

1.5

2.0

2.5

Forest Random Effect

V
ar

ia
nc

e
of

 w
ith

in
−

F
or

es
t R

es
id

ua
ls

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

Tree Random Effect

V
ar

ia
nc

e
of

 w
ith

in
−

T
re

e
R

es
id

ua
ls

Figure 8.12: Selected random-effects based diagnostics for the mixed-effects fit of the Height/Diameter model
for Stage’s data.

try to fit an autocorrelation function to the within-tree residuals, but the kink in the residual plot suggests
that it seems more valuable to take a look at a different diagnostic first.

The augmented prediction plot overlays the fitted model with the observed data, at an optional level
within the model. It is constructed using xyplot() from lattice graphics, and accepts arguments that are
relevant to that function, for further customization. This allows us to sort the trees by national forest, to
help us pick up any cluster effects.

> trees.in.forests <- aggregate(x = list(measures = stage$height.m),

+ by = list(tree = stage$Tree.ID, forest = stage$Forest.ID),

+ FUN = length)

> panel.order <- rank(as.numeric(as.character(trees.in.forests$tree)))

54

icebreakeR

> print(plot(augPred(hd.lme.3), index.cond = list(panel.order),

+ strip = strip.custom(par.strip.text = list(cex = 0.5))))

dbhib.cm

he
ig

ht
.m

0 40 80

0
40 ●●●●●●●●●

Kaniksu/6

●●●●●●
●

Kaniksu/7

0 40 80

●●●●●●●

Kaniksu/34

●●●●●●●●●●●●●

Kaniksu/65

0 40 80

●●●●●●●●●●●

Coeur d'Alene/11

●●●●●●●●●

Coeur d'Alene/12

0 40 80

●●●●●●●●

Coeur d'Alene/13

●●●●●●●●●●

Coeur d'Alene/19

0 40 80

●●●●●●●

Coeur d'Alene/33

●●●●●●●

Coeur d'Alene/38

●●●●●●●●

Coeur d'Alene/39

●●●●●●●●

St. Joe/4

●●●●●●

St. Joe/5

●●●●●

St. Joe/15

●●●●●●●

St. Joe/60

●●●●●●●●●●●●●

St. Joe/61

●●●●●●●●●●●

St. Joe/77

0
40

●●●●●

Clearwater/1

0
40 ●●●●●●●●●●

Clearwater/2

●●●●●●●●●●●●

Clearwater/3

●●●●●●●●●●●●

Clearwater/17

●●●●

Clearwater/18

●●●●●●●●●●●●

Clearwater/30

●●●●●●●●●●●●●

Clearwater/31

●●●●●●●●●●●●●

Clearwater/59

●●●●●●●●●●●●

Nez Perce/28

●●●●●
●●

Nez Perce/29

●●●●

Nez Perce/32

●●●●●

Nez Perce/35

●●●●

Nez Perce/36

●●●●●●●●●●●●

Nez Perce/37

●●●●●●●●

Nez Perce/40

●●●●●●●●●●

Nez Perce/48

●●●●●●●●

Nez Perce/49

●●●●

Nez Perce/50

0
40

●●●●●●

Nez Perce/51

0
40 ●●●●●●●●●●●

Nez Perce/52

●●●●●●●●●●

Nez Perce/53

●●●●●●

Nez Perce/54

●●●●●

Nez Perce/55

●●●●●

Nez Perce/56

●●●●●●●●●●●●●

Nez Perce/57

●●●●●●

Nez Perce/58

●●●●●●

Nez Perce/74

●●●●●●

Nez Perce/75

●●●●●

Nez Perce/76

●●●●●●●●●●●●●

Clark Fork/62

●●●●●●●●●

Clark Fork/64

●●●●●●

Umatilla/63

●●●●●●●●●●

Umatilla/68

●●●●●●

Umatilla/69

●●●●●

Umatilla/70

●●●●●●●●●●

Umatilla/71

0
40●●●●●●●●●●●

Umatilla/72

0
40 ●●●●

Umatilla/73

●●●●●●●●●●●

Umatilla/84

●●●●●●●●

Wallowa/66

●●●●●●●●

Wallowa/67

●●●●●●●●●●●

Wallowa/85

●●●●●●●●

Payette/41

●●●●●●●●

Payette/42

●●●●●●

Payette/43

●●●●●●●●●●●

Payette/44

●●●●●●●●●

Payette/45

0 40 80

●●●●

Payette/46

0
40

●●●●

Payette/47

Figure 8.13: Height against diameter by tree, augmented with predicted lines.

The augmented prediction plot (Figure 8.13) shows that a number of the trees have curvature in the
relationship between height and diameter that the model fails to pick up, whilst others seem pretty linear.
It also shows that the omission of a random slope appears to be problematic.

At this point we have several options, each of which potentially leads to different resolutions for our
problem, or, more likely, to several further approaches, and so on. How we proceed depends on our goal. We
can:

1. add a quadratic fixed effect;

55

icebreakeR

2. add a quadratic random effect;

3. add quadratic fixed and random effects;

4. correct the model by including a within-tree correlation; and

5. switch to non-linear mixed-effects models and use a more appropriate functional form.

Since we do not believe that the true relationship between height and diameter could reasaonbly be a
straight line, let’s add a fixed and a random quadratic diameter effect, by tree, and see how things go. For
a start this will increase the number of diagnostic graphs that we want to look at to about 22! We’ll show
only a sample here.

> hd.lme.4 <- lme(height.m ~ dbhib.cm + I(dbhib.cm^2), random = ~dbhib.cm +

+ I(dbhib.cm^2) | Forest.ID/Tree.ID, data = stage)

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> plot(fitted(hd.lme.4, level = 0), stage$height.m, xlab = "Fitted Values",

+ ylab = "Observed Values", main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.4), residuals(hd.lme.4, type = "pearson"),

+ main = "Model Structure (II)", xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.4, resType = "n")

> plot(acf.resid$lag[acf.resid$lag < 10.5], acf.resid$ACF[acf.resid$lag <

+ 10.5], type = "b", main = "Autocorrelation", xlab = "Lag",

+ ylab = "Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5], stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5], -stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> abline(0, 0, col = "gray")

> par(opar)

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●●●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

0 10 20 30 40 50

0

10

20

30

40

50

60

Model Structure (I)

Fitted Values

O
bs

er
ve

d
V

al
ue

s

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●●●

●

●

●

●

●
●

●●
●●

●●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●●
●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●●

●●
●●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●
●

●

●
●

●●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

● ●
●

●●●

●

●

●

●
●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●●

●

● ●
●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

0 10 20 30 40 50 60

−2

0

2

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls

●

●

●

●
●

●

●

●

●

●

●

0 2 4 6 8 10

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

Lag

C
or

re
la

tio
n

Figure 8.14: Selected diagnostics for the mixed-effects fit of the Height/Diameter model for Stage’s data.

This has improved the model somewhat, but it looks like we do need to include some accounting for
the within-tree correlation. Pinheiro and Bates (2000) detail the options that are available. Also, we’ll use

56

icebreakeR

update() because that starts the model fitting at the most recently converged estimates, which speeds up
fitting considerably.

> hd.lme.5 <- update(hd.lme.4, correlation = corCAR1())

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> plot(fitted(hd.lme.5, level = 0), stage$height.m, xlab = "Fitted Values",

+ ylab = "Observed Values", main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.5), residuals(hd.lme.5, type = "pearson"),

+ main = "Model Structure (II)", xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.5, resType = "n")

> plot(acf.resid$lag[acf.resid$lag < 10.5], acf.resid$ACF[acf.resid$lag <

+ 10.5], type = "b", main = "Autocorrelation", xlab = "Lag",

+ ylab = "Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5], stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5], -stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> abline(0, 0, col = "gray")

> par(opar)

Figure 8.15: Selected diagnostics for the mixed-effects fit of the Height/Diameter model for Stage’s data.

The correlation is small now.
Another element of the model that we have control over is the variance of the random effects. We haven’t

seen any red flags for heteroskedasticity in the model diagnostics, so we haven’t worried about it. However,
such situations are common enough to make an example worthwhile.

Two kinds of heteroskedasticity are common and worthy of concern: firstly, that the variance of the
response variable is related to the response variable, and secondly, that the conditional variance of the
observations varied within one or more stratum. Some combination of the two conditions is also possible.

We can detect these conditions by conditional residual scatterplots of the following kind. The first is a
scatterplot of the innermost Pearson residuals against the fitted values stratified by habitat type. The code
to create this graphic is part of the nlme package.

> print(plot(hd.lme.5, resid(.) ~ fitted(.) | HabType.ID, layout = c(1,

+ 5)))

The second is a quantile plot of the innermost Pearson residuals against the normal distribution, stratified
by habitat type. This code is provided by the lattice package, and we found a template under ?qqmath.

> print(qqmath(~resid(hd.lme.5) | stage$HabType.ID, prepanel = prepanel.qqmathline,

+ panel = function(x, y) {

+ panel.qqmathline(y, distribution = qnorm)

+ panel.qqmath(x, y)

+ }))

There seems little evidence in either of figures 8.16 and 8.17 to suggest that the variance model is
inadequate.

Had the variance model seemed inadequate, we could have used the weights argument in a call to update
with one of the following approaches:

57

icebreakeR

Fitted values

R
es

id
ua

ls

0 10 20 30 40 50 60

−4
−2

0
2
4

●●●
●●

●
●

● ●
●●●●● ●

●●●
●

●●

●
●

●
●●

●
●●

● ●
●

●
●● ●●●

●●
●●●●● ●●●●

●
●

● ●●
●●

●●
● ●

●●●●
●●●●●●●

● ●●
●●●

●

●
●●

Ts/Pac
−4
−2
0
2
4

●●●
●●●

●●

●

●

●
●

●

Ts/Op
−4
−2

0
2
4

●

●●●●
●●

●●●
●

●

●●●●●●
●

●●●
●● ●●●●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●

●
●

●

●●●●●●●●
●

●●●
●

●
●●

●
●

●

●
●

●●●
●

●
●

●●
●●

●●●
● ●

●
●

●
●

●●●●●●●
●

●●
●

●

● ●
●●●●●●

●●
●●

Th/Pach
−4
−2
0
2
4

●●●●●●

●
●●

●●
●●●●●

●●●●
●●●●

●●
●

●
●

●
●●●

●●●● ●●
●●●

●
●●

●●●
●

●●
●●●

●● ●●
●●●●●● ●

●
●

●●
●●

●

●●

●●
●● ●●●

●●
●●

●●●●
●●

●●
●

●
●

●
● ●●
●●

●
●

●●
●●●●

●●●●●● ●●●●
●

●
●

● ●●●●●
●

●

●●●

●
●●

●

●

●
●●●●●● ●●●

●

●

●●● ●
●●

●
●

●
●

● ●●●
●●

●

●
●

●
●

●●
●●●

●●●●
●

●●●
●●

●●●●●● ●●
●●

●
●

●●
●

● ●
●●●●● ●

●●●
●

●
●

●●●
●

●
●

●
●●

AG/Pach
−4
−2

0
2
4

●●
●●

● ●
●●●

●●

●
●

●● ●●

●
●

●

●

●

●
●

●
●

●

●
●

●● ●●
●●

●●

●

●●● ●●●●●●
●

●
●

●
●

●

●●●●
●

●
●●

●
●● ●

●

●

●●
● ●●●●●●

● ●●●●●●●●
●

●
●●● ●●

●●●●
●

●●
●

●
●● ●●●

●
●●●

●

●

PA/Pach

Figure 8.16: Innermost Pearson residuals against fit-
ted values by habitat type.

qnorm

re
si

d(
hd

.lm
e.

5)

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

● ●●●●●
●●●●

●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●
●

●●

●

●

Ts/Pac

●

●

●●●
●●

●●●●

●

●

Ts/Op

−3 −2 −1 0 1 2 3

●
●
●●●●

●●
●●●●

●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●

●●
●●●●●●

●●●

●●●
●●

●

●

Th/Pach

●

●●
●●
●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●
●●●●●●

●●●●●●
●
●●●

●

●

AG/Pach

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

●
●
●●

●
●●●

●●●●●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●

●
●●
●●
●

●●

●

PA/Pach

Figure 8.17: Quantile plots of innermost Pearson
residuals against the normal distribution, by habitat
type.

� weights = varIdent(form = 1 | HabType.ID) This option would allow the observations within
each habitat type to have their own variance.

� weights = varPower() This option would fit a power function for the relationship between the variance
and the predicted mean, and estimate the exponent.

� weights = varPower(form = dbhib.cm | HabType.ID) This option would fit a power function for
the relationship between the variance and the diameter uniquely within each habitat type, and estimate
the exponent.

� weights = varConstPower() This option would fit a power function with a constant for the relation-
ship between the variance and the predicted mean, and estimate the exponent and constant.

Other options are available; the function is fully documented in Pinheiro and Bates (2000).
Then, let’s accept the model as it stands for the moment. This is the baseline model, as it provides

predictions of height from diameter, and satisfies the regression assumptions. Other options may later prove
to be better fitting, for example it may be that including habitat type or age in the model obviates our use of
the quadratic diameter term. Whether or not this makes for a better model in terms of actual applications
will vary!

> print(plot(augPred(hd.lme.5), index.cond = list(panel.order),

+ strip = strip.custom(par.strip.text = list(cex = 0.5))))

> summary(hd.lme.5)

Linear mixed-effects model fit by REML
Data: stage

AIC BIC logLik
1954.898 2027.823 -960.449

58

icebreakeR

dbhib.cm

he
ig

ht
.m

0 40 80

0
40 ●●●●●●●●●

Kaniksu/6

●●●●●●
●

Kaniksu/7

0 40 80

●●●●●●●

Kaniksu/34

●●●●●●●●●●●●●

Kaniksu/65

0 40 80

●●●●●●●●●●●

Coeur d'Alene/11

●●●●●●●●●

Coeur d'Alene/12

0 40 80

●●●●●●●●

Coeur d'Alene/13

●●●●●●●●●●

Coeur d'Alene/19

0 40 80

●●●●●●●

Coeur d'Alene/33

●●●●●●●

Coeur d'Alene/38

●●●●●●●●

Coeur d'Alene/39

●●●●●●●●

St. Joe/4

●●●●●●

St. Joe/5

●●●●●

St. Joe/15

●●●●●●●

St. Joe/60

●●●●●●●●●●●●●

St. Joe/61

●●●●●●●●●●●

St. Joe/77

0
40

●●●●●

Clearwater/1
0

40 ●●●●●●●●●●

Clearwater/2

●●●●●●●●●●●●

Clearwater/3

●●●●●●●●●●●●

Clearwater/17

●●●●

Clearwater/18

●●●●●●●●●●●●

Clearwater/30

●●●●●●●●●●●●●

Clearwater/31

●●●●●●●●●●●●●

Clearwater/59

●●●●●●●●●●●●

Nez Perce/28

●●●●●
●●

Nez Perce/29

●●●●

Nez Perce/32

●●●●●

Nez Perce/35

●●●●

Nez Perce/36

●●●●●●●●●●●●

Nez Perce/37

●●●●●●●●

Nez Perce/40

●●●●●●●●●●

Nez Perce/48

●●●●●●●●

Nez Perce/49

●●
●●

Nez Perce/50

0
40

●●●●●●

Nez Perce/51
0

40 ●●●●●●●●●●●

Nez Perce/52

●●●●●●●●●●

Nez Perce/53

●●●●●●

Nez Perce/54

●●●●●

Nez Perce/55

●●●●●

Nez Perce/56

●●●●●●●●●●●●●

Nez Perce/57

●●●●●●

Nez Perce/58

●●●●●●

Nez Perce/74

●●●●●●

Nez Perce/75

●●●●●

Nez Perce/76

●●●●●●●●●●●●●

Clark Fork/62

●●●●●●●●●

Clark Fork/64

●●●●●●

Umatilla/63

●●●●●●●●●●

Umatilla/68

●●●●●●

Umatilla/69

●●●●●

Umatilla/70

●●●●●●●●●●

Umatilla/71

0
40●●●●●●●●●●●

Umatilla/72
0

40 ●●●●

Umatilla/73

●●●●●●●●●●●

Umatilla/84

●●●●●●●●

Wallowa/66

●●●●●●●●

Wallowa/67

●●●●●●●●●●●

Wallowa/85

●●●●●●●●

Payette/41

●●●●●●●●

Payette/42

●●●●●●

Payette/43

●●●●●●●●●●●

Payette/44

●●●●●●●●●

Payette/45

0 40 80

●●●●

Payette/46

0
40

●●●●

Payette/47

Figure 8.18: Height against diameter by tree, augmented with predicted lines.

Random effects:
Formula: ~dbhib.cm + I(dbhib.cm^2) | Forest.ID
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 0.275624217 (Intr) dbhb.c
dbhib.cm 0.079258347 -0.563
I(dbhib.cm^2) 0.001170039 0.575 -0.989

Formula: ~dbhib.cm + I(dbhib.cm^2) | Tree.ID %in% Forest.ID
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

59

icebreakeR

(Intercept) 0.002125098 (Intr) dbhb.c
dbhib.cm 0.172264549 -0.518
I(dbhib.cm^2) 0.002924372 0.071 -0.800
Residual 1.423900827

Correlation Structure: Continuous AR(1)
Formula: ~1 | Forest.ID/Tree.ID
Parameter estimate(s):

Phi
0.6670859
Fixed effects: height.m ~ dbhib.cm + I(dbhib.cm^2)

Value Std.Error DF t-value p-value
(Intercept) -0.4751447 0.27646715 474 -1.718630 0.0863
dbhib.cm 0.8840097 0.04073775 474 21.700013 0.0000
I(dbhib.cm^2) -0.0031469 0.00066374 474 -4.741178 0.0000
Correlation:

(Intr) dbhb.c
dbhib.cm -0.493
I(dbhib.cm^2) 0.437 -0.915

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.83345241 -0.48312402 -0.01318825 0.42506163 3.29282001

Number of Observations: 542
Number of Groups:

Forest.ID Tree.ID %in% Forest.ID
9 66

8.4.2 Extensions to the model

We can try to extend the baseline model to improve its performance, based on our knowledge of the system.
For example, it might be true that the tree age mediates its diameter - height relationship in a way that has
not been captured in the model. We can formally test this assertion, using the anova function, or we can
examine it graphically, using an added-variable plot, or we can try to fit the model with the term included
and see what effect that has on the residual variation.

An added-variable plot is a graphical summary of the amount of variation that is uniquely explained by
a predictor variable. It can be constructed in R as follows. Here, we need to decide what level of residuals
to choose, as there are several. We adopt the outermost residuals.

> age.lme.1 <- lme(Age ~ dbhib.cm, random = ~1 | Forest.ID/Tree.ID,

+ data = stage)

> res.Age <- residuals(age.lme.1, level = 0)

> res.HD <- residuals(hd.lme.5, level = 0)

> scatter.smooth(res.Age, res.HD, xlab = "Variation unique to Age",

+ ylab = "Variation in Height after all but Age")

In order to assess whether we would be better served by adding habitat type to the model, we can
construct a graphical summary, thus:

> print(xyplot(stage$height.m ~ fitted(hd.lme.5, level = 0) | HabType.ID,

+ xlab = "Predicted height (m)", ylab = "Observed height (m)",

+ data = stage, panel = function(x, y, subscripts) {

+ panel.xyplot(x, y)

+ panel.abline(0, 1)

60

icebreakeR

●
● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

● ●
●●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●●

●
●

●
●

●

●
● ●●

●●
●●●

●

● ●

●

●

●

●

●

●●

●
●

●
●

●●

●

●
●

●●●

●

●

●

●

●●
●

●●

●
●

●●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●
●●●●

●
●●

●
● ● ●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●●●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●
●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●●●
●●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●●●
●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●●
●

●
●
●●

●
●
●

●

●
●

●

●

●● ●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●●●●
●

●

●

●

●●

●
●

●●●

●

●

●

●●
●

●

● ●
●

●●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●●

●
● ●

●

●
●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●

●
●

●
●

● ●●
●

● ●

●
●

● ●

●

●

●●
●

●●●●

●

●
●●●

●

●

●

●●
●

●●

●

●

●

●

●● ●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

−40 −20 0 20 40

−
10

−
5

0
5

10

Variation unique to Age

V
ar

ia
tio

n
in

 H
ei

gh
t a

fte
r

al
l b

ut
 A

ge

Figure 8.19: Added-variable plot for Age against the ratio of Height over Diameter.

+ panel.abline(lm(y ~ x), lty = 3)

+ }))

Neither of figures 8.19 or 8.20 suggest that significant or important improvements would accrue from
adding these terms to the model.

The incumbent model represents the best compromise so far. It seems to have addressed most of our
major concerns in terms of model assumptions. It may be possible to find a better model with further
searching. However, there comes a point of diminishing returns. Note finally that although the presentation
of this sequence of steps seems fairly linear, in fact there were numerous blind-alleys followed, much looping,
and retracing of steps. This is not a quick process! Introducing random effects to a fixed effects model
increases the number of diagnostics to check and possibilities to follow.

8.5 The Model

Let’s examine our final model.

yijk = β0 + b0i + b0ij (8.10)
+ (β1 + b1i + b1ij)× xijk (8.11)
+ (β2 + b2i + b2ij)× x2

ijk (8.12)
+εijk (8.13)

In matrix form, it is still:

Y = Xβ + Zb + ε

b ∼ N (0,D)
ε ∼ N (0,R)

Here’s the structure.

61

icebreakeR

Predicted height (m)

O
bs

er
ve

d
he

ig
ht

 (
m

)

0 10 20 30 40 50

0

10

20

30

40

50

60

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

Ts/Pac

●
●

●
●

●
●

●
●

●

●

●
●

●

Ts/Op

0 10 20 30 40 50

●

●
●

●
●

●
●

●
●

●

●

●

●
●●

●●
●●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

Th/Pach

●
●

●●
●●●●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●
●

●●
●

●

●

●

AG/Pach

0 10 20 30 40 50

0

10

20

30

40

50

60

●
●

●
●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●●

●

●

●

●

PA/Pach

Figure 8.20: Plot of predicted height against observed height, by habitat type. The solid line is 1:1, as
predicted by the model. The dotted line is the OLS line of best fit within habitat type.

� Y is the vector of height measurements. It has 542 observations.

� X is a 3× 542 matrix of 1s, diameters and squared diameters.

� β is a vector of length three: it has an intercept, a slope for the linear diameter term, and a slope for
the quadratic diameter term.

� Z is a 225× 542 unit brute. See below.

� b is a vector of intercepts, and slopes for diameter and diameter squared for each forest, then for
each tree. It will be 27 + 198 = 225 elements long. See below. The predictions can be obtained by
ranef(hd.lme.5).

� D will be a block diagonal matrix comprising 9 3× 3 identical matrices, followed by 66 3× 3 identical
matrices. Each matrix will express the covariance between the 3 random effects within forest or within
tree. See below.

� R will now be a 542 × 542 symmetric matrix for which the off diagonals are 0 between trees, and a
geometric function of the inter-measurement time within trees.

62

icebreakeR

8.5.1 Z

The only role of Z is to allocate the random effects to the appropriate element. This can be somewhat
complicated. Our Z can be divided into two independent sections; a 27× 542 matrix Zf associated with the
forest level effects, and a 198× 542 matrix Zt associated with the tree-level effects. In matrix nomenclature:

Z = [Zf | Zt] (8.14)

Now, Zf allocates the random intercept and two slopes to each observation from each forest. There are
9 forests, so any given row of Zf will contain 24 zeros, a 1, and the corresponding dbhib and dbhib2. For
example, for the row corresponding to measurement 4 on tree 2 in forest 5, we’ll have

Zf = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, d524, d
2
524, 0, 0, 0, . . .) (8.15)

Similarly, Zt allocates the random intercept and two slopes to each observation from each tree. There
are 66 trees, so any given row of Zt will contain 195 zeros, a 1, and the corresponding dbhib and dbhib2. It
will have the same fundamental pattern as above.

8.5.2 b

The purpose of b is to contain all the predicted random effects. Thus it will be 225 units long, which
corresponds to 3 for each level of forest (intercept, slope for diameter, and slope for diameter squared) and
3 for each level of tree (intercept, slope for diameter, and slope for diameter squared).

b = (bf10, bf1d, bf1d2, bf20, bf2d, bf2d2, . . . , bt10, bt1d, bt1d2, bt20, bt2d, bt2d2, . . .)′ (8.16)

The combination of b and Z serves to allocate each random effect to the appropriate unit and measure-
ment.

8.5.3 D

Finally, D dictates the relationships between the different random effects within the levels of forest and tree.
We’ve assumed that the random effects will be independent between habitat types and trees. So, there are
only two sub-matrices to this matrix, called Df and Dt.

Df =

 σ2
bf0 σbf0d σbf0d2

σbf0d σ2
bfd σbfdd2

σbf0d2 σbfdd2 σ2
bfd2

 (8.17)

Dt =

 σ2
bt0 σbt0a σbt0d2

σbt0d σ2
btd σbtdd2

σbt0d2 σbtdd2 σ2
btd2

 (8.18)

Then the structure of D is simply 9 repetitions of Df , laid on a diagonal line, followed by 66 repetitions
of Dt laid on the same diagonal, and zeros everywhere else.

63

Chapter 9

Extensibility - R Packages

One notable thing about R is how quickly it loads. This is because much of its functionality is kept in the
background, ignored, until it is explicitly asked for. There are three layers of functions in R:

1. those that are loaded by default at startup (base),

2. those that are loaded on to your hard drive upon installation but not explicitly loaded into RAM when
R is run, and

3. those that are available on the Internet, which have to be installed before they can be loaded.

A function in the base package, such as mean(), is always available. A function in one of the loaded
packages, such as the linear mixed-effects model fitting tool lme(), can only be used by first loading the
package. We load the package using the require() command. help.search() will tell you which package
to load to use a command, or to get more help on it.

> require(nlme)

[1] TRUE

If we need to find out what kinds of packages are installed, R will tell us, but, characteristically, in the
most general fashion. We need to work with the output to get the information that we want.

> installed.packages() # Blurts output all over the screen

> ip <- installed.packages()

> class(ip)

[1] "matrix"

> ip <- as.data.frame(ip)

> names(ip)

[1] "Package" "LibPath" "Version" "Priority" "Bundle" "Contains"
[7] "Depends" "Suggests" "Imports" "Built"

> length(ip$Package)

[1] 26

> ip$Package

64

icebreakeR

[1] KernSmooth MASS base boot class cluster
[7] datasets foreign grDevices graphics grid lattice
[13] methods mgcv nlme nnet rpart spatial
[19] splines stats stats4 survival tcltk tools
[25] utils xtable
26 Levels: KernSmooth MASS base boot class cluster datasets ... xtable

Your package names will differ from mine. To find out what kinds of packages are available, use

> available.packages() # Blurts output all over the screen

A function in an as-yet unloaded package is inaccessible until the package is downloaded and installed.
This is very easy to do if one is connected to the Internet, and has administrator (root) privileges. Let’s
say, for example, that through searching on the R website we determine that we need the wonderful package
called “equivalence”. Then we simply install it using the Packages menu or by typing:

> install.packages("equivalence")

After it has been installed then we can load it during any particular session using the require() command,
as above.

If we do not have sufficient privileges to install packages then we are required to provide more information
to R. Specifically, we need to download and install the package to a location in which we do have write
privileges, and then use the library command to attach it to our session.

Let’s install equivalence, using a folder called ”library”. Note that the download.packages() command
below will grab the appropriate version for your operating system and report the version number, which we
save in the object called get.equivalence. We can use its output in the subsequent steps.

Ah, equivalence needs boot. Ok,
The equivalence package is now available for your use. Please note again the use of forward slashes as

directory delimiters is platform independent.

65

Chapter 10

Programming

One of R’s greatest strengths is its extensibility. In fact, many of the tools that we’ve been enjoying were
created by other people. R can be extended by writing functions using the R language (Section 10.1) or
other languages such as C and Fortran (Section 10.5). Being comfortable writing functions is very useful, as
it adds an entirely new dimension to efficient and enjoyable programming.

10.1 Functions

The topic of writing functions in R deserves its own workshop, so we’ll merely skim the surface. We declare
a function in the following way.

> my.function <- function(arguments) {

+ }

We then put R commands between the braces {}. Unless we use an explicit return() command, R will
return the outcome of the last statement in the braces. If the function is only one line long, then the braces
may be omitted. Here’s a function that might be useful for NASA:

> cm.to.inches <- function(data) {

+ data/2.54

+ }

We can now call that function just like any other.

> cm.to.inches(25)

[1] 9.84252

> cm.to.inches(c(25, 35, 45))

[1] 9.84252 13.77953 17.71654

It’s even vectorized! Of course this is trivial. But as far as R is concerned now, this function is just like
any other.

10.2 Scoping

When writing functions in some languages, we have to pass or declare all the variables that will be used in
the function. This is called a scoping rule, and it means that the language always knows where to look to
find its variables. R has a more relaxed approach: it will first look in the local function, and if it doesn’t find
what it’s looking for, it will go up a level - in to the calling environment - and look there instead, and so on.

66

icebreakeR

This has two important consequences. Firstly, we don’t have to pass all the variables that we might want to
use. This makes code neater and easier to read in many cases. However, secondly, you may find upstream
variables affecting downstream results if you have a mistake in your code, and you’ll never know about it.
So, whenever I develop code I make a habit of saving the script, deleting all the objects, and running it all
again, perhaps several times. Scoping is important - it can save you a lot of hassle, but it can cost a lot of
time if you’re not careful.

> x <- pi

> radius.2.area <- function(radius) {

+ x * radius^2

+ }

> radius.2.area(4)

[1] 50.26548

10.3 S3 Objects

It is not mandatory to apply the principles of object-oriented programming when writing R code, but doing
so can have advantages. Here I briefly demonstrate the use of S3-style classes. Note that there is no such
class as eh. Let us invent one. Let’s say that the eh class is just like integer, except that when we print
out an object of class eh we only want the last one.

> x <- c(1:10)

> class(x)

[1] "integer"

> class(x) <- "eh"

> class(x)

[1] "eh"

Now we write a print function that will be used for all objects of class eh. Printing can then be invoked
in one of two ways.

> print.eh <- function(x) print(x[length(x)])

> print(x)

[1] 10

> x

[1] 10

Notice that x is still of length 10.

> length(x)

[1] 10

Also notice that functions of x retain the class

> x * x

[1] 100

> class(x * x)

67

icebreakeR

[1] "eh"

> length(x * x)

[1] 10

How do we escape now?

> class(x) <- "integer"

> x

[1] 1 2 3 4 5 6 7 8 9 10

In brief, then, to write a function, say fu, that will be automatically invoked to replace an existing fu
when applied to an object of class bar, we need merely call the function fu.bar.

10.4 Control

R provides access to a number of control structures for programming - if(), for(), and while(), for
example. Take some time to look these up in the help system.

10.5 Other languages

Just an anecdote here, with some instructions on how to compile and run your own programs in a Unix
environment. I was working with my first doctoral student on developing tests of equivalence for model
validation. We were using Forest Inventory and Analysis (FIA) data to validate the diameter engine of the
Forest Vegetation Simulator (FVS) by species. That amounts to 41000 tree records for 10 species. The
best-represented is Douglas-fir, with 12601 observations, the least is white pine, with 289, and the average
is 3725.

> n <- tapply(species, species, length)
> n
ABGR ABLA LAOC OTHE PICO PIEN PIMO PIPO PSME THPL TSHE
3393 4532 3794 1629 6013 3251 289 2531 12601 2037 909

This will all matter shortly.
We were applying the sign rank test. We’d love to have used the paired t-test: it’s simple and straight-

forward, and doesn’t require any devious looping. But unfortunately, the prediction errors were far from
Gaussian; they were quite badly skewed. So we decided to use this non-parametric test. The problem, or
should I say challenge, or even opportunity, was that calculating the metric requires a double loop across
the data sets.

Û+ =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

I+(Di + Dj) (10.1)

where I+(x) is an indicator function that takes value 1 if x > 0 and 0 otherwise. That’s

> sum(choose(n,2))
[1] 133017037

more than 100 million operations. But that’s not all! For the variance of the metric we had to implement a
triple loop across the datasets. And at each of those combinations we have to do about seven things.

σ̂2
Û+

=
(

n

2

)−1

{2(n− 2)[q̂+
1(2,3) − Û2

+) + Û+ − Û2
+} (10.2)

68

icebreakeR

where

q̂+
1(2,3) =

(
n

3

)−1 n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

1
3

[IijIik + IijIjk + IikIjk] (10.3)

for which, say, Iij = I+(Di + Dj). That’s now

> sum(choose(n,3))*7
[1] 2.879732e+12

about 2.9 trillion operations! Well, I expect that this will take some time. So I wrote up some R-code,

n <- length(diffs)
cat("This is the sign rank test for equivalence.\n")
zeta <- 0
for (i in 1:(n-1)) {

for (j in (i+1):n) {
zeta <- zeta + ((diffs[i] + diffs[j]) > 0)

}
}

Uplus <- zeta / choose(n, 2)
cat("UPlus ", Uplus, ". \n")
zeta <- 0
for (i in 1:(n-2)) {
for (j in (i+1):(n-1)) {
for (k in (j+1):n) {
IJpos <- ((diffs[i] + diffs[j]) > 0)
IKpos <- ((diffs[i] + diffs[k]) > 0)
JKpos <- ((diffs[j] + diffs[k]) > 0)
zeta <- zeta + IJpos*IKpos + IJpos*JKpos + IKpos*JKpos

}
}
cat("Triple loop. We have ", n-2-i, "iterations left from ", n,". \n")

}
q123 <- zeta / 3 / choose(n, 3)

fired up my remote server and waited. All night. By which point it hadn’t even got through maybe 10% of
the first species (a smallish one!). I didn’t want to wait that long. It seemed like this was absolutely the
case that the dynamical loading of compiled code was designed for.

10.5.1 Write

The code has to be modular, and written so that all communication is through the passed arguments. So,
in C it must always be type void, and in Fortran it must be a subroutine. Here’s the example:

void signRankSum(double *a, int *na, double *zeta)
{
int i, j, k, m;
int IJpos, IKpos, JKpos;
zeta[0] = ((a[i] + a[j]) > 0);
zeta[1] = 0;
for (i = 0; i < *na-2; i++) {
for (j = i+1; j < *na-1; j++) {
zeta[0] += ((a[i] + a[j]) > 0);
for (k = j+1; k < *na; k++) {

69

icebreakeR

IJpos = ((a[i] + a[j]) > 0);
IKpos = ((a[i] + a[k]) > 0);
JKpos = ((a[j] + a[k]) > 0);
zeta[1] += (IJpos*IKpos + IJpos*JKpos + IKpos*JKpos);

}
}

}
for (m = 0; m < *na-1; m++)
zeta[0] += ((a[m] + a[*na-1]) > 0);

}

Basically all I did was take the triple loop and convert it to C code. Note that I passed the length of the
object as well, rather than trusting C (well, trusting me) to figure it out. Do in R what you can do well in
R.

� Also notice that C indexes differently than R: the first element of an array is element 0, not element
1! That can bite your bum.

� Also note the use of pointers. These are documented elsewhere. For simple problems, they’re easy to
figure out. Finally, I wrote the code in XEmacs - it colors C syntactically.

� I also figured out how to nest the double loop inside the triple loop, which accounts for some performance
enhancement.

� Finally, notice that the arguments are the inputs and the outputs, and this subroutine doesn’t care
how long they are.

10.5.2 Compile

Compilation for Linux or BSD is easy. Simply be on a Linux or BSD box, create the above file (called e.g.
signRankSum.c) and in the same directory as the file, type:

$ R CMD SHLIB signRankSum.c

It will compile and link the code. If it can’t, it will present reasonably helpful error messages.
On Windows, the tools that we need to develop software are a little more scattered. Refer to the available

resources for advice on this point. Briefly, one needs to:

� Install Unix-like command-line tools for compilation and linking, e.g. MinGW and some others.

� Edit your PATH variable so that these are visible to the OS.

� Write appropriate code in appropriately named directories.

� In the DOS shell, execute: R CMD build -binary <libraryname>

10.5.3 Attach

In the body of the function that I’m writing to apply the test, I added the following call:

dyn.load("~/Rosetta/Programming/r/signRankSum/signRankSum.so")
signRankSum <- function(a)
.C("signRankSum",

as.double(a),
as.integer(length(a)),
zeta = double(2))$zeta

70

icebreakeR

This tells R where to find the library. Note that I included the full path to the *.so object, and in the dec-
laration of the function I named the C subroutine and the arguments. I tell it that when I signRankSum(a),
it should know that a points to a double-precision array, that it will need the length of a, which is an integer,
and zeta, which is a size two, double-precision array for the output. Then the $zeta at the end tells it to
return that array.

10.5.4 Call

Later in the function it’s time to call the routine. That’s easy:

zeta <- signRankSum(diffs)
Uplus <- zeta[1] / choose(n, 2)
cat("UPlus ", Uplus, ". \n")
q123 <- zeta[2] / 3 / choose(n, 3)

Note that we’re back in R, now, so the first element is referred to as 1.

10.5.5 Benefit

> test <- rnorm(1000)
> system.time(sgnrk(test, limit=1000))
This is the sign rank test for equivalence.
Starting. Actual: 1000 . Used: 1000 .
UPlus 0.484042 .
VarUplus is calculated: 0.0003321017
Levels are calculated: 0.2397501 and 0.76025 , ncp is 203.9437
Cutoff: 12.63603
Value computed: -0.8756727 .
Finished. Outcome: dissimilarity is rejected.
[1] 3.882812 0.000000 3.906250 0.000000 0.000000
> system.time(sgnrk.old(test, limit=1000))
This is the sign rank test for equivalence.
Starting. Actual: 1000 . Used: 1000 .
UPlus 0.484042 .
VarUplus is calculated: 0.0003321017
Levels are calculated: 0.2397501 and 0.76025 , ncp is 203.9437
Cutoff: 12.63603
Value computed: -0.8756727 .
Finished. Outcome: dissimilarity is rejected.
[1] 5092.87500 14.27344 5120.23438 0.00000 0.00000
>

Yes, that’s four seconds compared to nearly an hour and a half. And the time to complete the test for all
species and all data was:

[1] 9605.687500 5.367188 9621.734375 0.000000 0.000000

less than 3 hours.

71

Bibliography

Laird, N. M., Ware, J. H., 1982. Random-effects models for longitudinal data. Biometrics 38, 963–974.

Pinheiro, J. C., Bates, D. M., 2000. Mixed-effects models in S and Splus. Springer-Verlag.

Robinson, G. K., 1991. That BLUP is a good thing: The estimation of random effects. Statistical Science
6 (1), 15–32.

Schabenberger, O., 2005. Mixed model influence diagnostics. In: SUGI 29. SAS Institute, pp. Paper 189–29.

Schabenberger, O., Pierce, F. J., 2002. Contemporary statistical models for the plant and soil sciences. CRC
Press.

Stage, A. R., 1963. A mathematical approach to polymorphic site index curves for Grand fir. Forest Science
9 (2), 167–180.

Venables, W. N., Ripley, B. D., 2000. S programming. Springer-Verlag.

Venables, W. N., Ripley, B. D., 2002. Modern applied statistics with S and Splus, 4th Ed. Springer-Verlag.

72

	List of Figures
	Introduction
	R
	Why R?
	Why not R?
	The Open Source Ideal

	Infrastructure
	Using this Document
	Getting Help
	Working Directory
	Work Spaces
	History
	Writing scripts

	Interface
	Importing and Exporting Data
	Import
	Export

	Manipulating your Data
	Classes of Data
	Numeric
	String
	Factor
	Logical
	Missing Data

	Structures for Data
	Vector
	Dataframe

	Data References

	Graphics
	Organization Parameters
	Permanence

	Linear Regression
	Preparation
	Fitting
	Diagnostics
	Other Tools
	Examining the Model
	Other Angles
	Other Models
	Other Ways of Fitting

	More Graphics
	Trellis

	Hierarchical Models
	Introduction
	Methodological
	General

	Some Theory
	Effects
	Model Construction
	The Deep End
	Maximum Likelihood
	Restricted Maximum Likelihood

	A Simple Example
	Case Study
	Height/Diameter Data
	Extensions to the model

	The Model
	Z
	b
	D

	Extensibility - R Packages
	Programming
	Functions
	Scoping
	S3 Objects
	Control
	Other languages
	Write
	Compile
	Attach
	Call
	Benefit

	Bibliography

