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Abstract: Stand structural diversity is useful in forecasting growth and can be indicative of overall biodiversity. Many
variables that indicate structural diversity can be measured. However, species, diameter, and height are commonly mea-
sured and indicate changes in vertical and horizontal stand structure. Indices based on the distribution of basal area per
hectare by diameter, height, and species were derived and evaluated by applying them to simulated and actual data sets
with a wide variety of stand structures. Extending the Shannon index of diversity to proportions by species, diameter,
and height resulted in reasonable results with more diverse structures having higher values. However, diameter and
height ranges must be divided into classes to use these indices. A new index based on the variances of the target stand,
relative to the variance of a uniformly distribution stand, showed similar diversity measures to that of the Shannon in-
dex, without the need for dividing the diameter and height data into classes. Examination of these indices for use in
growth and yield modelling of complex stands is needed.

Résumé: La diversité structurale du peuplement est utile pour prédire la croissance et peut donner une idée de la bio-
diversité globale. Plusieurs variables qui reflètent la diversité structurale peuvent être mesurées. Toutefois, l’espèce, le
diamètre et la hauteur sont généralement utilisées ; ces variables traduisent des changements dans la structure verticale
et horizontale du peuplement. Des indices basés sur la distribution de la surface terrière à l’hectare en fonction du dia-
mètre, de la hauteur et de l’espèce ont été dérivés et évalués en les appliquant à des ensembles de données, simulées et
réelles, correspondant à une grande variété de structures de peuplement. Des extensions de l’indice de diversité de
Shannon aux proportions par espèce, diamètre et hauteur ont fourni des résultats acceptables, les valeurs les plus éle-
vées correspondant aux structures les plus diversifiées. Toutefois, les données de diamètre et de hauteur doivent être di-
visées en classes pour pouvoir utiliser ces indices. Un nouvel indice basé sur les variances du peuplement cible,
exprimées relativement à la variance d’un peuplement de distribution uniforme, fournit des mesures de diversité similai-
res à celles de l’indice de Shannon, sans la nécessité de diviser les données de diamètre et de hauteur en classes. Il est
nécessaire d’examiner l’utilisation de ces indices dans la modélisation de la croissance et du rendement de peuplements
complexes.

[Traduit par la Rédaction] Staudhammer and LeMay 1115

Introduction

Measures of stand structural diversity are important for
predicting future stand growth. Oliver and Larson (1996) in-
dicated that a variety of patterns of growth are related to
structural complexity. High diversity is associated with
stands where there are multiple tree species and sizes
(Buongiorno et al. 1994). Stand structure is also an impor-
tant element of stand biodiversity (MacArthur and MacAr-
thur 1961; Willson 1974; Franzreb 1978; Temple et al. 1979;
Aber 1979; Ambuel and Temple 1983; Freemark and
Merriam 1986). For forested ecosystems, structural diversity
can indicate overall species diversity (Kimmins 1997), as
shown in research on avian and insect diversity (Whittaker
1972; Franzreb 1978; Aber 1979; Temple et al. 1979;

Recher et al. 1996; Moen and Gutierrez 1997). Managing
forests for biodiversity may be accomplished by managing
for structural diversity (Önal 1997).

Diversity indices have gained wide acceptance in forestry
as quantitative measures of species diversity (Swindel et al.
1984; McMinn 1992; Silbaugh and Betters 1995; for a thor-
ough review of diversity indices, see Magurran 1988). Per-
haps the most commonly used index is Shannon’s index
(Shannon and Weaver 1949; also called the Shannon–Weiner,
or the Shannon–Weaver index), which is based on the proba-
bility that an individual picked at random from an infinitely
large community will be a certain species. The more uncer-
tainty one has about the species of an individual, the higher
the diversity of the community. Shannon’s index,H′, is de-
fined as follows:
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=
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wherepi is the proportion of individuals in theith species,
andS is the number of species. The proportion of a species
has been based on a variety of variables including: number
of individuals (Franzreb 1978; Swindel et al. 1991; Niese
and Strong 1992; Condit et al. 1996), basal area (McMinn
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1992; Harrington and Edwards 1995; LeMay et al. 19972),
stems per hectare (McMinn 1992; Harrington and Edwards
1996), foliar cover (Swindel et al. 1984; Lewis et al. 1988;
Qinghong 1994; Corona and Pignatti 1996), crown cover
(Corona and Pignatti 1996), and biomass (Swindel et al.
1984, 1991). The maximum value for Shannon’s index oc-
curs when the proportions are equal over all species, result-
ing in a value of lnS.

Because of tree size variation, Lähde et al. (1999) stated
that traditional diversity indices are not entirely suited to the
measurement of structural diversity. They noted that a di-
verse stand means richness of the tree species and wide vari-
ability in tree size, age, and genotype. MacArthur and
MacArthur (1961) constructed foliage height profiles by
measuring the amount of vegetation at different heights
above ground. A foliage height diversity index, FHD, was
calculated using Shannon’s index (eq. 1), wherepi was re-
placed by the proportion of total foliage in theith layer, and
S was replaced by the number of layers. Subsequent re-
searchers into avian community structure have used MacAr-
thur and MacArthur’s (1961) approach to evaluate vertical
diversity, with slight modifications to the calculation ofpi
(e.g., Willson 1974; Aber 1979; Ambuel and Temple 1983;
Erdelen 1984; Ferris-Kaan et al. 1998). For other studies,pi
was replaced by the proportion of individuals in theith di-
ameter class, andS was replaced by the number of diameter
classes (e.g., Buongiorno et al. 1994, 1995). Spatial hetero-
geneity was also introduced into a derivation of Shannon’s
index by Freemark and Merriam (1986). Their habitat heter-
ogeneity index (HH), patterned after research by Orloci
(1970), was defined as
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
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wherec is the number of plots,r is the number of classes,
andXij is the proportion of individuals in theith class of the
jth plot. Equation 2 differs from the Shannon index in that
the denominator is the average rather than the total for the
class. HH was computed separately for eight components:
tree density, tree diameter class, canopy closure, foliar cover
in vertical bands, average canopy height, herb height, per-
cent litter, and percent bare ground. Similarly, Lähde et al.
(1999) derived an index using seven variables: stems, basal
area of growing stock, volume of standing dead trees, vol-
ume of fallen dead trees, undergrowth density, occurrence of
“special trees,” and volume of charred wood. For each spe-
cies, all variables were grouped into classes (e.g., trees were
classed into three diameter groups and two basal area
groups). Stands were given diversity scores by species,
which were then combined into a single index for the stand.
Patil and Taillie (1982) argued that diversity be defined as
average species rarity within a community, and developed a
profile of rarity for comparing communities. To indicate
stand diversity, the rarity profile concept developed by Patil
and Tallie was applied to diameter rarity by Gove and others
(e.g., Gove et al. 1992, 1995; Solomon and Gove 1999).

For all of these applications of indices, continuous vari-
ables were grouped into classes to calculate proportions. In-
formation about the distributions was lost, and class limits
were somewhat arbitrary. Lähde et al. (1999) used three di-
ameter groups (2–10, 11–25, and >25 cm). MacArthur and
MacArthur (1961) altered the separation into horizontal lay-
ers until three layers were selected. Wikström and Eriksson
(2000) used 5-cm diameter classes. Gove et al. (1995) used
5-cm (2 in.) classes, whereas Solomon and Gove (1999)
used 2.5-cm (1 in.) classes for diameter rarity profiles. Also,
some of the variables used, such as the volume of coarse
woody debris or the crown ratio, are difficult to measure and
may not always available from forest surveys.

The objective of this study was to develop and evaluate
possible indices of stand structural diversity that might be
used to classify stands into structural classes, examine struc-
tural changes over time, and improve growth predictions.
Maximal values for the stand structural diversity indices
were based on (i) an even distribution of basal area per hect-
are (uniform distribution) over a wide size range and (ii ) a
large number of species, to indicate a wide variety of species
and sizes, defined as stand diversity by Lähde et al. (1999).
An even distribution was considered a desirable characteris-
tic for species diversity by Pielou (1975) and was applied
here for size diversity. Basal area per hectare was used in-
stead of stems per hectare to better represent resource use,
with larger trees having more influence (as suggested by
LeMay et al. (1997)2 and Solomon and Gove (1999)). Mini-
mum diversity was similarly defined as one species and size,
distributed as a spike at a single point. Diameter outside
bark at breast height (DBH; 1.3 m above ground) and total
tree height were used to indicate variety in tree size. Other
variables could be used; however, Lähde et al. (1999) argued
that tree size distribution can be used to indicate stand struc-
ture, as it is unambiguous and readily measured. Several in-
dices to indicate differences in species, height, and diameter
distributions were derived and evaluated using simulated
stand data and also applied to actual stand data from the
University of British Columbia’s Malcolm Knapp Research
Forest (MKRF) located on coast of southern British Colum-
bia (BC). Of the indices derived, the two most promising in-
dices are presented in this paper.

Description of structural indices

Desirable characteristics
Desirable characteristics that were considered in develop-

ing structural indices were that the index should have the
following characteristics.
(1) They should equally emphasize horizontal and vertical

diversity, since both measures contribute to diversity by
creating a variety of habitats. Unequal weighting may
be more appropriate for some applications of a stand
structural diversity index. For example, bird species may
respond more to horizontal rather than vertical variation.
However, equal weight of horizontal and vertical varia-
tion may be justified as both size measures contribute to
changes in productivity and varieties of habitat.
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(2) They should not rely on segregating the continuous DBH
and height measures into discrete classes. Although class
limits could be arbitrarily set for continuous variables,
an index that fully utilizes the size information is prefer-
able.

(3) They should be tree size insensitive. A population with
small-DBH trees evenly distributed over a 10-cm range
should have the same index value as one with large-
DBH trees over a 10-cm range. An index with this prop-
erty could be used to compare stands of different ages.

(4) Given an even distribution, they should be higher if the
range of DBH/height is larger, and (or) the number of
species is greater. This is similar to Pielou’s (1975) sec-
ond criterion for species diversity in that, given two
completely even communities, the one with more spe-
cies should be assigned greater diversity. For the contin-
uous variables DBH and height, this translates into
higher ranges.

(5) They should be the same for a bimodal population dis-
tributed evenly in two separate and distinct canopy lay-
ers, as for a unimodal even distribution with a range
equal to the sum of the two ranges for the biomodal dis-
tribution.

These characteristics were considered in deriving the indi-
ces presented.

Shannon’s index extended to diameter, height, and
species

Shannon’s index was applied for species and size diversity
by grouping the DBH and height values into classes, as used
by other authors. Two different indices were then derived:
(1) Post-hoc method: The proportion of basal area per hect-

are by DBH classes was used in eq. 1 (′Hd). The calcula-
tion was repeated for height and for species (′Hh and ′Hs,
respectively). The three indices were then averaged to
maintain a scale similar to the original index (′ + +Hd h s).

(2) Combination method: The proportion of basal area per
hectare in each DBH–height–species combination was
used to calculate a single index using eq. 1 (′Hdhs).

These two indices measure richness (the number of
classes) and evenness of stand structural diversity, giving
equal weight to horizontal, vertical, and species diversity.
The Shannon index also has been shown to attain the highest
values when distributions are perfectly even (i.e., uniform),
which can be extended to these indices. For the post-hoc
method, the maximum value possible is equal to average of
the logarithms of the numbers of species, DBH classes, and
height classes. For the combination method, the maximum
value is equal to the logarithm of the number of species–
DBH–height classes. Both indices are insensitive to tree size,
as indices are weighted only on the proportion of basal area
occurring in a particular class. However, size variables must
be placed into classes to calculate proportions, with some
loss of information. A change in class boundaries or an in-
crease in the number of classes would invariably change the
value of the indices. As noted by Pielou (1975, p. 8), the
combination method applied to hierarchial classes does re-
sult in the property that the diversity based on the three-way
classification can be subdivided meaningfully into the three
separate classes. Pielou uses the example of classifying by

genus and species, where the two-way classification can be
subdivided into diversity of genus, and diversity of species
within genus, that sum to the overall diversity of genus or
species. However, no logical hierarchy is represented by the
use of species, DBH, and height in the three-way classification.

Structure index based on variance (STVI)
Another index of structural diversity was derived by com-

paring the variance of the basal area distribution for the tar-
get stand to the variance of the theoretically maximally
diverse stand. The empirical variance for DBH or height was
calculated by

[3] S
w x x

w
i
n

i i

i
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i

2 1
2

1
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× −=
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∑
∑
[ ( ) ]

wherexi is DBHi or heighti, x is the mean of DBH or height,
wi is the basal area per hectare represented by theith tree in
the sample plot, andn is the number of trees in a sample
plot. The variance of a univariate uniform distribution is
given by

[4] S
b a

U
2 = −( )2
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The maximum possible variance of a distribution occurs
when the distribution is maximally bimodal, when half the
basal area is ata and half the basal area is atb. For this
basal area distribution, the variance is

[5] Smax
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The variances for the target stand, the maximally diverse
population (uniform distribution) and the bimodal distribu-
tion (maximum variance) were used to develop an index. For
convenience, the index should have a value of 1.0 for the
most diverse stand, when the variance for the empirical dis-
tribution is equal to that of the uniform distribution. Also,
the index should be near zero when the empirical distribu-
tion has zero variance (all values are one DBH or height), or
when the variance is very close to the maximally bimodal
distribution. For variances between the two ranges, from
zero variance to the variance of a uniform distribution, and
from the variance of a uniform distribution to that of a bimodal
distribution, the value of the index should vary between 0 and
1. The equation developed to calculate the diversity index, as
shown for DBH (STVIDBH for a speciesk), was

[6] STVIDBHk
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whereS
kDBH

2 is the variance of DBH for speciesk in the tar-
get stand,SDBH U

2 is the variance when DBH values occur
uniformly over the range froma to b, SDBH max

2 is the variance
when half the DBH values occur at each of the extreme ends
of the range,p1 andp2 are constants >0, andm is a constant
≥1.0. The constantsp1 and p2 define the shape of the curve
relating the value of the index to the sample variance: when
p1 (or p2) < 1, the curve is concave upward; whenp1 (or
p2) = 1, the curve is segmented linear; whenp1 (or p2) > 1,
the curve is concave downward (Fig. 1). Ifp1 = p2 > 1, then
a smooth, continuous function results. The coefficientm
controls the value of the index when the distribution is maxi-
mally bimodal. If m = 1, then the index will be zero for a
maximally bimodal distribution; asm gets larger, the index
value increases for the maximally bimodal case (Fig. 2).

The values forp1, p2, andm were chosen by placing three
constraints on the index to yield certain index values under
defined conditions. The index was constrained to equal 0.5
when (i) the variance of the target stand is equal to that of a
uniform distribution over half the maximum possible range
( .S0 5

2
U) and (ii ) the variance of the target stand is equal to

that of a bimodal distribution, with half of the values uni-
formly distributed over the lower quartile, and the other half
uniformly distributed over the upper quartile of the maxi-
mum possible range (SB

2). The index was also constrained to
equal 0.1 for the maximum variance (maximally bimodal
stand). Again illustrating this using DBH, the three con-
straints were
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Based on these constraints,p1 ≅ 2.4094,p2 ≅ 0.5993, and
m ≅ 1.1281 (see the Appendix for the derivation). To arrive
at a measure of structural diversity for speciesk, STVIDBHk

and STVIheightk were averaged, with a maximum value of
one (uniform for both DBH and height). These were
summed over all species in the plot (STVId+h), for a maxi-
mum value equal to the number of species.

For a bivariate version of this index, the variance was de-
scribed by the generalized variance (Johnson and Wichern
1998), and calculated as

[10] SDBH, height
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where SDBH
2 and Sheight

2 are given in eq. 3, det indicates that
the determinant is obtained, and
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whereDBH andheightare averages for DBH and height, re-
spectively. For a bivariate uniform distribution of DBH and
height, all values of DBH and height are possible over the
two ranges, resulting in a zero covariance. Given the values
for maximum and minimum DBH (a1 andb1) and height (a2
and b2), eq. 10 simplifies to
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Similar to the univariate case, the maximum possible vari-
ance occurs when one-quarter of the basal area is at each of
four extreme points on the DBH–height plane: (a1, a2), (a1,
b2), (b1, a2), and (b1, b2). In this situation, the variance of
height and of DBH is calculated using eq. 5. As was the case
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Fig. 1. Comparison of STVI values withm = 1 and varying val-
ues ofp1 and p2. The vertical reference line indicates the vari-
ance for a uniform distribution.

Variance
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m = 1 m = 1.1 m = 1.2

Fig. 2. Comparison of STVI values withp1 = p2 = 2 and varying
values ofm. The vertical reference line indicates the variance for
a uniform distribution.
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with the bivariate uniform, the cov(DBH, height)max is zero,
and the variance is calculated as

[13] Smax
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The bivariate STVI is then
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whereSk
2 is the generalized variance for speciesk, p1 andp2

are constants >0, andm is a constant≥1.0. As in the
univariate case, the powers,p1 and p2, define the shape of
the curve, and the coefficientm controls the value of the in-
dex when the distribution has the maximum variance. Im-
posing the same constraints on the index as in the univariate
case, the same values ofp1, p2, and m result. An overall
measure of diversity for a sample plot was labelled as
STVIdh, the sum of the values of allSTVIdhk

over a plot,
with a maximum value equal to the number of species.

Both forms of the STVI indicate the range and evenness
of basal area per hectare over tree size. The indices do not
rely on combining data into classes, and account for vertical
and horizontal diversity equally. Since the indices are based
on the variances of the DBH and height distributions, they
are insensitive to tree size. Furthermore, providing thatp1,
p2, andm are well chosen, the index value for a bimodal dis-
tribution with two distinct ranges should be the same as that
of a unimodal distribution with a range equal to the sum of
the two ranges. However, species evenness was not ac-
counted for in this proposed index, since all species are
given equal weight in calculating the plot value. Modifying
the indices by weighting by species proportions could be
considered; the maximum value would then be changed
from the number of species to one. With the proposed index,
the stand with more species would have the higher index
value, given even size distributions within each species.

Evaluation of indices

Proposed indices were first evaluated using simulated
stands, based on different DBH/height distributions, but only
one species. Data from the MKRF were used to set DBH
and height ranges for the simulated data, and were also used
to subsequently introduce species into the evaluation.

Description of MKRF data
The MKRF is located in the Coastal Western Hemlock

biogeoclimatic (BEC) zone of southwestern BC. The region
encompasses low to middle elevations west of the Coastal
Mountains and is the wettest BEC zone in BC, receiving
1000–4000 mm of precipitation annually (Meidinger and

Pojar 1991). The climate is cool mesothermal, with a mean
annual temperature of 8°C and mild winters. The most com-
mon species in the forest cover are Douglas-fir
(Pseudotsuga menzeisii(Mirb.) Franco), western hemlock
(Tsuga heterophylla(Raf.) Sarg.), western redcedar (Thuja
plicata Donn), amabilis fir (Abies amabilis(Dougl.) Forbes),
Sitka spruce (Picea sitchensis(Bong.) Carrière), and red alder
(Alnus rubra Bong). The main species reaches over 100 cm
DBH and over 50 m height.

In 1995, sample plot data were collected using the Minis-
try of Forests, Vegetation Inventory Sampling Procedures
(Resources Inventory Branch 1994). Eighty-two clusters of
five plots were systematically located over the research for-
est using square spacing. Because plots occurred throughout
the whole of the MKRF, the data represent a variety of
microsites and growing conditions.

For all trees above 2 cm DBH, the species, DBH (cm) and
tree class (live or dead, standing or fallen) were obtained.
For a subset of trees, the total height (m), crown class (dom-
inant, codominant, intermediate, or suppressed), and height
to live crown (m) were also measured. Height was measured
on only 763 trees (44%). Height prediction models were de-
veloped to estimate the remaining heights from measured
DBH and plot variables (Staudhammer and LeMay 2000).

Simulated tree data
Simulated stands were used to obtain well-defined cases

of different DBH–height distributions, which may be diffi-
cult to find in natural data sets. The cases were based on Oli-
ver and Larson (1996) who noted that (i) the distribution of
stems per hectare of single-cohort, single-species stands has
been shown to follow a normal distribution, whereas well-
differentiated stands can be bimodal or skewed; (ii ) a
skewed distribution may result when intermediate or sup-
pressed trees die readily, or in very old or very young stands;
and (iii ) in mixed species stands, where tolerant suppressed
trees form lower strata, a bimodal distribution may result.
Assuming a single species or a pooling of species, 10 stands
were simulated with varying structural diversity.

The maximally diverse structure was first chosen (case 1)
with a uniform distribution of basal area per hectare over
DBH with the range [r11, r12 ] and over height with the range
[r21, r22 ]. This represents a reverse-J distribution of stems
per hectare. Ranges were set from 0.1 to 120 cm for DBH,
and from 0.1 to 60.0 m for height, based on those found in
the MKRF data. Not all generated DBH/height ratios were
biologically possible. Since 90% of the MKRF data had
DBH/height ratios in the range of 0.8 to 2.4 cm/m, restric-
tions were applied using these values. The univariate distri-
butions of basal area per hectare by DBH and height were,
therefore, uniformly distributed, but the joint distribution of
DBH and height did not follow a bivariate uniform distribu-
tion (Fig. 3). Cases 2 through 6 were also generated as uni-
form distributions of basal area over DBH and over height,
but with different ranges. Cases 2 and 3 had two-thirds of
the range of case 1, with case 2 representing the upper ends
and case 3 representing the lower ends of the DBH and
height ranges. Cases 4, 5, and 6 had one-third of the ranges
of case 1, representing the upper, middle, and lower ends of
the ranges, respectively. Cases 7 and 8 were generated as-
suming a normal distribution, with a mean equal to case 1.
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The variance was set at 20% of the mean for case 7, the
more diverse case, and 10% of the mean for case 8. Cases 9
and 10 were bimodal distributions, with half the observations
at the upper end and the other half at the lower end of the
range. Case 10 was similar to case 9, but had a more limited
range of values at the two extremes.

For the uniform distributions and bimodal distributions
(cases 1–6 and cases 9 and 10), the SAS function RANUNI

(SAS Institute Inc. 1988) was used to generate random num-
bers, which were scaled to the desired DBH and height
ranges. For cases 7 and 8, the SAS function RANNOR was
used to generate normally distributed numbers.

To compute the extended Shannon index using the post-
hoc method, tree data were classed in 10-cm DBH classes,
from 0 to 10 cm through 110 to 120 cm, andHd

′ was com-
puted. Similarly, tree data were classed into 5-m height
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Fig. 3. Graphical description of simulated DBH and height values.
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classes, from 0–5 m through 55–60 m, andHh′ was then com-
puted. The final index was computed as the average of the
diameter and height indices and labelledHd +h′ . For the combi-
nation method, the data were classed simultaneously by DBH
and height, andHdh

′ was computed. The univariate and bi-
variate STVI were computed, using the maximum and mini-
mum DBH and height values used to generate the 10 cases.

The values for each of the indices were then examined to
determine if the indices reflected the diversity of sizes repre-
sented in the simulated data. Each case was simulated 100
times to indicate the variability among simulations, and to
avoid simulation anomalies.

Selected plots from the MKRF
Clusters were selected from the MKRF that closely

matched the DBH and height distributions in simulated cases
1–9 based on the basal area distributions for all species
pooled together (Table 1). A distribution similar to case 10
was not found in the MKRF data.

The extended Shannon’s indices and STVI indices were
calculated on the MKRF clusters. Also, the species were
separated in calculating the indices. For the post-hoc ex-
tended Shannon index, the data were classed into 10-cm
DBH classes up to 150 cm, with one class for those trees
with DBHs greater than 150 cm. The heights were broken
into 5-m classes, with one class for trees with heights greater
than 60 m. The index was computed as the average of the di-
ameter, height, and species indices and labelledHd +h +s

′ . For
the combination method, data were classed simultaneously

by species, diameter, and height, using the same classes as
with the post-hoc method, andHdhs

′ was calculated. For the
univariate and bivariate STVI, the maximum and minimum
DBH and height values were obtained from the MKRF data
set, such that the number of trees that fell outside of the
range was small (DBH from 2 to 150 cm and height from
1.3 to 60 m). The STVI were calculated over all species for
DBH and for height separately, and then averaged. The indi-
ces were evaluated based on the ability to reflect the diver-
sity of the DBH, height, and species diversity of the cluster.

Evaluation results and discussion

Although only the simulations means are given in Table 2,
the values for the extended Shannon’s indices were quite
similar over all 100 simulations, with slightly higher vari-
ability for the combination method and for the normally dis-
tributed cases (cases 7 and 8; all standard deviations less
than 0.07). The extended Shannon’s index, combination
method, tended to be larger than the post-hoc index. This
was expected, as classifying by DBH and height simulta-
neously resulted in more classes, and, therefore, larger val-
ues. The post-hoc index resulted in the highest value for case
1, in which the DBH and height distributions were both uni-
form over a wide range (Fig. 3). Because of the restrictions
placed on obtaining only reasonable values of height and
DBH combinations, the number of combined DBH–height
classes was largest for case 7, the normal distribution with a
wide range (Fig. 3). Therefore, the highest value for the
combination method was obtained for case 7, with case 1
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Case
No. Diversity; distribution

No. of
species

Mean Minimum Maximum SD

DBH
(cm)

Height
(m)

DBH
(cm)

Height
(m)

DBH
(cm)

Height
(m)

DBH
(cm)

Height
(m)

1 Very diverse; uniform 3 52.80 34.67 8.4 5.9 101.0 51.5 25.32 11.70
2 Moderate diversity; uniform; large 3 84.80 47.15 31.7 26.8 180.5 66.2 42.99 11.13
3 Moderate diversity; uniform; small 3 34.55 25.90 6.5 4.6 61.9 42.9 14.04 8.82
4 Low diversity; uniform; large 3 58.24 32.00 26.3 21.0 99.3 46.9 17.47 7.33
5 Low diversity; uniform; medium 3 56.17 28.58 4.6 4.2 93.5 40.8 19.66 6.97
6 Low diversity; uniform; small 6 12.47 10.07 2.5 3.2 24.7 15.9 6.31 3.79
7 Moderate diversity; normal 3 44.84 29.56 17.8 13.0 73.6 42.2 12.23 6.07
8 Low diversity; normal 3 33.74 23.46 21.3 16.5 44.9 30.2 7.27 4.47
9 Moderate diversity; bimodal 3 95.42 42.50 3.7 1.3 174.4 68.3 54.97 16.74

Table 1. Descriptive statistics of selected Malcolm Knapp Research Forest plots.

Case
No. Diversity; distribution

Extended Shannon’s STVI

Post-hoc
Hd h+′

Combination
Hdh′

Univariate
STVId+h

Bivariate
STVIdh

1 Very diverse; uniform 2.485 2.522 0.946 0.032
2 Moderate diversity; uniform; large 2.079 2.115 0.772 0.014
3 Moderate diversity; uniform; small 2.079 2.119 0.761 0.014
4 Low diversity; uniform; large 1.391 1.436 0.248 0.003
5 Low diversity; uniform; medium 1.392 1.438 0.252 0.004
6 Low diversity; uniform; small 1.392 1.441 0.251 0.004
7 Moderate diversity; normal 1.494 2.676 0.230 0.020
8 Low diversity; normal 0.950 1.812 0.065 0.002
9 Moderate diversity; bimodal 2.082 2.121 0.620 0.047

10 Low diversity; bimodal 0.693 0.693 0.086 0.000

Table 2. Average indices over 100 runs for each simulated stand (cases).
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having the next highest value. Both indices were insensitive
to tree size, in that similar values were given for cases 2 and
3; for cases 4, 5, and 6; and for case 2 versus case 9
(unimodal vs. bimodal), which differed only in the sizes rep-
resented. The limited biomodal (case 10) was given lower
values than the wider range biomodal (case 9) for both indi-
ces. The extended Shannon’s indices appeared to perform
well for a single species.

For the STVI indices, the average indices over the 100
simulations were quite different for the univariate (STVId+h)
versus the bivariate (STVIdh) indices (Table 2), with much
larger values for the univariate approach. For the bivariate
uniform distribution, all combinations of DBH and height
are equally possible resulting in high variances (Table 3),
which are not biologically possible. Simulated cases were
limited to feasible values of DBH and height (Fig. 3) result-
ing in much lower variances (Table 3). Results were similar
over all 100 simulations; standard deviations were less than
0.025 for the univariate approach and less than 0.009 for the
bivariate approach. The univariate STVI gave a value near
one for the most diverse stand, case 1, and values near zero
for the least diverse stands, cases 8 and 10. The bivariate
STVI gave the highest value for the bimodal distribution,
case 9, as was the case with the extended Shannon indices.
The normally distributed cases ranked higher in structural
diversity using the bivariate method, since fewer combina-
tions of height–DBH values resulted from the restrictions
placed on the uniform distributions (Fig. 3). The univariate
STVI is size invariant, with similar values for cases 2 and 3
(large versus small trees for the same range), for cases 4, 5,
and 6 (large, medium, and small trees with the same range),
and for cases 2 and 9 (unimodal vs. bimodal with the same
range). The univariate STVI performed reasonably well, but
the current form of the bivariate STVI does not well repre-
sent structural diversity, resulted in very low values, and
would need to be altered.

For the MKRF plot data with multiple species, the ex-
tended Shannon’s indices were larger for the combination
method than for the post-hoc index, as with the simulated
data (Table 4). In general, these extensions to Shannon’s in-
dex resulted in higher values for more structurally diverse
plots. One advantage to the post-hoc method over the combi-

nation method is that diversity of each component (DBH,
height, and species) can be examined separately. For exam-
ple, the values for Shannon’s index for species diversity in-
dicated that there was high diversity, approaching the
maximum diversity values expected for a uniform distribu-
tion by species (i.e., a maximum of ln(6) = 1.792 for case 6
and a maximum of ln(3) = 1.099 for all other cases). How-
ever, the interpretation for DBH and for height, separately,
is more difficult, as the maximum values possible are the
logarithms of the number of classes, based on arbitrary class
limits. Similarly, the interpretation of the combination
method is also difficult, since the maximum is the logarithm
of the number of DBH–height–species classes, based on ar-
bitrary class limits.

For the STVI using the MKRF data, bivariate variances
were much lower than the bivariate uniform (Table 5), re-
sulting in much lower values for the bivariate STVI, as was
the case in analysing the simulated data. The univariate indi-
ces gave results similar to Shannon’s index. Since the maxi-
mum for the univariate STVI is equal to the number of
species, the interpretation is relatively simple. For example,
in case 1, the sum of STVI values for DBH over the three
species was 2.061, indicating high DBH diversity. The diver-
sity in height was less, resulting in a value of 1.126. Over
the six species, case 6 indicated very low DBH (0.321) and
height (0.295) diversity.

Overall, the extended Shannon indices ranked the simu-
lated stands in a logical manner and are size invariant. The
univariate STVI also performed well, and data do not need
to be divided into arbitrary classes. However, the sampling
properties of this new index are not known. For the post-hoc
extended Shannon’s index, equal weight was given to aver-
aging the DBH, height, and species indices. Similarly, for
the univariate STVI, vertical and horizontal variations were
given equal weight in obtaining the index by species. The re-
sulting indices were then summed over all species to obtain
a maximum value equal to the number of species. Different
weightings could be introduced, depending on the use of the
index. For example, Kangas and Pukkala (1996) used a
weighting formula in combining different variables. Alterna-
tively, the STVI values for DBH and height for every spe-
cies, or Shannon’s index for DBH, height, and species
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Case
No. Diversity; distribution SDBH

2 Sheight
2 SDBH, height

2

1 Very diverse; uniform 1219 306 4 815
2 Moderate diversity; uniform; large 549 137 2 141
3 Moderate diversity; uniform; small 539 133 2 075
4 Low diversity: uniform; large 133 34 520
5 Low diversity; uniform; medium 137 34 523
6 Low diversity; uniform; small 136 34 527
7 Moderate diversity; normal 143 26 2 959
8 Low diversity; normal 36 8 256
9 Moderate diversity; bimodal 1768 441 7 052

10 Low diversity; bimodal 3655 912 0
Uniform 1198* 299 358 203
Maximally bimodal 3594 897 3 223 829

*Values are slightly lower for the uniform than for case 1, and for the maximally bimodal than for
case 10, because the variance calculated for the simulated cases was calculated by dividing byn – 1
(the sample variance) instead of dividing byn (the population variance).

Table 3. Average sample variances for simulated cases compared with the variances of the
uniform and maximally bimodal distributions.
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separately, could be retained, rather than being combined
into a single value. This would allow for differential
weightings by users of the values. If this information was
used in harvest modelling, the values could be used as con-
straints, similar to work by Wikstrom and Eriksson (2000).
For use in developing growth prediction equations, the use
of a single index to indicate stand structure will result in
simpler equations. Also, equal weighting of horizontal and
vertical structure is intuitively appealing for modelling
changes in stand structure. Testing the indices for a variety
of applications is needed to further assess their usefulness in
growth modelling, classifying stand structure, and examin-
ing structural changes over time.

Conclusions

Several indices of structural diversity were proposed and
evaluated using simulated stands, and using data from the
MKRF. For all proposed indices, the basal area distribution
was used to better represent site occupation by trees.

The extensions of Shannon’s index to DBH, height, and
species performed well in ranking the structural diversity
and indicated species evenness. Of the two extensions to
Shannon’s index, the post-hoc method resulted in more in-
formation, by indicating diversity in each variable, as well as
overall diversity. However, both DBH and height must be di-
vided into arbitrary classes to calculate proportions, and the
number of classes used alters the maximum value of the in-
dex.

The STVIs, based on the variance of the stand relative to
the variance of uniform and bimodal distributions, do not re-
quire arbitrary classes. However, the bivariate form of this
index was based on a maximum variance, which will not be
achieved in a natural setting, where not all combinations of
DBH and height values are possible. The univariate form of
the STVI gave good results that can be relatively easily in-
terpreted.

Of the indices tested, the post-hoc extended Shannon index
or the univariate STVI are recommended. However, possible
improvements have been identified and could be investigated
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Case
No. Diversity; distribution Hd

′ Hh
′ Hs

′ Hd+h+s
′ Hdhs

′ STVIDBH STVIheight STVId+h STVIdh

1 Very diverse; uniform 2.186 2.091 0.979 1.752 2.860 2.061 1.126 1.594 0.085
2 Moderate diversity;

uniform large
2.173 1.935 1.067 1.725 3.103 1.090 1.984 1.537 0.498

3 Moderate diversity;
uniform small

1.748 1.915 0.997 1.553 2.781 0.733 0.391 0.562 0.009

4 Low diversity;
uniform large

1.732 1.736 0.791 1.420 2.651 0.582 0.678 0.630 0.031

5 Low diversity;
uniform medium

1.859 1.480 0.876 1.405 2.811 0.890 0.551 0.721 0.042

6 Low diversity;
uniform small

0.958 1.117 1.659 1.245 2.399 0.321 0.295 0.308 0.000

7 Moderate diversity;
normal

1.616 1.562 1.011 1.396 2.974 1.028 0.697 0.863 0.013

8 Low diversity; normal 0.995 1.149 0.981 1.042 2.062 0.482 0.172 0.327 0.001
9 Moderate diversity;

bimodal
2.141 1.851 1.098 1.697 2.827 1.298 1.853 1.575 0.215

Note: The maximum value for case 6 is ln(6) = 1.792 and, for all other cases, is ln(3) = 1.099 based on species alone.

Table 4. Indices for the MKRF data.

Case
No. Diversity; distribution

No. of
species

DBH Height DBH, height

SDBH
2 S

kDBH
2 Sheight

2 S
kheight

2 S2 Sk
2

1 Very diverse; uniform 3 641 351 137 113 17 667 78
2 Moderate diversity; large 3 1848 1280 124 50 95 103 196
3 Moderate diversity; small 3 197 104 78 32 3 047 26
4 Low diversity; large 3 305 293 54 38 10 680 47
5 Low diversity; medium 3 386 154 49 39 10 061 55
6 Low diversity; small 6 40 47 14 8 225 4
7 Moderate diversity; normal 3 149 197 37 48 1 700 30
8 Low diversity; normal 3 53 45 20 20 725 9
9 Moderate diversity; bimodal 3 3022 991 280 86 271 129 126

Uniform 1825 287 524 128
Maximally bimodal 5476 861 4 717 150

Table 5. Sample variances for data pooled over species and averaged by species for chosen MKRF plots, compared with
the variance of a theoretical uniform distribution.
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for both indices. Application of the indices to a variety of
stand structures is needed to determine the usefulness as
proxies for the species, DBH, and height distributions.
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Appendix

Derivation of p1, p2, and m
The expected value of the uniform distribution on the in-

terval from a to b is

[A1] E X
b a

[ ] = +
2

The expected value of the square of the uniform distribution
is

[A2] E X
b ba a

[ ]2
2 2

3
= + +

with the variance then equal to

[A3] S
b ba a b a b a

U
2 = + +







 − +


 


 = −2 2 2 2

3 2 12
( )

For a maximally bimodal distribution with half of the obser-
vations ata and the other half atb, the expected value is the
same as for the uniform (eq. A1), but the expected value of
the square of this distribution is

[A4] E X b a[ ] . .2 2 20 5 0 5= +

The variance for the maximally bimodal distribution is
therefore

[A5] S b a
b a b a

max ( . . )
( )2 2 2

2 2
0 5 0 5

2 4
= + − +


 


 = −

which is three times that of a uniform distribution froma to
b (eq. A3).

For a uniform distribution with one-half of the range of
the uniform froma to b, the variance is

[A6] S
b a b a

0 5

2 22
12 48

.
[( ) ] ( )

U
2 = − = −y

which is one-quarter of the variance of a uniform distribu-
tion from a to b (eq. A3).

For a distribution separated into two discrete uniform
ranges froma to c in the lower quartile of the rangea to b,
and fromd to b in the upper quartile of the rangea to b, the
range,r, is the same for both regions:

r
b a

b d c a= − = − = −
4

and

c = a + r

d = b – r

The variance of the distribution is

[A7] S b aB
2 = −( )( )7 48 2y

or 1.75 times that of a uniform distribution froma to b. This
is derived from the expected value for this distribution given
in eq. A1, and the expected value of the square of the distri-
bution given as
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Given these specific types of distributions, constraints on the
univariate STVI were used to obtain values forp1, p2, andm.
Constraining the index to a value of 0.5 when the variance
of the distribution was equal to that for one-half the range of
the uniform, a value for was obtained by
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Since the variance for one-half of the range is one-quarter
that of a uniform:
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Solving this results inp1 = 2.4094. For the second con-
straint, whenS Sk

2 2= B, the index was constrained to equal to
0.5, as follows:
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Since S SB
2

U
2=175. and S Smax

2
U
2= 3 , this equation becomes
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The last constraint was used to set the index to 0.1 when
S Sk

2 2= max:
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SubstitutingS Smax
2

U
2= 3 , the equation becomes
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Solving eqs. A10 and A11 simultaneously,p2 = 0.5993
and m = 1.1281.
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