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Analysis of simple experiments using least squares 

Documentation of Methods 

Analysis of variance 

Experiments involve exposing experimental units to a range of discrete levels of one or more 

categorical variables or factors. A factor can be a fertilization treatment with four levels 

corresponding to four different quantities of fertilizer. 

An analysis of variance (ANOVA) is conducted to determine whether there are 

differences between factor levels (treatment means). When the means of only two treatments are 

compared, we can use a simple t-test. If we compare three or more means, we use an ANOVA. 

Regression and ANOVA are essentially identical approaches except that the explanatory 

variables for regression are continuous while they are categorical for ANOVA.  

In the following, the principles of one-way and two-way ANOVA are illustrated using 

experiments with a completely randomized design.  

Completely Randomized design 

In a completely randomized design (CRD), homogeneous experimental units are located and 

treatments are randomly assigned to the treatment units. The variable of interest is measured for 

each experimental unit. No blocking, which can reduce experimental error variation, is used.  

Notation and data organization 

The notation used is based on Kuehl (2000).  
 

Cell means model:  ij i ijy eμ= +  

Treatment Effects Model: ij i ijy eμ τ= + +  

 

yij = response variable; jth observation from ith treatment group 

i = 1,2,…,t treatment groups 

j = 1,2,…,r observations per treatment group (replications) 

N = rt 

μ = grand or overall mean regardless of treatment 
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μi = mean of the ith treatment population 

τi = treatment effect = iμ μ−  

eij = experimental error = ij jy μ− ; experimental error variance 2σ  is the variance of eij 

 

For easy calculations by hand, the data could be organized in columns as: 

Treatments, i = 1,2,…,t  Observations 

j = 1,2,…,r * 1 2 3 … t  

1 y11 y21 y31 … yt1  

2 y12 y22 y32 … yt2  

3 y13 y23 y33 … yt3  

… … … … … …  

r y1r y2r y3r … ytr  

Sum y1. y2. y3. … yt. y.. 

Averages 1.y  2.y  3.y   .ty ..y

 

* NOTE: The number of observations for each treatment may not be the same. In that case j = 

1,2,…,ri. 
 

With sums calculated as: 
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Estimation of model parameters with least squares 
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Sum of squares 

1. Sum of squared differences between the observed values and the overall mean (SS Total): 

( )2

..
1 1

1
t r

ij
i j

SS Total y y df N
= =

= − = −∑∑  

2. Sum of squared differences between the treatment means and the overall mean, weighted 

by the number of experimental units in each treatment (SS Treatment = SST): 

( ) ( )2 2
. .. . ..

1 1 1
1

t r t

i i i
i j i

SS Treatment y y r y y df t
= = =

= − = − = −∑∑ ∑  

3. Sum of squared differences between the observed values for each experimental unit and 

the treatment means (SS Error = SSE): 

( )22
.

1 1 1 1

ˆ
t r t r

ij ij i
i j i j

SS Error e y y df N t
= = = =

= = − = −∑∑ ∑∑  

 

Error partition: SS Error = SS Total – SS Treatment 

 

One-way analysis of variance 

When only one factor with more than two levels is applied as treatment, a one-way ANOVA is 

used for the analysis of the data. 

Test for differences in treatment means 

Main question: Are the treatment means different? 

0 1 2: ... tH μ μ μ= = =   vs.  1 : for somei kH i kμ μ≠ ≠   at least one iμ  different 

OR 

0 1 2: ... tH τ τ τ= = =   vs.  1 :H  not all iτ  equal to 0 

 

If the treatment does not account for any of the variance in the response variable, then treatment 

effects are likely all equal to zero and all the treatment means are likely to be the same. 
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ANOVA table 

Source df SS MS F p-value 

Treatment t-1 SS Treatment 

(SST) 1
SSTMST
t

=
−

 0
MSTF
MSE

= 0 ,( 1),( )t N tF Fα − −>  

Error N-t SS Error 

(SSE) 

SSEMSE
N t

=
−

  

Total N-1 SS Total    

 

MSE is an unbiased estimate of the experimental error variance 2σ . In other words, the expected 

value of MSE is equal to 2σ : [ ] 2E MSE σ= . 

The expected value of MST is: [ ] 2 2
tE MST rσ θ= + , where 

( )

( )

2
.

2 1

1

t

i
i

t t

μ μ
θ =

−
=

−

∑
 is the variance 

among the treatment means. 

 

Test statistic: ( ) ( )
( ) ( )0

/ 1
/

SST t MSTF
SSE N t MSE

−
= =

−
 

 

If the test statistic is larger than the critical value ( 0 ,( 1),( )t N tF Fα − −> ), we reject H0 and accept H1, 

concluding that at least one of the means is significantly different from others. If the test statistic 

is less than the critical value, we fail to reject the null hypothesis and the associated p-value 

indicates that differences in treatment means could have arisen by chance alone. 

 

NOTE: The F-test is only a good test if the assumptions of the analysis of variance have been 

met!  

Assumptions 

For the estimated means from an experiment to be unbiased estimates of the means in the 

population, and the MSE to be an unbiased estimate of the variance within each experimental 

unit, the following assumptions must be met: 
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1. Random sampling  can do nothing to rectify non-random sampling after the event of 

sampling 

2. Independence of errors 

a. Remedies: minimize by (i) using block design with each treatment combination applied 

in every block; (ii) have high number of replication; (iii) thorough randomization 

3. Equal variances 

a. Test assumption with (i) residual plot or (ii) standard tests for equal variance (e.g., 

Bartlett, Levene) 

b. Remedies: variance stabilizing transformations (e.g., log-transformation) 

4. Normal distribution of errors 

a. Test assumption with (i) a normal probability plot for residuals or (ii) standard normality 

tests (e.g., Shapiro-Wilk, Anderson-Darling, Cramer-von Mises, Kolmogorov-Smirnov) 

b. Causes for non-normality: skewness, kurtosis, multimodality 

c. Remedies: skewness and kurtosis can often be corrected for by the same kind of 

transformations used to improve homogeneity of variance; arcsine transformation to 

transform proportions into normally distributed variables; rank transformation 

5. Additivity of treatment effects: effects of treatments are additive  when response of one 

factor depends upon level of another factor (interaction present), use factorial experiments; if 

multiplicative, take log to make effects additive 

 

Process: 

• Do analysis with measured response 

• If assumptions of the error term are not met, transform response variable 

• Redo the analysis and check assumptions; if still not met, try another transformation 

• May have to switch to another method (e.g., generalized linear models) 

 

If we fail to reject H0, we are done; if we reject H0, we need to find out which levels differ. 

Simultaneous Comparisons 

If differences among treatment means were detected, we need to find out which means differ or 

which combinations of means differ. Methods for this include planned contrasts among treatment 
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groups, regression response curves for quantitative treatment factors, selection of the best subset 

of treatments, comparison of treatments to the control, and all pairwise comparisons. All these 

methods require a set of simultaneous decisions which affects the statistical errors of inference. 

There are many different methods that ‘preserve’ the alpha level used to test all the means 

together when multiple comparisons are conducted, e.g.: 

• Tukey’s method for all pairwise comparisons (honestly significant difference = HSD) 

• Bonferroni’s t statistic for simultaneous inference (adjust alpha level used by dividing by 

the number of pairs) 

• Scheffé’s test for simultaneous inference 

 

Comparisonwise error rate (αC) = significance level or probability of Type I error for a single 

test 

Experimentwise error rate (αE) = significance level or probability of Type I error associated with 

a family of comparisons 

 

1. Tukey’s HSD 

Used for pairwise comparison of all treatment means 

Based on the Studentized range statistic largest smallest

2 /

y y
q

s r

−
=  

For a group of t treatment means simultaneous confidence intervals for all pairwise comparisons 

based on Tukey’s HSD can be computed as follows: 

2

, ,
1 1* *

2Ei j t
i j

sy y q
r rα ν

⎛ ⎞
− ± +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

2. Bonferroni’s t statistic for simultaneous inference 

One of the simplest and best known methods 

Reduces alpha in proportion to the number of comparisons made 

Mostly used for only few comparisons as it becomes increasingly conservative as the number of 

comparisons increases 
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When k comparisons are made: αC = αE /k and the critical t-value for a two-sided t-test is: /2 ,E ktα ν , 

where ν  is the degrees of freedom. 

Simultaneous confidence intervals can be obtained by: 

2
/2 ,

1 1* *
Ei j k

i j

y y t s
r rα ν

⎛ ⎞
− ± +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

Example of calculating αC:  

Number of possible pairs of means for t = 5 treatment groups: 
5 5! 10

2 2 3!2!
t⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

For t = 5 treatment groups and αE = 0.05, αC = 0.05/10=0.005 when all possible pairs of means 

are compared simultaneously. 

 

3. Scheffé’s test for simultaneous inference 

Conservative, generally used for unplanned contrasts or contrasts suggested by the data 

Can test any pair of means or other comparisons 

When you consider any contrast, .
1

t

i i
i

c k y
=

= ∑ , among t treatment means with standard error 

2
2

1

t
i

c
i i

ks s
r=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ , simultaneous confidence intervals for all possible contrasts can be computed 

as:  ( ) ( ), 1 ,1 *
E ctc t F sα ν−± −  
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Two-way analysis of variance 

When two or more factors are applied as treatment combinations the design is referred to as 

factorial treatment design. In the following, the basic factorial treatment design in a completely 

randomized experiment is introduced with the example of a two-way analysis of variance. The 

methods can easily be expanded to more than two factors.  

A two-factorial design allows looking at the response to one factor A at different levels of 

another factor B. The effect of a factor is the change in the measured response caused by the 

change in the level of that factor. There are three effects that are of interest in a factorial 

treatment design: 

• Simple effects: contrasts between levels of one factor at a single level of another factor; if 

factors are not independent, interpretations should be based on simple effect contrasts 

• Main effects: effects of a factor – contrasts of one factor averaged over all levels of 

another factor; main effects can be used to interpret the effects of factors separately if no 

interaction is present, and 

• Interaction effects: measures differences between simple effects of one factor at different 

levels of the other factor 

Interaction 

In factorial treatment designs, the interpretations of effects of one treatment must take into 

account the effects of the other treatment factors. An interaction is present when the response to 

factor A depends on the level of factor B. Interaction plots can be used for determining whether 

there is an interaction between factors (lines are not parallel). In order to allow the investigation 

of interactions between factors, there must be replication at each combination of factor levels. If 

interaction is present there are no main effects and interpretation should be based on simple 

effects. 

Notation 

Cell means model:  ijk ij ijky eμ= +  

Treatment Effects Model: ( )ijk i j ijij
y eμ α β αβ= + + + +  

 

yij = response variable; jth observation from ith treatment group 
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i = 1,2,…,a levels of factor A 

j = 1,2,…,b levels of factor B 

k = 1,2,…,r observations per treatment group (replications) 

N = rt 

μ = grand or overall mean regardless of treatment 

μij = mean of the treatment combination AiBj 

αi = effect of the ith level of A, 
1

0
a

i
i
α

=

=∑  

βj  = effect of the jth level of B, 
1

0
b

j
j

β
=

=∑  

(αβ)ij = interaction effect between the ith level of A and the jth level of B,   

 ( ) ( )
1 1

0
a b

ij ij
i j

αβ αβ
= =

= =∑ ∑  

eijk = random experimental error with mean 0 and variance 2σ  
 

Sum of squares 

1. Sum of squared differences between the observed values and the overall mean (SS Total): 

( )2

...
1 1 1

1
a b r

ijk
i j k

SS Total y y df abr
= = =

= − = −∑∑∑  

2. Sum of squared differences among marginal means for A (SSA): 

( )2
.. ...

1
1

a

i
i

SSA br y y df a
=

= − = −∑  

3. Sum of squared differences among marginal means for B (SSB): 

( )2

. . ...
1

1
b

j
j

SSB ar y y df b
=

= − = −∑  

4. Sum of squares for interaction (SS(AB)): 

( ) ( ) ( )( )2

. .. . . ...
1 1

1 1
a b

ij i j
i j

SS AB r y y y y df a b
= =

= − − − = − −∑∑  

5. Sum of squared differences between the observed values for each experimental unit and 

the treatment means (SS Error = SSE): 
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( )22
.

1 1 1 1 1 1

ˆ ( 1)
a b r a b r

ijk ijk ij
i j k i j k

SS Error e y y df ab r
= = = = = =

= = − = −∑∑∑ ∑∑∑  

 

Error partition: SS Total = SS Treatment + SS Error, 

   with SS Treatment = SSA + SSB + SS(AB) 

ANOVA table 

Source df SS MS F p-value 
Factor A a-1 SSA 

1
SSAMSA
a

=
−

 0
MSAF
MSE

=  ( ) ( )0 , 1 , 1a ab rF Fα − −>  

Factor B b-1 SSB 

1
SSBMSB
b

=
−

 0
MSBF
MSE

=  ( ) ( )0 , 1 , 1b ab rF Fα − −>  

Interaction 

A:B 

(a-1)(b-1) SS(AB) 
( ) ( )

( )( )1 1
SS AB

MS AB
a b

=
− −

 ( )
0

MS AB
F

MSE
=

 

( )( ) ( )0 , 1 1 , 1a b ab rF Fα − − −>

 

Error ab(r-1) SSE 

( )1
SSEMSE

ab r
=

−
 

  

Total abr-1 SS 

Total 
   

 

The expected mean squares are as follows: [ ] 2 2
aE MSA rbσ θ= + , [ ] 2 2

bE MSB arσ θ= + , 

( ) 2 2
abE MS AB rσ θ= +⎡ ⎤⎣ ⎦ , and [ ] 2E MSE σ=  

The inferences about factors A and B depend upon the presence or absence of interaction. 

Therefore, start the interpretation of the ANOVA table with looking at the interaction between 

factors rather than looking at the main effects.  
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Hypotheses for the interaction: 

If there is no interaction: ( ) . . .. 0ij i jij
αβ μ μ μ μ= − − + =  and 2 0abθ =  

( )0 . . ..: 0  for all ,ij i jij
H i jαβ μ μ μ μ= − − + =  

vs.   ( )1 . . ..: 0  for some ,ij i jij
H i jαβ μ μ μ μ= − − + ≠  

Hypotheses for differences among marginal means for A: 

If there are no differences among the marginal means for A: . .. 0i iα μ μ= − =  and 2 0aθ =  

0 1. 2. .: ... aH μ μ μ= = =  

 vs.   1 . .:  for some ,i kH i kμ μ≠  

Hypotheses for differences among marginal means for B: 

If there are no differences among the marginal means for B: . .. 0i jβ μ μ= − =  and 2 0bθ =  

0 .1 .2 .: ... bH μ μ μ= = =  

 vs.   1 . .:  for some ,j mH j mμ μ≠  
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