
ForValueNet

Andrew Robinson
Department of Mathematics and Statistics

University of Melbourne
Parkville, Vic. 3010

A.Robinson@ms.unimelb.edu.au

June 10–12 2010

Contents

1 Data 3
1.1 Data: Objects and Classes . 3
1.2 Classes of Data . 4

1.2.1 Numeric . 4
1.2.2 String . 6
1.2.3 Factor . 6
1.2.4 Logical . 7
1.2.5 Missing Data . 8

1.3 Structures for Data . 8
1.3.1 Vector . 9
1.3.2 Dataframe . 11
1.3.3 Matrix (Array) . 16
1.3.4 List . 18

1.4 Merging Data . 19
1.5 Reshaping Data . 20
1.6 Sorting Data . 21

2 Hierarchical Models 22
2.1 Introduction . 22

2.1.1 Methodological . 22
2.1.2 General . 23

2.2 Some Theory . 23
2.2.1 Effects . 23
2.2.2 Model Construction . 24
2.2.3 Dilemma . 27
2.2.4 Decomposition . 29

2.3 A Simple Example . 30
2.3.1 The Deep End . 35
2.3.2 Maximum Likelihood . 35
2.3.3 Restricted Maximum Likelihood 37

2.4 Case Study . 38
2.4.1 Stage Data . 38
2.4.2 Extensions to the model . 59

2.5 The Model . 61
2.5.1 Z . 61
2.5.2 b . 62
2.5.3 D . 62

2.6 Wrangling . 63
2.6.1 Monitor . 63

1

ForValueNet

2.6.2 Meddle . 63
2.6.3 Modify . 64
2.6.4 Compromise . 64

2.7 Appendix - Leave-One-Out Diagnostics 65

3 GLMM 68
3.1 Wabbits . 68

3.1.1 Burrow Entrance Count . 68
3.1.2 Burrow Status . 72

3.2 Exercise: Cow Flu . 74

4 Showcase: equivalence tests 76
4.1 Introduction . 76
4.2 TOST 1 . 76
4.3 Equivalence plot . 80

Bibliography 82

2

Chapter 1

Data

Strategies for convenient data manipulation are the heart of the R experience. The object
orientation ensures that useful and important steps can be taken with small, elegant pieces
of code.

We spend time on this very basic data-handling material because the time that we
spend now will greatly ease the handling of your own data.

1.1 Data: Objects and Classes

So, what does it mean to say that R is object oriented? Simply, it means that all
interaction with R is through objects. Data structures are objects, as are functions, as
are scripts. This seems obscure right now, but as you become more familiar with it you’ll
realize that this allows great flexibility and intuitiveness in communication with R, and
also is occasionally a royal pain in the bum.

For the most part, object orientation will not change the way that we do things,
except that it will sometimes make them easier than we expect. However, an important
consequence of object orientation is that all objects are members of one or more classes.

We create objects and assign names to them using the left arrow: “<-”. R will guess
what class we want the object to be, which affects what we can do with it. We can change
the class if we disagree with R’s choice.

> a <- 1 # Create an object "a" and

> # assign to it the value 1.

> a <- 1.5 # Wipe out the 1 and make it 1.5 instead.

> class(a) # What class is it?

[1] "numeric"

> class(a) <- "character" # Make it a character

> class(a) # What class is it now?

[1] "character"

> a

[1] "1.5"

3

ForValueNet

> a <- "Andrew" # Wipe out the 1.5 and make it "Andrew" instead.

> b <- a # Create an object "b" and assign to it

> # whatever is in object a.

> a <- c(1,2,3) # Wipe out the "Andrew" and make it a vector

> # with the values 1, 2, and 3.

> # Never make c an object!

> b <- c(1:3) # Wipe out the "Andrew" and make it a vector

> # with the values 1, 2, and 3.

> b <- mean(a) # Assign the mean of the object a to the object b.

> ls() # List all user-created objects

[1] "a" "b"

> rm(b) # Remove b

A couple of points are noteworthy: we didn’t have to declare the variables as being
any particular class. R coerced them into whatever was appropriate. Also we didn’t have
to declare the length of the vectors. That is convenient for the user.

Exercise 1 Instantiation

Using the code above, or similar, familiarize yourself with the process of creating and
destroying objects, printing them, and checking their class.

1.2 Classes of Data

There are two fundamental kinds of data: numbers and strings (anything that is not
a number is a string). There are several types of strings, each of which has unique
properties. R distinguishes between these different types of object by their class.

R knows what these different classes are and what each is capable of. You can find
out what the nature of any object is using the class() command. Alternatively, you can
ask if it is a specific class using the is.className () command. You can often change
the class too, using the as.className () command. This process can happen by default,
and in that case is called coercion.

1.2.1 Numeric

A number. Could be a integer or a real number. R can generally tell the difference between
them using context. We check by is.numeric() and change to by as.numeric(). R also
handles complex numbers, but they’re not important for this course. We can do all the
usual things with numbers:

> a <- 2 # create variable a, assign the number 2 to it.

> class(a) # what is it?

[1] "numeric"

> is.numeric(a) # is it a number?

[1] TRUE

4

ForValueNet

> b <- 4 # create variable b, assign the number 4 to it.

> a + b # addition

[1] 6

> a - b # subtraction

[1] -2

> a * b # multiplication

[1] 8

> a / b # division

[1] 0.5

> a ^ b # exponentiation

[1] 16

> (a + b) ^ 3 # parentheses

[1] 216

> a == b # test of equality (returns a logical)

[1] FALSE

> a < b # comparison (returns a logical)

[1] TRUE

> max(a,b) # largest

[1] 4

> min(a,b) # smallest

[1] 2

5

ForValueNet

1.2.2 String

A collection of one or more alphanumerics, denoted by double quotes. We check whether
or not our object is a string by is.character() and change to by as.character(). R
provides numerous string manipulation functions, including search capabilities.

> a <- "string" # create variable a, assign the value "string" to it.

> class(a) # what is it?

[1] "character"

> is.numeric(a) # is it a number?

[1] FALSE

> is.character(a) # is it a string?

[1] TRUE

> b <- "spaghetti" # create variable b, assign the value "spaghetti" to it.

> paste(a, b) # join the strings

[1] "string spaghetti"

> paste(a, b, sep="") # join the strings with no gap

[1] "stringspaghetti"

> d <- paste(a, b, sep="")

> substr(d, 1, 4) # subset the string

[1] "stri"

1.2.3 Factor

Factors represent categorical variables.
In practice, factors are not terribly different than strings, except they can take only a

limited number of values, which R keeps a record of, and R knows how to do very useful
things with them. We check whether or not an object is a factor by is.factor() and
change it to a factor, if possible, by factor().

Even though R reports the results of operations upon factors by the levels that we
assign to them, R represents factors internally as an integer. Therefore, factors can
create considerable heartburn unless they’re closely watched. This means: whenever you
do an operation involving a factor you must make sure that it did what you wanted, by
examining the output and intermediate steps.

> a <- c("A","B","A","B") # create vector a

> class(a) # what is it?

[1] "character"

> is.character(a) # is it a string?

6

ForValueNet

[1] TRUE

> is.factor(a) # is it a factor?

[1] FALSE

> a <- factor(a) # make it so

> levels(a) # what are the levels?

[1] "A" "B"

> table(a) # what are the counts?

a

A B

2 2

> a <- factor(c("A","B","A","B"), levels=c("B","A"))

Sometimes it will be necessary to work with a subset of the data, perhaps for conve-
nience, or perhaps because some levels of a factor represent irrelevant data. If we subset
the data then it will often be necessary to redefine any factors in the dataset, to let R
know that it should drop the levels that are missing.

There will be much more on factors when we start manipulating vectors (Section
1.3.1).

1.2.4 Logical

A special kind of factor, that has only two levels: True and False. Logical variables are
set apart from factors in that these levels are interchangeable with the numbers 1 and 0
(respectively) via coercion. The output of several useful functions are logical (also called
boolean) variables. We can construct logical statements using the and (&), or (|), not (!)
operators.

> a <- 2 # create variable a, assign the number 2 to it.

> b <- 4 # create variable b, assign the number 4 to it.

> d <- a < b # comparison

> class(d) # what is it?

[1] "logical"

> e <- TRUE # create variable e, assign the value TRUE to it.

> d + e # what should this do?

[1] 2

> d & e # d AND e is True

[1] TRUE

> d | e # d OR e is also True

[1] TRUE

> d & !e # d AND (NOT e) is not True

[1] FALSE

We can ask for the vector subscripts of all objects for which a condition is true via
which().

7

ForValueNet

1.2.5 Missing Data

The last and oddest kind of data is called a missing value (NA). This is not a unique
class, strictly speaking. They can be mixed in with all other kinds of data. It’s easiest to
think of them as place holders for data that should have been there, but for some reason,
aren’t. Unfortunately their treatment is not uniform in all the functions. Sometimes
you have to tell the function to ignore them, and sometimes you don’t. And, there are
different ways of telling the function how to ignore them depending on who wrote the
function and what its purpose is.

There are a few functions for the manipulation of missing values. We can detect
missing values by is.na().

> a <- NA # assign NA to variable A

> is.na(a) # is it missing?

[1] TRUE

> class(a) # what is it?

[1] "logical"

> a <- c(11,NA,13) # now try a vector

> mean(a) # agh!

[1] NA

> mean(a, na.rm=TRUE) # Phew! We’ve removed the missing value

[1] 12

> is.na(a) # is it missing?

[1] FALSE TRUE FALSE

We can identify the complete rows (i.e. rows that have no missing values) from a
two-dimensional object via the complete.cases() command.

Exercise 2 Run the Preceding Code

Run each of the preceding swatches of code, and examine the output. Make sure that
you understand what each individual piece is doing.

1.3 Structures for Data

Having looked at the most important data types, let’s look at the mechanisms that we
have for their collective storage and manipulation. There are more than we cover here -
some of which (matrix, list) can be very useful.

8

ForValueNet

1.3.1 Vector

A vector is a one-dimensional collection of atomic objects (atomic objects are objects
which can’t be broken down any further). Vectors can contain numbers, characters,
factors, or logicals. All the objects that we created earlier were vectors, although some
were of length 1. The key to vector construction is that all the objects must be of the
same class. The key to vector manipulation is in using its subscripts. The subscripts are
accessed by using the square brackets [].

> a <- c(11,12,13) # a is a vector

> a[1] # the first object in a

[1] 11

> a[2] # the second object in a

[1] 12

> a[-2] # a, but without the second object

[1] 11 13

> a[c(2,3,1)] # a, but in a different order

[1] 12 13 11

> a + 1 # Add 1 to all the elements of a

[1] 12 13 14

> length(a) # the number of units in the vector a

[1] 3

> order(c(a,b)) # return the indices of a and b in increasing order

[1] 4 1 2 3

> c(a,b)[order(c(a,b))] # return a and b in increasing order

[1] 4 11 12 13

> a <- c(11,NA,13) # a is still a vector

> a[!is.na(a)] # what are the elements of a that aren’t missing?

[1] 11 13

> which(!is.na(a)) # what are the locations of the non-missing elements of a?

[1] 1 3

Notice that in a[!is.na(a)], for example, we were able to nest a vector inside the
subscript mechanism of another vector! This example also introduces a key facility in R
for efficient processing: vectorization.

9

ForValueNet

Vectorization

The concept underlying vectorization is simple: to make processing more efficient. Recall
that in section 1.2.5, when we applied the is.na() function to the vector a it resulted in
the function being applied to each element of the vector, and the output itself being a
vector, without the user needing to intervene. This is vectorization.

Imagine that we have a set of 1,000,000 tree diameters and we need to convert them
all to basal area. In C or Fortran we would write a loop. The R version of the loop would
look like this (wrapped in a timer).

> diameters <- rgamma(n=1000000, shape=2, scale=20)

> basal.areas <- rep(NA, length(diameters))

> system.time(

+ for (i in 1:length(diameters)) {

+ basal.areas[i] <- diameters[i]^2 * pi / 40000

+ }

+)

user system elapsed

5.483 0.028 5.540

That took just over three seconds on my quite old computer. However, if we vectorize
the operation, it becomes considerably faster.

> system.time(

+ basal.areas <- diameters^2 * pi / 40000

+)

user system elapsed

0.066 0.019 0.086

It’s about forty to fifty times faster. Of course, had we programmed this function in C
or Fortran, the outcome would have been much faster still. The R programming mantra
might be: compile only if you need to, loop only if you have to, and vectorize all the time.

Vectorization only works for some functions; e.g. it won’t work for mean(), because
that would make no sense; we want the mean of the numbers in the vector, not the mean
of each individual unit. But, when vectorization works it makes life easier, code cleaner,
and processing time faster.

Note that pi is a single value, and not of length 106, and R assumed that we would
like it repeated 106 times. This is called recycling.

Recycling

You may have noticed above that R provided a convenience for the manipulation of
vectors. When we typed

> a <- c(11, 12, 13)

> a + 1

[1] 12 13 14

10

ForValueNet

R assumed that we wanted to add 1 to each element of a. This is called recycling,
and is usually very useful and occasionally very dangerous. R recycled 1 until it had the
same length as a. interpreted the function as:

> a + c(1, 1, 1)

[1] 12 13 14

For a further example, if we want to convert all the numbers in a vector from inches
to centimetres, we simply do

> (a <- a * 2.54)

[1] 27.94 30.48 33.02

Recycling can be dangerous because sometimes we want the dimensions to match up
exactly, and mismatches will lead to incorrect computations. If we fail to line up our
results exactly - e.g. because of some missing values - R will go ahead and compute the
result anyway. The only way to be sure is to watch for warnings, examine the output
carefully, and keep in mind that most of the time this facility is really helpful.

> a + c(1, -1)

[1] 28.94 29.48 34.02

Exercise 3 Vectors can be numbers too . . .

Create a vector of tree diameters (in cm), say,

> diameters <- c(26.4, 43.7, 56.0, 33.5)

1. Convert them all to basal area (g, in m2) in one command1.

2. Find the largest basal area.

3. Find the position in the vector of the largest basal area.

1.3.2 Dataframe

A dataframe is a powerful two-dimensional vector-holding structure. It is optimized for
representing multidimensional datasets: each column corresponds to a variable and each
row corresponds to an observation. A dataframe can hold vectors of any of the basic
classes of objects at any given time. So, one column could be characters whilst another
could be a factor, and a third be numeric.

We can still refer to the objects within the dataframe through their subscripts: using
the square brackets. Now there are two dimensions: row, and column. If either is left
blank, then the whole dimension is assumed. That is, test[1:10,] will grab the first
ten rows of all the columns of dataframe test, using the above-noted expansion that the
colon fills in the integers. test[,c(2,5,4)] will grab all the rows for only the second,

1g = πd2

40000

11

ForValueNet

fifth and fourth columns. These index selections can be nested or applied sequentially.
Negative numbers in the index selections denote rows that will be omitted.

Each column, or variable, in a dataframe has a unique name. We can extract that
variable by means of the dataframe name, the column name, and a dollar sign as:
dataframe$variable.

A collection of columns can be selected by name by providing a vector of the column
names in the index specification. This is useful in dataframes in which the locations of
the columns is uncertain or dynamic, but the names are fixed.

We can also use the subset function to excerpt the pieces that we need.
If a comma-delimited file is imported, then R will assume that it is meant to be a

dataframe. The command to check is is.data.frame(), and the command to change
it is as.data.frame(). There are many functions to examine dataframes; we showcase
some of them below.

> ufc <- read.csv("../data/ufc.csv") # ufc is a dataframe

> is.data.frame(ufc) # we hope

[1] TRUE

> dim(ufc) # the size of the dimensions (r,c)

[1] 637 5

> names(ufc) # the labels of the columns

[1] "plot" "tree" "species" "dbh" "height"

> ufc$height[1:5] # first 10 heights

[1] NA 205 330 NA 300

> ufc$species[1:5] # first 10 species

[1] DF WL WC GF

Levels: DF ES F FG GF HW LP PP SF WC WL WP

> ufc[1:5, c(3,5)] # first 5 species and heights

species height

1 NA

2 DF 205

3 WL 330

4 WC NA

5 GF 300

> ufc[1:5, c("species","height")] # first 5 species and heights again

species height

1 NA

2 DF 205

3 WL 330

4 WC NA

5 GF 300

12

ForValueNet

> table(ufc$species)

DF ES F FG GF HW LP PP SF WC WL WP

10 77 3 1 2 185 5 7 4 14 251 34 44

The last command suggests that there are ten trees with blank species. Here, it’s
vital to know about the data recording protocol. The ten trees without species are blank
lines to represent empty plots. Let’s remove them, for the moment. Note that we also
redefine the species factor, so that it will drop the now empty level.

> ufc <- ufc[ufc$species != "",]

> ufc$species <- factor(ufc$species)

We can also create new variables within a dataframe, by naming them and assigning
them a value. Thus,

> ufc$dbh.cm <- ufc$dbh/10

> ufc$height.m <- ufc$height/10

Finally, if we want to construct a dataframe from already existing variables, which is
quite common, we use the data.frame() command, viz :

> temp <- data.frame(my.species = ufc$species, my.dbh = ufc$dbh.cm)

> temp[1:5,]

my.species my.dbh

1 DF 39

2 WL 48

3 WC 15

4 GF 52

5 WC 31

Dataframes are the most useful data structures as far as we are concerned. We can
use logical vectors that refer to one aspect of the dataframe to extract information from
the rest of the dataframe, or even another dataframe. And, it’s possible to extract pretty
much any information using the tools that we’ve already seen.

> ufc$height.m[ufc$species=="LP"] # Heights of lodgepole pine

[1] 24.5 NA NA NA 16.0 25.0 NA

> mean(ufc$height.m[ufc$species=="LP"], na.rm=TRUE)

[1] 21.83333

13

ForValueNet

Sapply

sapply() permits us to deploy a function upon each column in a dataframe. This is
particularly useful if we want to find column sums or means, for example, but has other
useful applications.

> sapply(ufc[, 4:7], mean, na.rm = TRUE)

dbh height dbh.cm height.m

356.56619 240.66496 35.65662 24.06650

Below, for example, we use sapply() to tell us the class of each of the columns in our
dataframe.

> sapply(ufc, class)

plot tree species dbh height dbh.cm height.m

"integer" "integer" "factor" "integer" "integer" "numeric" "numeric"

Exercise 4 Getting to Grips with Data

1. In order to complete the following exercise, be sure that you have executed all the
code in the preceding section (starting at page 11).

2. Now, let’s try something a little more involved. How would we ask: what are the
species of the three tallest trees? This command is best constructed piecemeal.
Notice that we are able to nest the subscripts. R starts at the left and works its
way right.

1. order(ufc$height.m, decreasing = TRUE) provides the indices of the ob-
servations in order of decreasing height.

2. ufc$species[order(ufc$height.m, decreasing = TRUE)] provides the species
corresponding to those heights.

3. ufc$species[order(ufc$height.m, decreasing = TRUE)][1:3] provides
only the first three.

> ufc$species[order(ufc$height.m, decreasing = TRUE)][1:3]

[1] WP GF WL

Levels: DF ES F FG GF HW LP PP SF WC WL WP

Now, what are the species of the five fattest trees?

3. The next useful command is called tapply(). This lovely little function allows us
to vectorize the application of certain functions to (non-empty) groups of data. In
conjunction with factors, this makes for some exceptionally efficient code. tap-

ply() requires three things: the target vector to which the function will be applied,
the vector by which the target vector will be grouped, and the function to be ap-
plied. Any other arguments that you want to pass to function are appended to
the call to tapply(). That is,

> tapply(<variable>, <group>, <function>, <function.arg.2>, ...)

Note that the <variable> will be used as <function.arg.1>.

14

ForValueNet

> tapply(ufc$height.m, ufc$species, mean)

DF ES F FG GF HW LP PP SF WC WL WP

NA NA 27.0 27.5 NA 19.8 NA NA NA NA NA NA

Ah. Many heights are missing, causing the mean to report itself as missing also.
Let’s fix that by telling the mean to ignore the missing values, temporarily.

> tapply(ufc$height.m, ufc$species, mean, na.rm = TRUE)

DF ES F FG GF HW LP

25.30000 28.00000 27.00000 27.50000 24.26522 19.80000 21.83333

PP SF WC WL WP

33.00000 15.41000 23.48777 25.47273 25.13939

And let’s pretty it up a little.

> format(tapply(ufc$height.m, ufc$species, mean, na.rm = TRUE),

+ dig = 3)

DF ES F FG GF HW LP PP SF WC

"25.3" "28.0" "27.0" "27.5" "24.3" "19.8" "21.8" "33.0" "15.4" "23.5"

WL WP

"25.5" "25.1"

4. What are the mean diameters by species?

5. What are the two species that have the largest third quartile diameters?2

6. What are the two species with the largest median slenderness (height/diameter)
ratios? How about the two species with the smallest median slenderness ratios?

7. What are the two trees with the largest slenderness ratios? How about two trees
with the smallest slenderness ratios?

8. What is the slenderness ratio of the tallest tree? The fattest?

9. Let’s try something more involved still. How would we pull out the identity of
the median height tree of the species that was eighth tallest on average? That is,
identify the tree (if it exists) that has the median height among all trees of the
species that has the eighth highest mean height?
Ok that is ridiculous, but let’s stretch the language. Again, it’s easiest to work
and check our working piecemeal.
Note that placing the brackets around a statement is short-hand for: “compute
this and then print it.”

1. First get the mean height by species.

> (ht.bar.by.species <- tapply(ufc$height.m, ufc$species,

+ mean, na.rm = TRUE))

DF ES F FG GF HW LP

25.30000 28.00000 27.00000 27.50000 24.26522 19.80000 21.83333

PP SF WC WL WP

33.00000 15.41000 23.48777 25.47273 25.13939

2. then get the index order of the species, sorted by average height.

2Use the tools that you have already seen in this workshop to figure out what you need to do to
compute quartiles.

15

ForValueNet

> (species.order.by.ht <- order(ht.bar.by.species, decreasing = TRUE))

[1] 8 2 4 3 11 1 12 5 10 7 6 9

3. The species names in order of the average height by species are then:

> (species.by.ht <- levels(ufc$species)[species.order.by.ht])

[1] "PP" "ES" "FG" "F" "WL" "DF" "WP" "GF" "WC" "LP" "HW" "SF"

4. The eighth tallest is

> (sp.8 <- species.by.ht[8])

[1] "GF"

5. The median of the heights of all the trees of that species is then

> (m.ht.8 <- median(ufc$height.m[ufc$species == sp.8],

+ na.rm = TRUE))

[1] 24.1

6. The tree of that species with that height is

> ufc[which(ufc$height.m == m.ht.8 & ufc$species == sp.8),

+]

plot tree species dbh height dbh.cm height.m

480 97 3 GF 338 241 33.8 24.1

These things must be tackled strategically. If we pursue a rigorous naming policy
then these intermediate objects become vital debugging tools as well.
Of course, this can all be expressed as a single operation:

> ufc[which(ufc$height.m==median(ufc$height.m[ufc$species ==

+ levels(ufc$species)[order(tapply(ufc$height.m, ufc$species, mean,

+ na.rm = TRUE), decreasing = TRUE)][8]], na.rm = TRUE) &

+ ufc$species==levels(ufc$species)[order(tapply(ufc$height.m,

+ ufc$species, mean, na.rm = TRUE), decreasing = TRUE)][8]),]

plot tree species dbh height dbh.cm height.m

480 97 3 GF 338 241 33.8 24.1

But that would be absurd.

10. What is the identity of the tallest tree of the species that was the fattest on
average?

1.3.3 Matrix (Array)

A matrix is simply a vector that has extra attributes, called dimensions. R provides spe-
cific algorithms to enable us to treat the vector as though it were really two-dimensional.
Many useful matrix operations are available.

> (mat.1 <- matrix(c(1,0,1,1), nrow=2))

[,1] [,2]

[1,] 1 1

[2,] 0 1

16

ForValueNet

> (mat.2 <- matrix(c(1,1,0,1), nrow=2))

[,1] [,2]

[1,] 1 0

[2,] 1 1

> solve(mat.1) # This inverts the matrix

[,1] [,2]

[1,] 1 -1

[2,] 0 1

> mat.1 %*% mat.2 # Matrix multiplication

[,1] [,2]

[1,] 2 1

[2,] 1 1

> mat.1 + mat.2 # Matrix addition

[,1] [,2]

[1,] 2 1

[2,] 1 2

> t(mat.1) # Matrix transposition

[,1] [,2]

[1,] 1 0

[2,] 1 1

> det(mat.1) # Matrix determinant

[1] 1

There are also various functions of matrices, for example, qr() produces the QR
decomposition, eigen() produces the eigenvalues and eigenvectors of matrices, and svd()

performs singular value decomposition.
Arrays are one, two, or three-dimensional matrices.

Apply

Apply permits us to deploy a function upon each row or column in a matrix or array.
This is particularly useful if we want to find row or column sums or means, for example.

> apply(ufc[, 4:7], 2, mean, na.rm = TRUE)

dbh height dbh.cm height.m

356.56619 240.66496 35.65662 24.06650

17

ForValueNet

1.3.4 List

A list is a container for other objects. Lists are invaluable for, for example, collecting and
storing complicated output of functions. Lists become invaluable devices as we become
more comfortable with R, and start to think of different ways to solve our problems. We
access the elements of a list using the double bracket, as below.

> (my.list <- list("one", TRUE, 3))

[[1]]

[1] "one"

[[2]]

[1] TRUE

[[3]]

[1] 3

> my.list[[2]]

[1] TRUE

If we use a single bracket then we extract the element, still wrapped in the list infras-
tructure.

> my.list[2]

[[1]]

[1] TRUE

We can also name the elements of the list, either during its construction or post-hoc.

> (my.list <- list(first = "one", second = TRUE, third = 3))

$first

[1] "one"

$second

[1] TRUE

$third

[1] 3

> names(my.list)

[1] "first" "second" "third"

> my.list$second

[1] TRUE

18

ForValueNet

> names(my.list) <- c("First element", "Second element",

+ "Third element")

> my.list

$‘First element‘

[1] "one"

$‘Second element‘

[1] TRUE

$‘Third element‘

[1] 3

> my.list$‘Second element‘

[1] TRUE

Note the deployment of backticks to print the nominated element of the list, even
though the name includes spaces.

The output of many functions is a list object. For example, when we fit a least
squares regression, the regression object itself is a list, and can be manipulated using list
operations.

Above, we saw the use of tapply(), which conveniently allowed us to apply an ar-
bitrary function to all the elements of a grouped vector, group by group. We can use
lapply() to apply an arbitrary function to all the elements of a list.

1.4 Merging Data

It is often necessary to merge datasets that contain data that occupy different hierarchical
scales; for example, in forestry we might have some species-level parameters that we wish
to merge with tree-level measures in order to make predictions from a known model. We
tackled exactly this problem in writing the function that computes the bard-feet volume
of a tree given its species, diameter and height. Let’s see how this works on a smaller
scale. First, we declare the dataframe that contains the species-level parameters.

Recall that by adding the parentheses we are asking R to print the result as well as
saving it.

> (params <- data.frame(species = c("WP", "WL"),

+ b0 = c(32.516, 85.150),

+ b1 = c(0.01181, 0.00841)))

species b0 b1

1 WP 32.516 0.01181

2 WL 85.150 0.00841

Then let’s grab the first three trees of either species from ufc that have non-missing
heights. We’ll only keep the relevant columns. Note that we can “stack” the index calls,
and that they are evaluated sequentially from left to right.

19

ForValueNet

> (trees <- ufc[ufc$species %in% params$species & !is.na(ufc$height.m),

+][1:3,])

plot tree species dbh height dbh.cm height.m

3 2 2 WL 480 330 48.0 33

20 4 9 WP 299 240 29.9 24

26 5 6 WP 155 140 15.5 14

Now we merge the parameters with the species.

> (trees <- merge(trees, params))

species plot tree dbh height dbh.cm height.m b0 b1

1 WL 2 2 480 330 48.0 33 85.150 0.00841

2 WP 4 9 299 240 29.9 24 32.516 0.01181

3 WP 5 6 155 140 15.5 14 32.516 0.01181

There are many options for merging, for example, in how to deal with not-quite
overlapping characteristics, or column names that do not match.

We can now compute the volume using a vectorized approach, which is substantially
more efficient than using a loop. Also, note the use of with() to temporarily attach the
dataframe to our search path. This usage simplifies the code.

> (trees$volume <- with(trees, b0 + b1 * (dbh.cm/2.54)^2 *

+ (height.m * 3.281)) * 0.002359737)

[1] 0.9682839 0.3808219 0.1243991

1.5 Reshaping Data

Longitudinal datasets often come in the wrong shape for analysis. When longitudinal
data are kept in a spreadsheet, it is convenient to devote a row to each object being
measured, and include a column for each time point, so that adding new measurements
merely requires adding a column. From the point of view of data analysis, however, it
is easier to think of each observation on the object as being a row. R makes this switch
convenient. Again, we’ll see how this works on a small scale.

> (trees <- data.frame(tree = c(1, 2), species = c("WH", "WL"),

+ dbh.1 = c(45, 52), dbh.2 = c(50, 55),

+ ht.1 = c(30, 35), ht.2 = c(32, 36)))

tree species dbh.1 dbh.2 ht.1 ht.2

1 1 WH 45 50 30 32

2 2 WL 52 55 35 36

> (trees.long <- reshape(trees,

+ direction = "long",

+ varying = list(c("dbh.1","dbh.2"),

+ c("ht.1","ht.2")),

+ v.names = c("dbh","height"),

+ timevar = "time",

+ idvar = "tree"

+))

20

ForValueNet

tree species time dbh height

1.1 1 WH 1 45 30

2.1 2 WL 1 52 35

1.2 1 WH 2 50 32

2.2 2 WL 2 55 36

The arguments are defined as follows:

direction tells R to go wide or go long,

varying is a list of vectors of column names that are to be stacked,

v.names is a vector of the new names for the stacked columns,

timevar is the name of the new column that differentiates between successive measure-
ments on each object, and

idvar is the name of the existing column that differentiates between the objects.

1.6 Sorting Data

R provides the ability to order the elements of objects. Sorting is vital for resolving
merging operations. Here are the top five trees by height.

> ufc[order(ufc$height.m, decreasing=TRUE),][1:5,]

plot tree species dbh height dbh.cm height.m

413 78 3 WP 1030 480 103.0 48.0

532 110 4 GF 812 470 81.2 47.0

457 88 3 WL 708 425 70.8 42.5

297 55 2 DF 998 420 99.8 42.0

378 68 1 GF 780 420 78.0 42.0

order() allows ordering by more than one vector, so, for example, to order by plot
then species then height, we would use

> ufc[order(ufc$plot, ufc$species, ufc$height.m),][1:5,]

plot tree species dbh height dbh.cm height.m

2 2 1 DF 390 205 39 20.5

3 2 2 WL 480 330 48 33.0

5 3 2 GF 520 300 52 30.0

8 3 5 WC 360 207 36 20.7

11 3 8 WC 380 225 38 22.5

Related functions include sort() and rank(), but they only permit the use of one
index.

21

Chapter 2

Hierarchical Models

We now shift to the analysis of hierarchical data using mixed-effects models. These models
are a natural match for many problems that occur commonly in natural resources.

2.1 Introduction

Recall that for fitting a linear regression using the ordinary techniques that you might
be familiar with, you were required to make some assumptions about the nature of the
residuals. Specifically, it was necessary to assume that the residuals were

1. independent

2. identically distributed, and, more often than not,

3. normally distributed.

The assumption of constant variance (homoscedasticity) lives in the identically dis-
tributed assumption (point 2, above). If these assumptions are true, or even defensible,
then life is fine. However, more often than not, we know they’re not true. This can hap-
pen in natural resources data collections because the data may have a temporal structure,
a spatial structure, or a hierarchical structure, or all three1. That structure may or may
not be relevant to your scientific question, but it’s very relevant to the data analysis and
modelling!

I mention several references. None are mandatory to purchase or read, but all will be
useful at some point or other. They are mentioned in approximate order of decreasing
utility for this level.

2.1.1 Methodological

Pinheiro and Bates (2000) details model fitting in R and Splus, which both provide first-
rate graphical model discrimination and assessment tools through the libraries written by
the authors. Good examples are provided. Schabenberger and Pierce (2002) is a treasure-
trove of sensible advice on understanding and fitting the generalized and mixed-effects
models that form the core of this class. There are copious worked examples and there
is plenty of SAS code. You are welcome to interact with the material however you see

1“The first law of ecology is that everything is related to everything else.” – Barry Commoner, US
biologist/environmentalist. The Closing Circle: Nature, Man, and Technology. New York : Knopf, 1971.

22

ForValueNet

fit. Finally, Fitzmaurice et al. (2004) and Gelman and Hill (2007) do a first-rate job of
explaining the practice of fitting mixed-effects models.

In addition to these books, there are numerous articles that try to explain various
elements of these topics in greater or lesser detail. In the past I have found Robinson
(1991) (no relation!) and the discussions that follow it particularly useful.

2.1.2 General

Venables and Ripley (2002) is a must-have if you’re interested in working with R or
Splus. The three previous editions are now legendary in the R/S community for their
thorough explication of modern statistical practice, with generous examples and code.
The R community has also generated some excellent start-up documents. These are freely
available for download at the R project website: http://www.r-project.org. Download
and read any or all of them, writing code all the way. If you’re interested in a deeper
exploration of the programming possibilities in R or S then Venables and Ripley (2000)
is very useful. Some larger-scale projects that I have been involved with have required
calling C programs from R; this reference was very helpful then.

2.2 Some Theory

Mixed effects models contain both fixed and random effects. The model structure is
usually suggested by the underlying design or structure of the data. I like to claim that
random effects are suggested by the design of a study, and fixed effects are suggested by
the hypotheses, but this is not always true.

2.2.1 Effects

“Effects” are predictor variables in a linear or non-linear model2. The discussion of fixed
and random effects can get a little confusing. “Random” and “fixed” aren’t normally held
to be opposite to one another, or even mutually exclusive (except by sheer force of habit!).
Why not “stochastic” and “deterministic”? Or, “sample” and “population”? Or, “local”
and “global”? These labels might tell more of the story. Gelman and Hill (2007) decline
to use random and fixed altogether.

There are different ways to look at these two properties. Unfortunately, it does affect
the data analysis and the conclusions that can be drawn. Modellers may disagree on
whether effects should be fixed or random, and the same effect can switch depending on
circumstances. Certainly, statisticians haven’t agreed on a strategy. Some will claim that
it depends entirely on the inference, and some that it depends entirely on the design.

As the statistical tools that are used to analyze such data become more sophisti-
cated, and models previously unthinkable become mainstream, the inadequacies of old
vocabularies are increasingly obvious.

Random effects

Random effects are those whose levels are supposedly sampled randomly from a range of
possible levels. Generally, although not always, when random effects are considered it is of

2The use of the label “effects” is a hang-over from experimental design, and no longer really suits the
application, but that’s how inertia goes.

23

ForValueNet

interest to connect the results to the broader population. That is, the levels are assumed
to be collectively representative of a broader class of potential levels, about which we
wish to say something. Alternatively, one might say that a random effect is simply one
for which the estimates of location are not of primary interest. Another alternative is
that one might say that a random effect is one that you wish to marginalize, for whatever
reason.

Fixed effects

Fixed effects are generally assumed to be purposively selected, and represent nothing other
than themselves. If an experiment were to be repeated, and the exact same levels of an
experimental effect were purposively produced, then the effect is fixed. However, some
effects which might vary upon reapplication may also be fixed, so this is not definitive.
Alternatively, one might say that a fixed effect is simply one for which the estimates of
location are of first interest. Another alternative is that one might say that a fixed effect
is one that you wish to condition on, for whatever reason.

Mixed-up effects

Some variables do not lend themselves to easy classification, and either knowledge of pro-
cess and/or an epistemological slant is required. These are common in natural resources.
For example, if an experiment that we feel is likely to be affected by climate is repeated
over a number of years, would year be a fixed or a random effect? It is not a random
sample of possible years, but the same years would not recur if the experiment were re-
peated. Likewise the replication of an experiment at known locations: some would claim
that these should be a fixed effect, others that they represent environmental variation,
and therefore they can be considered a random effect.

2.2.2 Model Construction

The process of model construction becomes much more complex now. We have to balance
different approaches and assumptions, each of which carries different implications for the
model and its utility. If we think about the process of fitting an ordinary regression as
being like a flow chart, then adding random effects adds a new dimension to the flow
chart altogether. Therefore it’s very important to plan the approach before beginning.

The number of potential strategies is as varied as the number of models we can fit.
Here is one that we will rely on in our further examples.

1. Choose the minimal set of fixed and random effects for the model.

(a) Choose the fixed effects that must be there. These effects should be such that,
if they are not in the model, the model has no meaning.

(b) Choose the random effects that must be there. These effects should be such
that if they are not in the model, then the model will not adequately reflect
the design.

This is the baseline model, to which others will be compared.

2. Fit this model to the data using tools yet to be discussed, and check the assumption
diagnostics. Iterate through the process of improving the random effects, including:

24

ForValueNet

(a) a heteroskedastic variance structure (several candidates)

(b) a correlation structure (several candidates)

(c) extra random effects (e.g. random slopes)

3. When the diagnostics suggest that the fit is reasonable, consider adding more fixed
effects. At each step, re-examine the diagnostics to be sure that any estimates that
you will use to assess the fixed effects are based on a good match between the data,
model, and assumptions.

A further layer of complexity is that it may well be that the assumptions will not
be met in the absence of certain fixed effects or random effects. In this case, a certain
amount of iteration is inevitable.

It is important to keep in mind that the roles of the fixed and the random effects are
distinct. Fixed effects explain variation. Random effects organize unexplained variation.
At the end of the day you will have a model that surficially seems worse than an simple lin-
ear regression, by most metrics of model quality. Our goal is to find a model/assumption
combination that matches the diagnostics that we examine. Adding random effects adds
information, and improves diagnostic compatibility, but explains no more variation!

The bottom line is that the goal of the analyst is to find the simplest model that
satisfies the necessary regression assumptions and answers the questions of interest. It is
tempting to go hunting for more complex random effects structures, which may provide a
higher maximum likelihood, but if the simple model satisfies the assumptions and answers
the questions then maximizing the likelihood further is a mathematical exercise - not a
statistical one.

Example

In order to illuminate some of these questions, consider the Grand fir stem analysis data.
These data are plotted in Figures 2.1 and 2.2.

> rm(list = ls())

> stage <- read.csv("../data/stage.csv")

> stage$Tree.ID <- factor(stage$Tree.ID)

> stage$Forest.ID <- factor(stage$Forest, labels = c("Kaniksu",

+ "Coeur d’Alene", "St. Joe", "Clearwater", "Nez Perce",

+ "Clark Fork", "Umatilla", "Wallowa", "Payette"))

> stage$HabType.ID <- factor(stage$HabType, labels = c("Ts/Pach",

+ "Ts/Op", "Th/Pach", "AG/Pach", "PA/Pach"))

> stage$dbhib.cm <- stage$Dbhib * 2.54

> stage$height.m <- stage$Height/3.2808399

These habitat codes refer to the climax tree species, which is the most shade-tolerant
species that can grow on the site, and the dominant understorey plant, respectively. Ts
refers to Thuja plicata and Tsuga heterophylla, Th refers to just Thuja plicata, AG is Abies
grandis, PA is Picea engelmanii and Abies lasiocarpa, Pach is Pachistima myrsinites, and
Op is the nasty Oplopanaz horridurn. Grand fir is considered a major climax species for
AG/Pach, a major seral species for Th/Pach and PA/Pach, and a minor seral species for
Ts/Pach and Ts/Op. Loosely speaking, a community is seral if there is evidence that at
least some of the species are temporary, and climax if the community is self-regenerating
Daubenmire (1952).

25

ForValueNet

> opar <- par(las = 1)

> plot(stage$dbhib.cm, stage$height.m, xlab = "Dbhib (cm)",

+ ylab = "Height (m)")

> par(opar)

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

0 20 40 60 80

0

10

20

30

40

50

60

Dbhib (cm)

H
ei

gh
t (

m
)

Figure 2.1: Al Stage’s Grand Fir stem analysis data: height (ft) against diameter (in).
These were dominant and co-dominant trees.

An earlier version of this document required a reasonably fussy nested loop to produce
Figure 2.2, which I include below for reference, and portability.

> colours <- c("deepskyblue","goldenrod","purple",

+ "orangered2","seagreen")

> par(mfrow=c(3,3), pty="m", mar=c(2, 2, 3, 1) + 0.1, las=1)

> for (i in 1:length(levels(stage$Forest.ID))) {

+ thisForest <- levels(stage$Forest.ID)[i]

+ forestData <- stage[stage$Forest.ID==thisForest,]

+ plot(stage$dbhib.cm, stage$height.m, xlab = "", ylab = "",

+ main = thisForest, type="n")

+ theseTrees <- factor(forestData$Tree.ID)

+ legend("topleft",

+ unique(as.character(forestData$HabType.ID)),

+ xjust=0, yjust=1, bty="n",

+ col=colours[unique(forestData$HabType)],

+ lty=unique(forestData$HabType)+1)

+ for (j in 1:length(levels(theseTrees))) {

+ thisTree <- levels(theseTrees)[j]

+ lines(forestData$dbhib.cm[forestData$Tree.ID==thisTree],

+ forestData$height.m[forestData$Tree.ID==thisTree],

+ col=colours[forestData$HabType[forestData$Tree.ID==thisTree]],

+ lty=forestData$HabType[forestData$Tree.ID==thisTree]+1)

26

ForValueNet

+ }

+ }

> mtext("Height (m)", outer=T, side=2, line=2)

> mtext("Diameter (cm)", outer=T, side=1, line=2)

However, application of Hadley Wickham’s powerful ggplot2 package simplifies this
challenge. Thanks are due to Charlotte Wickham for the code.

> require(ggplot2)

> qplot(dbhib.cm, height.m,

+ data = stage, group = Tree.ID,

+ geom = "line",

+ facets = ~ Forest.ID,

+ colour = HabType.ID,

+ linetype = HabType.ID,

+ xlab = "Diameter (cm)", ylab = "Height (m)"

+) +

+ scale_colour_manual(name = "Habitat Type",

+ values = c("deepskyblue","goldenrod","purple",

+ "orangered2","seagreen")) +

+ scale_linetype_manual(name = "Habitat Type", values = c(1,2,4:6))

Exercise 5 Stage by Stage

Consider the problem of predicting tree height from diameter using the Stage data.
There are several candidate predictor variables that could explain variation in the re-
lationship. For example, we might expect the slenderness (height/diameter) relation to
differ between trees, between habitat types, and between forests. Which of these differ-
ent possible effects should be fixed, and which random? Think about the issues outlined
above.

2.2.3 Dilemma

An easy way to approach the advantages to modelling that are offered by mixed-effects
models is to think about a simple example. Imagine that we are interested in constructing
a height-diameter relationship using two randomly selected plots in a forest, and that we
have measured three trees on each. It turns out that the growing conditions are quite
different on the plots, leading to a systematic difference between the height–diameter
relationship on each (Figure 2.3).

The model is:

yi = β0 + β1 × xi + εi (2.1)

where β0 and β1 are fixed but unknown population parameters, and εi are residuals.
The following assumptions are required:

• The true relationship is linear.

• εi ∼ N (0, σ2)

27

ForValueNet

Diameter (cm)

H
ei

gh
t (

m
)

10

20

30

40

50

60

10

20

30

40

50

60

10

20

30

40

50

60

Kaniksu

Clearwater

Umatilla

20 40 60 80

Coeur d'Alene

Nez Perce

Wallowa

20 40 60 80

St. Joe

Clark Fork

Payette

20 40 60 80

Habitat Type

Ts/Pach

Ts/Op

Th/Pach

AG/Pach

PA/Pach

Figure 2.2: Al Stage’s Grand Fir Stem Analysis Data: height (ft, vertical axes) against
diameter (inches, horizontal axes) by national forest. These were dominant and co-
dominant trees.

• The εi are independent.

> trees <- data.frame(plot=factor(c(1, 1, 1, 2, 2, 2)),

+ dbh.cm=c(30, 32, 35, 30, 33, 35),

+ ht.m=c(25, 30, 40, 30, 40, 50))

> plot(trees$dbh.cm, trees$ht.m, pch = c(1, 19)[trees$plot],

+ xlim = c(29, 36), xlab = "Diameter (cm)", ylab = "Height (m)")

> abline(lm(ht.m ~ dbh.cm, data = trees), col = "darkgrey")

If we fit a simple regression to the trees then we obtain a residual/fitted value plot as
displayed in Figure 2.4).

28

ForValueNet

> case.model.1 <- lm(ht.m ~ dbh.cm, data = trees)

> plot(fitted(case.model.1), residuals(case.model.1),

+ ylab = "Residuals", xlab = "Fitted Values", pch = c(1,

+ 19)[trees$plot])

> abline(h = 0, col = "darkgrey")

If we fit a simple regression to the trees with an intercept for each plot then we obtain
a residual/fitted value plot as displayed in Figure 2.5.

> case.model.2 <- lm(ht.m ~ dbh.cm*plot, data=trees)

> plot(fitted(case.model.2), residuals(case.model.2),

+ xlab="Fitted Values", ylab="Residuals",

+ pch=c(1, 19)[trees$plot])

> abline(h=0, col="darkgrey")

●

●

●

●

●

●

29 30 31 32 33 34 35 36

25
30

35
40

45
50

Diameter (cm)

H
ei

gh
t (

m
)

Figure 2.3: Height-
diameter measures for
three trees on two plots
(full and outline symbols),
with line of least squares
regression.

●

●

●

●

●

●

30 35 40 45

−
4

−
2

0
2

4

Fitted Values

R
es

id
ua

ls

Figure 2.4: Residual plot
for height-diameter model
for three trees on two plots
(full and outline symbols).

●

●

●

●

●

●

25 30 35 40 45 50

−
1.

0
−

0.
5

0.
0

0.
5

Fitted Values

R
es

id
ua

ls

Figure 2.5: Residual plot
for height-diameter model
including plot for three
trees on two plots (full and
outline symbols).

These three figures (2.3—2.5) show the analyst’s dilemma. The residuals in Figure
2.4 clearly show a correlation within plot; the plot conditions dictate that all the trees in
the plot will have the same sign of residual. This phenomenon is not seen in Figure 2.5.
However, the model described by Figure 2.5 has no utility, because in order to use it we
have to choose whether the tree belongs to plot 1 or plot 2. If the tree belongs to neither,
which is true of all of the unmeasured trees, then the model can make no prediction. So,
the dilemma is: we can construct a useless model that satisfies the regression assumptions
or a useful model that does not.

2.2.4 Decomposition

The dilemma documented in section 2.2.3 has at least two solutions. One is the use of
mixed-effects models, the other, which we do not cover here, is explicit modeling of the
correlation structure using generalized least squares.

The mixed effects models approach is to decompose the unknown variation into smaller
pieces, each of which themselves satisfies the necessary assumptions. Imagine that we

29

ForValueNet

could take the six residual values presented in Figure 2.4, which have the plot-level cor-
relation structure, and decompose them into two plot-level errors and size within-plot
errors. That is, instead of:

yij − ŷij = ε̂ij (2.2)

we could try:

yij − ŷij = b̂i + ε̂ij (2.3)

Then we merely need to assume that:

• The true relationship is linear.

• bi ∼ N (0, σ2
b)

• εij ∼ N (0, σ2)

• The εij are independent.

However, when the time comes to use the model for prediction, we do not need to
know the plot identity, as the fixed effects do not require it.

This example illustrates the use of random effects. Random effects do not explain
variation, that is the role of the fixed effects. Random effects organize variation, or enforce
a more complex structure upon it, in such a way that a match is possible between the
model assumptions and the diagnostics. In fact, we would expect the overall uncertainty,
measured as root mean squared error, to increase any time we fit in any way other than
by least squares.

2.3 A Simple Example

We start with a very simple and abstract example. First we have to load the package
that holds the mixed-effects code, nlme.

> require(nlme)

> require(lattice)

Now, we generate a simple dataset.

> straw <- data.frame(y = c(10.1, 14.9, 15.9, 13.1, 4.2, 4.8, 5.8, 1.2),

+ x = c(1, 2, 3, 4, 1, 2, 3, 4),

+ group = factor(c(1, 1, 1, 1, 2, 2, 2, 2)))

Let’s plot the data (Figure 2.6).

> colours = c("red", "blue")

> plot(straw$x, straw$y, col = colours[straw$group])

For each model below, examine the output using summary() commands of each model,
and try to ascertain what the differences are between the models, and whether increasing
the complexity seems to be worthwhile. Use anova() commands for the latter purpose.

30

ForValueNet

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

5
10

15

straw$x

st
ra

w
$y

Figure 2.6: A simple dataset to show the use of mixed-effects models.

Ordinary Least Squares

This model is just trying to predict y using x. Using algebra, we would write

yi = β0 + β1 × xi + εi (2.4)

where β0 and β1 are fixed but unknown population parameters, and εi are residuals.
The following assumptions are required:

• True relationship is linear.

• εi ∼ N (0, σ2)

• The εi are independent.

Note that the values of β0 and β1 that minimize the residual sum of squares are the
least squares estimates in any case, and are unbiased if assumption 1 is true. If assump-
tions 2 and 3 are true as well then the estimates also have other desirable properties.

The model is fit using R with the following code:

> basic.1 <- lm(y ~ x, data = straw)

Let’s let each group have its own intercept. In algebra,

yi = β01 + β02 × gi + β1 × xi + εi (2.5)

where β01, β02, and β1 are fixed but unknown population parameters, gi is an indicator
variable with value 0 for group 1 and 1 for group 2, and εi are residuals. The same
assumptions are required as for model 2.4.

The model is fit using R with the following code:

> basic.2 <- lm(y ~ x + group, data = straw)

31

ForValueNet

Let’s let each group have its own intercept and slope.

yi = β01 + β02 × gi + (β11 + β12 × gi)× xi + εi (2.6)

where β01, β02, β12, and β12 are fixed but unknown population parameters, gi is an
indicator variable with value 0 for group 1 and 1 for group 2, and εi are residuals. The
same assumptions are required as for model 2.4.

The model is fit using R with the following code:

> basic.3 <- lm(y ~ x * group, data = straw)

Mixed Effects

Now we need to convert the data to a grouped object - a special kind of dataframe
that allows special nlme() commands. The group will hereby be a random effect. One
command that we can now use is augPred, as seen below. Try it on a few models.

> straw.mixed <- groupedData(y ~ x | group, data = straw)

Now let’s fit the basic mixed-effects model that allows the intercepts to vary randomly
between the groups. We’ll add a subscript for clarity.

yij = β0 + b0i + β1 × xij + εij (2.7)

where β0 and β1 are fixed but unknown population parameters, the b0i are two group-
specific random intercepts, and εij are residuals. The following assumptions are required:

• True relationship is linear.

• b0i ∼ N (0, σ2
b0

)

• εij ∼ N (0, σ2)

• The εij are independent.

The model is fit using R with the following code:

> basic.4 <- lme(y ~ x, random = ~1 | group, data = straw.mixed)

The random syntax can be a little confusing. Here, we’re instructing R to let each
group have its own random intercept. If we wanted to let each group have its own slope
and intercept, we would write random = x. If we wanted to let each group have its own
slope but not intercept, we would write random = x - 1.

We can examine the model in a useful graphic called an augmented prediction plot.
This plot provides a scatterplot of the data, split up by group, and a fitted line which
represents the model predictions (Figure 2.7). We should also check the regression diag-
nostics that are relevant to our assumptions, but we have so few data here that examples
aren’t useful. We will develop these ideas further during the case study, to follow.

> plot(augPred(basic.4))

32

ForValueNet

If we are satisfied with the model diagnostics then we can examine the structure of the
model, including the estimates, using the summary() function. The summary function
presents a collection of useful information about the model. Here we report the default
structure for a summary.lme object. The structure may change in the future, but the
essential information will likely remain the same.

> summary(basic.4)

Firstly, the data.frame object is identified, and fit statistics reported, including
Akaike’s “An Information Criterion”, Schwartz’s “Bayesian Information Criterion”, and
the log likelihood.

Linear mixed-effects model fit by REML

Data: straw.mixed

AIC BIC logLik

43.74387 42.91091 -17.87193

The random effects structure is then described, and estimates are provided for the
parameters. Here we have an intercept for each group, and the standard deviation is
reported, as well as the standard deviation of the residuals within each group.

Random effects:

Formula: ~1 | group

(Intercept) Residual

StdDev: 6.600769 2.493992

The fixed effects structure is next described, in a standard t-table arrangement. Es-
timated correlations between the fixed effects follow.

Fixed effects: y ~ x

Value Std.Error DF t-value p-value

(Intercept) 8.5 5.142963 5 1.6527437 0.1593

x 0.1 0.788670 5 0.1267958 0.9040

Correlation:

(Intr)

x -0.383

The distribution of the within-group residuals, also called the innermost residuals in
the context of strictly hierarchical models by Pinheiro and Bates (2000), is then described.

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.2484738 -0.4255493 0.1749470 0.6387985 1.0078956

Finally the hierarchical structure of the model and data is presented.

Number of Observations: 8

Number of Groups: 2

Next let’s fit a unique variance to each group. The model form will be the same as in
equation 2.7, but the assumptions will be different. Now, we will need to assume that

33

ForValueNet

• True relationship is linear.

• b0i ∼ N (0, σ2
b1

)

• ε1j ∼ N (0, σ2
b01)

• ε2j ∼ N (0, σ2
b02)

• Cov(εab, εcd) = 0 for a 6= c or d 6= d

The model is fit using R with the following code:

> basic.5 <- lme(y ~ x, random = ~1 | group, weights = varIdent(form = ~1 |

+ group), data = straw.mixed)

The summary output is essentially identical to the previous in structure, with the
addition of a new section that summarizes the newly-added variance model. Here we
show only the new portion.

> summary(basic.5)

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | group

Parameter estimates:

2 1

1.000000 1.327843

Finally let’s allow for temporal autocorrelation within each group. Again, the model
form will be the same as in equation 2.7, but the assumptions will be different. Now, we
will need to assume that

• True relationship is linear.

• b0i ∼ N (0, σ2
b1

)

• ε1j ∼ N (0, σ2
b01)

• ε2j ∼ N (0, σ2
b02)

• Cov(εab, εac) = ρ for b 6= c

• The εij are independent otherwise.

The model is fit using R with the following code:

> basic.6 <- lme(y ~ x, random = ~1 | group, weights = varIdent(form = ~1 |

+ group), correlation = corAR1(), data = straw.mixed)

The summary output is again essentially identical to the previous in structure, with
the addition of a new section that summarizes the newly-added correlation model. Here
we show only the new portion.

34

ForValueNet

> summary(basic.6)

Correlation Structure: AR(1)

Formula: ~1 | group

Parameter estimate(s):

Phi

0.8107325

We can summarize some of these differences in a graph (Figure 2.8).

> opar <- par(las=1)

> colours <- c("blue", "darkgreen", "plum")

> plot(straw$x, straw$y)

> for (g in 1:2) lines(straw$x[straw$group == levels(straw$group)[g]],

+ fitted(basic.1)[straw$group ==

+ levels(straw$group)[g]],

+ col = colours[1])

> for (g in 1:2) lines(straw$x[straw$group == levels(straw$group)[g]],

+ fitted(basic.2)[straw$group ==

+ levels(straw$group)[g]],

+ col = colours[2])

> for (g in 1:2) lines(straw$x[straw$group == levels(straw$group)[g]],

+ fitted(basic.4)[straw$group ==

+ levels(straw$group)[g]],

+ col = colours[3])

> legend(2.5, 13, lty = rep(1, 3), col = colours,

+ legend = c("Mean Only", "Intercept Fixed", "Intercept Random"))

> par(opar)

2.3.1 The Deep End

There are numerous different representations of the linear mixed-effects model. We’ll
adopt that suggested by Laird and Ware (1982):

Y = Xβ + Zb + ε

b ∼ N (0,D)

ε ∼ N (0,R)

Here, D and R are preferably constructed using a small number of parameters, which
will be estimated from the data. We’ll think first about estimation using maximum
likelihood.

2.3.2 Maximum Likelihood

Recall that the principle behind maximum likelihood was to find the suite of parameter
estimates that were best supported by the data. This began by writing down the condi-
tional distribution of the observations. For example the pdf for a single observation from
the normal distribution is:

35

ForValueNet

x

y

5

10

15

1.0 1.5 2.0 2.5 3.0 3.5 4.0

●

●

●

●

2

1.0 1.5 2.0 2.5 3.0 3.5 4.0

●

●

●

●

1

Figure 2.7: An augmented plot of the basic
mixed-effects model with random intercepts
fit to the sample dataset.

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

5

10

15

straw$x

st
ra

w
$y

Mean Only
Intercept Fixed
Intercept Random

Figure 2.8: A sample plot showing the dif-
ference between basic.1 (single line), basic.2
(intercepts are fixed), and basic.4 (inter-
cepts are random).

f
(
yi | µ, σ2

)
=

1√
2πσ

e
−(yi−µ)

2

2σ2

So if Y
d
= N (µ,V) then by definition:

f (Y | µ,V) =
|V|−

1
2

(2π)
n
2

e−
1
2
(Y−µ)′V−1(Y−µ)

So in terms of the linear model Y = Xβ, the conditional joint density is

f (Y | X, β,V) =
|V|−

1
2

(2π)
n
2

e−
1
2
(Y−Xβ)′V−1(Y−Xβ)

Reversing the conditioning and taking logs yields:

L (β,V | Y,X) = −1

2
ln (|V|)− n

2
ln (2π)− 1

2
(Y −Xβ)′V−1 (Y −Xβ)

Notice that the parameters we’re interested in are now embedded in the likelihood. Solv-
ing for those parameters should be no more difficult than maximizing the likelihood. In
theory. Now, to find β̂ we take the derivative of L (β,V | y,X) with regards to β:

dL
dβ

=
d

dβ

[
−1

2
(y −Xβ)′V−1 (y −Xβ)

]
this leads to, as we’ve seen earlier

β̂MLE =
(
X′V−1X

)−1
X′V−1Y

but this only works if we know V!

36

ForValueNet

Otherwise, we have to maximize the likelihood as follows. First, substitute

(X′V−1X)−1X′V−1Y

for β in the likelihood. That is, remove all the instances of β, and replace them with
this statement. By this means, β is profiled out of the likelihood. The likelihood is now
only a function of the data and the covariance matrix V . This covariance matrix is itself
a function of the covariance matrices of the random effects, which are structures that
involve hopefully only a few unknown parameters, and that are organized by the model
assumptions.

Maximize the resulting likelihood in order to estimate V̂ , and then calculate the
estimate of the fixed effects via:

β̂MLE =
(
X′V̂−1X

)−1

X′V̂−1Y (2.8)

After some tedious algebra, which is well documented in Schabenberger and Pierce (2002),
we also get the BLUP s.

b̂MLE = DZ′V̂
(
Y −Xβ̂

)
(2.9)

where D is the covariance matrix of the random effects.

2.3.3 Restricted Maximum Likelihood

It was noted earlier that maximum likelihood estimators of covariance parameters are
usually negatively biased. This is because in profiling out the fixed effects, we’re effectively
pretending that we know them, and therefore we are not reducing the degrees of freedom
appropriately. Restricted or Residual Maximum Likelihood will penalize the estimation
based on the model size, and is therefore a preferred strategy. ReML is not unbiased,
except under certain circumstances, but it is less biased than maximum likelihood.

Instead of maximizing the conditional joint likelihood of Y we do so for an almost
arbitrary linear transformation of Y, which we shall denote K. It is almost arbitrary
inasmuch as there are only two constraints: K must have full column rank, or else we
would be creating observations out of thin air, and K must be chosen so that E[K′Y] = 0.

The easiest way to guarantee that these hold is to ensure that [K′X] = 0, and that
K has no more than n − p independent columns, where p is the number of independent
parameters in the model. Notice that we would like K to have as many columns as it can
because this will translate to more realizations for fitting the model. This removes the
fixed effects from consideration and in so doing also penalizes the estimation for model
size. So, the likelihood is restricted by the fixed effects being set to 0, thus, restricted
maximum likelihood. Finally, notice that having a 0 column in K doesn’t actually add
any information to the problem.

So, briefly, ReML involves applying ML, but replacing Y with KY, X with 0, Z
with K′Z, and V with K′VK.

37

ForValueNet

2.4 Case Study

Recall our brutal exposition of the mixed-effects model:

Y = Xβ + Zb + ε

b ∼ N (0,D)

ε ∼ N (0,R)

D and R are covariance matrices, constructed using a small number of parameters,
and the structure of which is suggested by what is known about the data and can be
tested by comparing nested models.

2.4.1 Stage Data

A brief synopsis: a sample of 66 trees was selected in national forests around northern
and central Idaho. According to Stage (pers. comm. 2003), the trees were selected
purposively rather than randomly. Stage (1963) notes that the selected trees“. . . appeared
to have been dominant throughout their lives” and “. . . showed no visible evidence of
crown damage, forks, broken tops, etc.” The habitat type and diameter at 4’6” were also
recorded for each tree, as was the national forest from which it came. Each tree was then
split, and decadal measures were made of height and diameter inside bark at 4’6”.

First, eyeball the data in your spreadsheet of choice. Then import the data as follows:

> rm(list = ls())

> stage <- read.csv("../data/stage.csv")

> dim(stage)

[1] 542 7

> names(stage)

[1] "Tree.ID" "Forest" "HabType" "Decade" "Dbhib" "Height"

[7] "Age"

> sapply(stage, class)

Tree.ID Forest HabType Decade Dbhib Height

"integer" "integer" "integer" "integer" "numeric" "numeric"

Age

"integer"

Some cleaning will be necessary. Let’s start with the factors.

> stage$Tree.ID <- factor(stage$Tree.ID)

> stage$Forest.ID <- factor(stage$Forest, labels = c("Kan",

+ "Cd’A", "StJoe", "Cw", "NP", "CF", "Uma", "Wall",

+ "Ptte"))

> stage$HabType.ID <- factor(stage$HabType, labels = c("Ts/Pach",

+ "Ts/Op", "Th/Pach", "AG/Pach", "PA/Pach"))

38

ForValueNet

The measurements are all imperial (this was about 1960, after all).

> stage$dbhib.cm <- stage$Dbhib * 2.54

> stage$height.m <- stage$Height/3.2808399

> str(stage)

’data.frame’: 542 obs. of 11 variables:

$ Tree.ID : Factor w/ 66 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Forest : int 4 4 4 4 4 4 4 4 4 4 ...

$ HabType : int 5 5 5 5 5 5 5 5 5 5 ...

$ Decade : int 0 1 2 3 4 0 1 2 3 4 ...

$ Dbhib : num 14.6 12.4 8.8 7 4 20 18.8 17 15.9 14 ...

$ Height : num 71.4 61.4 40.1 28.6 19.6 ...

$ Age : int 55 45 35 25 15 107 97 87 77 67 ...

$ Forest.ID : Factor w/ 9 levels "Kan","Cd’A","StJoe",..: 4 4 4 4 4 4 4 4 4 4 ...

$ HabType.ID: Factor w/ 5 levels "Ts/Pach","Ts/Op",..: 5 5 5 5 5 5 5 5 5 5 ...

$ dbhib.cm : num 37.1 31.5 22.4 17.8 10.2 ...

$ height.m : num 21.76 18.71 12.22 8.72 5.97 ...

Height from Diameter

The prediction of height from diameter provides useful and inexpensive information. It
may be that the height/diameter relationship differs among habitat types, or climate
zones, or tree age. Let’s examine the height/diameter model of the trees using a mixed-
effects model. We’ll start with a simple case, using only the oldest measurement from
each tree that provides one.

> stage.old <- stage[stage$Decade == 0,]

Note that this code actually drops a tree, but we can afford to let it go for this
demonstration.

To establish a baseline of normalcy, let’s first fit the model using ordinary least squares.
We drop the sole observation from the Ts/Op habitat type. It will cause trouble otherwise
(the leverage will prove to be very high).

> hd.lm.1 <- lm(height.m ~ dbhib.cm * HabType.ID, data = stage.old,

+ subset = HabType.ID != "Ts/Op")

Formally, I think it is good practice to examine the diagnostics upon which the model
is predicated before examining the model itself, tempting though it may be, so see Figure
2.9. The graph of the residuals vs. fitted values plot (top left) seems good. There is no
suggestion of heteroskedasticity. The Normal Q-Q plot suggests a little wiggle but seems
reasonably straight. There seem to be no points of egregious influence (bottom left; all
Cook’s Distances < 1).

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 4, 1))

> plot(hd.lm.1)

> par(opar)

So, having come this far, we should examine the model summary.

39

ForValueNet

20 30 40 50 60

−
10

−
5

0
5

10

Fitted values

R
es

id
ua

ls

●

●

●
●

●
● ●

● ●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

Residuals vs Fitted

91

390

468
●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 −1 0 1 2

−
3

−
1

0
1

2

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q

91

390

468

20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●
●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scale−Location
91

390

468

0.0 0.1 0.2 0.3 0.4

−
3

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●
●

●
● ●

●●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

Cook's distance 1

0.5

0.5

1
Residuals vs Leverage

91

148

390

Figure 2.9: Regression diagnostics for the ordinary least squares fit of the
Height/Diameter model with habitat type for Stage’s data.

> summary(hd.lm.1)

Call:

lm(formula = height.m ~ dbhib.cm * HabType.ID, data = stage.old,

subset = HabType.ID != "Ts/Op")

Residuals:

Min 1Q Median 3Q Max

-10.3210 -2.1942 0.2218 1.7992 7.9437

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.33840 4.64118 1.797 0.0778

40

ForValueNet

dbhib.cm 0.58995 0.08959 6.585 1.67e-08

HabType.IDTh/Pach 2.42652 5.78392 0.420 0.6764

HabType.IDAG/Pach 0.29582 5.13564 0.058 0.9543

HabType.IDPA/Pach 0.02604 5.96275 0.004 0.9965

dbhib.cm:HabType.IDTh/Pach -0.03224 0.10670 -0.302 0.7637

dbhib.cm:HabType.IDAG/Pach -0.08594 0.10116 -0.850 0.3992

dbhib.cm:HabType.IDPA/Pach -0.10322 0.11794 -0.875 0.3852

(Intercept) .

dbhib.cm ***

HabType.IDTh/Pach

HabType.IDAG/Pach

HabType.IDPA/Pach

dbhib.cm:HabType.IDTh/Pach

dbhib.cm:HabType.IDAG/Pach

dbhib.cm:HabType.IDPA/Pach

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.551 on 56 degrees of freedom

Multiple R-squared: 0.8748, Adjusted R-squared: 0.8591

F-statistic: 55.89 on 7 and 56 DF, p-value: < 2.2e-16

For comparison: the following quantities are in metres. The first is the standard
deviation of the height measures. The second is the standard deviation of the height
measures conditional on the diameter measures and the model.

> sd(stage.old$height.m)

[1] 9.468042

> summary(hd.lm.1)$sigma

[1] 3.551062

It’s also interesting to know how much variation is explained by the habitat type
information. We can assess this similarly. Here we will not worry about diagnostics,
although it should be done.

> summary(lm(height.m ~ dbhib.cm, data = stage.old,

+ subset = HabType.ID != "Ts/Op"))$sigma

[1] 4.101350

Not much!

41

ForValueNet

Mixed effects

Based on our knowledge of the locations of national forests, it seems reasonable to believe
that there will be similarities between trees that grow in the same forest relative to the
population of trees.

However, we’d like to create a model that doesn’t rely on knowing the national forest,
that is, a model that can plausibly be used for trees in other forests. This is acceptable
as long as we are willing to believe that the sample of trees that we are using is represen-
tative of the conditions for which we wish to apply the model. In the absence of other
information, this is a judgement call. Let’s assume it for the moment.

Then, based on the above information, national forest will be a random effect, and
habitat type a fixed effect. That is, we wish to construct a model that can be used for any
forest, that might be more accurate if used correctly within a named national forest, and
provides unique estimates for habitat type. We can later ask how useful the knowledge
of habitat type is, and whether we want to include that in the model.

So, we’ll have two random effects: national forest and tree within national forest. We
have one baseline fixed effect: diameter at breast height inside bark, with to potential
additions: age and habitat type. The lowest-level sampling unit will be the tree, nested
within national forest.

It is convenient to provide a basic structure to R. The structure will help R create
useful graphical diagnostics later in the analysis. Note that you only need to require()

a package once per session, but it doesn’t hurt to do it more often. Here we will scatter
them liberally to remind you what packages you should be using.

> require(nlme)

> stage.old <- groupedData(height.m ~ dbhib.cm | Forest.ID,

+ data = stage.old)

Now, let’s look to our model.

yij = β0 + b0i + β1 × xij + εij (2.10)

yij is the height of tree j in forest i, xij is the diameter of the same tree. β0 and β1

are fixed but unknown parameters and b0i are the forest-specific random and unknown
intercepts. Later we might see if the slope also varies with forest. So, in matrix form,

Y = βX + bZ + ε (2.11)

Y is the column of tree heights, X will be the column of diameters, with a matrix of
0s and 1s to allocate the observations to different habitat types, along with a column for
the ages, if necessary. β will be a vector of parameter estimates. Z will be a matrix of 0s
and 1s to allocate the observations to different forests. b will be a vector of means for the
forests and trees within forests. Finally, we’ll let D be a 9× 9 identity matrix multiplied
by a constant σ2

h, and R be a 66× 66 identity matrix multiplied by a constant σ2.

> hd.lme.1 <- lme(height.m ~ dbhib.cm, random = ~1 |

+ Forest.ID, data = stage.old)

Automatic functions are available to extract and plot the different pieces of the model.
I prefer to extract them and choose my own plotting methods. I recommend that you do
the same. For the pre-programmed versions see Pinheiro and Bates (2000).

42

ForValueNet

A quick burst of jargon: for hierarchical models there is more than one level of fitted
values and residuals. Pinheiro and Bates (2000) adopt the following approach: the out-
ermost residuals and fitted values are conditional only on the fixed effects, the innermost
residuals and fitted values are conditional on the fixed and all the random effects, and
there are as many levels between these extremes as are necessary. So, in a two-level model
like this,

• the outermost residuals are the residuals computed from the outermost fitted values,
which are computed from only the fixed effects. Let’s refer to them as r0.

r0 = yij − β̂0 − β̂1 × xij (2.12)

• the innermost residuals are the residuals computed from the innermost fitted values,
which are computed from the fixed effects and the random effects. Let’s refer to
them as r1.

r1 = yij − β̂0 − b̂0i − β̂1 × xij (2.13)

Furthermore, the mixed-effects apparatus provides us with three kinds of innermost
and outermost residuals:

1. response residuals, simply the difference between the observation and the prediction;

2. Pearson residuals, which are the response residuals scaled by dividing by their
standard deviation; and

3. normalized residuals, which are the Pearson residuals pre-multiplied by the inverse
square-root of the estimated correlation matrix from the model.

The key assumptions that we’re making for our model are that:

1. the model structure is correctly specified;

2. the random effects are normally distributed;

3. the innermost residuals are normally distributed;

4. the innermost residuals are homoscedastic within and across the groups; and

5. the innermost residuals are independent within the groups.

Notice that we’re not making any assumptions about the outermost residuals. How-
ever, they are useful for summarizing the elements of model performance.

We should construct diagnostic graphs to check these assumptions. Note that in
some cases, the assumptions are stated in an untenably broad fashion. Therefore the
sensible strategy is to check for the conditions that can be interpreted in the context of
the design, the data, and the incumbent model. For example, there are infinite ways that
the innermost residuals could fail to have constant variance. What are the important
ways? The situation most likely to lead to problems is if the variance of the residuals is
a function of something, whether that be a fixed effect or a random effect.

Rather than trust my ability to anticipate what the programmers meant by the labels
etc., I want to know what goes into each of my plots. The best way to do that is to
put it there myself. To examine each of the assumptions in turn, I have constructed the
following suite of graphics. These are presented in Figure 2.10.

43

ForValueNet

1. A plot of the outermost fitted values against the observed values of the response
variable. This graph allows an overall summary of the explanatory power of the
model.

(a) How much of the variation is explained?

(b) How much remains?

(c) Is there evidence of lack of fit anywhere in particular?

2. A plot of the innermost fitted values against the innermost Pearson residuals. This
graph allows a check of the assumption of correct model structure.

(a) Is there curvature?

(b) Do the residuals fan out?

3. a qq-plot of the estimated random effects, to check whether they are normally
distributed with constant variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

4. a qq-plot of the Pearson residuals, to check whether they are normally distributed
with constant variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

5. a notched boxplot of the innermost Pearson residuals by the grouping variable, to
see what the within-group distribution looks like.

(a) Do the notches intersect 0?

(b) Is there a trend between the medians of the within-group residuals and the
estimated random effect?

6. a scatterplot of the variance of the Pearson residuals within the forest against the
forest random effect.

(a) Is there a distinct positive or negative trend?

NB: I do not tend to use any of the widely-available statistical tests for homoskedas-
ticity, normality, etc, for diagnostics. I like (Box, 1953): “... to make preliminary tests
on variances is rather like putting to sea in a rowing boat to find out whether conditions
are sufficiently calm for an ocean liner to leave port”.

We use the following code to produce Figure 2.10. Of course there is no need to pack
all the graphical diagnostics into one figure.

> opar <- par(mfrow = c(3, 2), mar = c(4, 4, 3, 1), las = 1, cex.axis = 0.9)

> #### Plot 1

> plot(fitted(hd.lme.1, level=0), stage.old$height.m,

+ xlab = "Fitted Values (height, m.)",

+ ylab = "Observed Values (height, m.)",

44

ForValueNet

+ main = "Model Structure (I)")

> abline(0, 1, col = "blue")

> #### Plot 2

> scatter.smooth(fitted(hd.lme.1), residuals(hd.lme.1, type="pearson"),

+ xlab = "Fitted Values",

+ ylab = "Innermost Residuals",

+ main = "Model Structure (II)")

> abline(h = 0, col = "red")

> #### Plot 3

> ref.forest <- ranef(hd.lme.1)[[1]]

> ref.var.forest <- tapply(residuals(hd.lme.1, type="pearson", level=1),

+ stage.old$Forest.ID, var)

> qqnorm(ref.forest, main="Q-Q Normal - Forest Random Effects")

> qqline(ref.forest, col="red")

> #### Plot 4

> qqnorm(residuals(hd.lme.1, type="pearson"), main="Q-Q Normal - Residuals")

> qqline(residuals(hd.lme.1, type="pearson"), col="red")

> #### Plot 5

> boxplot(residuals(hd.lme.1, type="pearson", level=1) ~ stage.old$Forest.ID,

+ ylab = "Innermost Residuals", xlab = "National Forest",

+ notch=T, varwidth = T, at=rank(ref.forest))

> axis(3, labels=format(ref.forest, dig=2), cex.axis=0.8,

+ at=rank(ref.forest))

> abline(h=0, col="darkgreen")

> #### Plot 6

> plot(ref.forest, ref.var.forest, xlab="Forest Random Effect",

+ ylab="Variance of within-Forest Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col="purple")

> par(opar)

Cross-reference these against Figure 2.10. In fact, all of these residual diagnostics look
good.

But, let’s accept the model as it stands for the moment, and go on to examine the
summary. Refer to Section 2.3 for a detailed description of the output that follows.

> summary(hd.lme.1)

Linear mixed-effects model fit by REML

Data: stage.old

AIC BIC logLik

376.6805 385.2530 -184.3403

Random effects:

Formula: ~1 | Forest.ID

(Intercept) Residual

StdDev: 1.151405 3.937486

Fixed effects: height.m ~ dbhib.cm

Value Std.Error DF t-value p-value

45

ForValueNet

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

20 30 40 50

20

30

40

50

60

Model Structure (I)

Fitted Values (height, m.)

O
bs

er
ve

d
V

al
ue

s
(h

ei
gh

t,
m

.)

●

●

●●
●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

20 30 40 50

−2

−1

0

1

2

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

Q−Q Normal − Forest Random Effects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

Q−Q Normal − Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

Uma Wall Cw Kan CF NP

−2

−1

0

1

2

National Forest

In
ne

rm
os

t R
es

id
ua

ls

−1.030 −0.466 −0.027 0.544 0.858

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

0.0

0.5

1.0

1.5

Forest Random Effect

V
ar

ia
nc

e
of

 w
ith

in
−

F
or

es
t R

es
id

ua
ls

Figure 2.10: Selected diagnostics for the mixed-effects fit of the Height/Diameter ratio
against habitat type and national forest for Stage’s data.

(Intercept) 6.58239 1.7763571 55 3.705556 5e-04

dbhib.cm 0.57036 0.0335347 55 17.008062 0e+00

Correlation:

(Intr)

dbhib.cm -0.931

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.91215622 -0.70233393 0.04308139 0.81189065 1.99133843

Number of Observations: 65

Number of Groups: 9

1. Here we have the overall metrics of model fit, including the log likelihood (recall
that this is the quantity we’re maximizing to make the fit), and the AIC and BIC
statistics. The fixed effects are profiled out of the log-likelihood, so that the log-
likelihood is a function only of the data and two parameters: σ2

h and σ2.

46

ForValueNet

2. The formula reminds us of what we asked for: that the forest be a random effect,
and that a unique intercept be fit for each level of Forest. The square roots of the
estimates of the two parameters are also here.

3. Another metric of model quality is RMSE, which is the estimate of the standard
deviation of the response residuals conditional on only the fixed effects. Note that
3.94 is not theRMSE, it is instead an estimate of the standard deviation of the
response residuals conditional on the fixed and the random effects. Obtaining the
RMSE is relatively easy because the random effects and the residuals are assumed
to be independent.

RMSE =
√
σ2
h + σ2 = 4.1

The last metric of model quality we can get here is the intra-class correlation. This
is the variance of the random effect divided by the sum of the variances of the
random effects and the residuals.

ρ =
σ2
h

σ2
h + σ2

= 0.0788

so about 7.9 % of the variation in height (that isn’t explained by diameter) is
explained by forest. Not very much.

4. Now we have a reminder of the fixed effects model and the estimates of the fixed
effects. We have several columns:

(a) the value of the estimate,

(b) its standard error (not identical here because of the lack of balance),

(c) the degrees of freedom (simply mysterious for various reasons),

(d) the t-value associated with the significance test of the null hypothesis that the
estimate is 0 against the two-tailed alternative that it is not 0, which is really
rather meaningless for this model, and

(e) the p-value associated with that rather meaningless test.

5. This is the correlation matrix for the estimates of the fixed effects. It is estimated
from the design matrix. This comes from the covariance matrix of the fixed effects,
which can be estimated by

(X′V−1X)−1

6. Information about the within-group residuals. Are they symmetric? Are there
egregious outliers? Compare these values to what we know of the standard normal
distribution, for which the median should be about 0, the first quartile at −0.674,
and the third at 0.674.

7. And finally, confirmation that we have the correct number of observations and
groups. This is a useful conclusion to draw; it comforts us that we fit the model
that we thought we had!

A compact summary of the explanatory power of the model can be had from:

47

ForValueNet

> anova(hd.lme.1)

numDF denDF F-value p-value

(Intercept) 1 55 2848.4436 <.0001

dbhib.cm 1 55 289.2742 <.0001

Deeper design

Let’s now treat the Grand fir height/diameter data from Stage (1963) in a different way.
We actually have numerous measurements of height and diameter for each tree. It seems
wasteful to only use the largest.

Let’s still assume that the national forests represent different, purposively selected
sources of climatic variation, and that habitat type represents a randomly selected treat-
ment of environment (no, it’s probably not true, but let’s assume that it is). This is a
randomized block design, where the blocks and the treatment effects are crossed. This
time we’re interested in using all the data. Previously we took only the first measurement.
How will the model change? As always, we begin by setting up the data.

> require(nlme)

> stage <- groupedData(height.m ~ dbhib.cm | Forest.ID/Tree.ID,

+ data = stage)

Let’s say that, based on the above information, national forest will be a random
effect, and habitat type a candidate fixed effect. So, we’ll have anywhere from one to
three fixed effects (dbhib, age, and habitat) and two random effects (forest and tree
within forest). The response variable will now be the height measurement, nested within
the tree, possibly nested within habitat type. Let’s assume, for the moment, that the
measurements are independent within the tree (definitely not true). Now, let’s look to
our model. A simple reasonable candidate model is:

yijk = β0 + b0i + b0ij + β1 × xijk + εijk (2.14)

yijk is the height of tree j in forest i at measurement k, xijk is the diameter of the
same tree. β0 and β1 are fixed but unknown parameters, b0i are the forest-specific random
and unknown intercepts, and b0ij are the tree-specific random and unknown intercepts.
Later we might see if the slope also varies with forest. So, in matrix form, we have:

Y = βX + bZ + ε (2.15)

• Y is the vector of height measurements. The basic unit of Y will be a measurement
within a tree within a forest. It has 542 observations.

• X will be a matrix of 0s, 1s, and diameters, to allocate the observations to different
national forests and different tree diameters at the time of measurement.

• β will be a vector of parameter estimates.

• Z will be a matrix of 0s and 1s to allocate the observations to different forests, and
trees within forests.

• b will be a vector of means for the forests and the trees.

48

ForValueNet

• D will be a block diagonal matrix comprising a 9× 9 identity matrix multiplied by
a constant σ2

f , and then a square matrix for each forest, which will be a diagonal
matrix with variances on the diagonals.

• R will now be a 542× 542 identity matrix multiplied by a constant σ2.

> hd.lme.3 <- lme(height.m ~ dbhib.cm,

+ random = ~1 | Forest.ID/Tree.ID,

+ data = stage)

Now, the key assumptions that we’re making are that:

1. the model structure is correctly specified

2. the tree and forest random effects are normally distributed,

3. the tree random effects are homoscedastic within the forest random effects.

4. the inner-most residuals are normally distributed,

5. the inner-most residuals are homoscedastic within and across the tree random ef-
fects.

6. the innermost residuals are independent within the groups.

We again construct diagnostic graphs to check these assumptions. To examine each
of the assumptions in turn, I have constructed the earlier suite of graphics, along with
some supplementary graphs.

1. an extra qq-plot of the tree-level random effects, to check whether they are normally
distributed with constant variance.

(a) Do the points follow a straight line, or do they exhibit skew or kurtosis?

(b) Are any outliers evident?

2. a notched boxplot of the tree-level random effects by the grouping variable, to see
what the within-group distribution looks like.

(a) Do the notches intersect 0?

(b) Is there a trend between the medians of the within-group residuals and the
estimated random effect?

3. a scatterplot of the variance of the tree-level random effects within the forest against
the forest random effect.

(a) Is there a distinct positive or negative trend?

4. an autocorrelation plot of the within-tree errors.

As a rule of thumb, we need four plots plus three for each random effect. Cross-
reference these against Figures 2.11, 2.12, and 2.13. Each graphic should ideally be
examined separately in its own frame. Here’s the code:

49

ForValueNet

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> plot(fitted(hd.lme.3, level=0), stage$height.m,

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.3), residuals(hd.lme.3, type="pearson"),

+ main = "Model Structure (II)",

+ xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(h = 0, col = "gray")

> acf.resid <- ACF(hd.lme.3, resType = "normal")

> plot(acf.resid$lag[acf.resid$lag < 10.5],

+ acf.resid$ACF[acf.resid$lag < 10.5],

+ type="b", main="Autocorrelation",

+ xlab="Lag", ylab="Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ -stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> abline(0,0,col="gray")

> par(opar)

●
●

●
●

●

●
●

●●●
●

●
●●

●

●

●
●

●●
●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●●●
●

●

●

●

●
●

●
●

●

●

●

●●●●●●●●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●

●●●●●
●●●●

●
●

●

●

●

●

●

●●●
●●

●●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●●
●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●●●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●
●

●

●
●●

●

●

●
●

●
●●

●
●

●

●
●●●

●
●

●
●

●
●

●

●●●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●●●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●
●

●●●
●●●●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●●●
●

●
●

●

●

●
●

●●

●
●

●●●

●

●
●

●●
●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●
●●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●●●

●
●

●
●

●●●●●
●●

●

●

●

●

10 20 30 40 50 60

0

10

20

30

40

50

60

Model Structure (I)

Fitted Values

O
bs

er
ve

d
V

al
ue

s

●
●●

●

●
●

●●●

●●

●

●
●

● ●

●●
●●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●● ●●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●●●●●
●

●
●●

●
●

●
●

●
●

●
●

●●●

●●●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●●●●

●
●

●●
●

●
●●●●●

●
●

●●

●

●

●

●
●

●●

●

●

●
●

●●
●●●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●
●●●

●

●●

●
●

●
●

●

●

●

●

●●

●●
●●●●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●●

●
●

●●●

●

●
●

●
●●

●●

●
●

●●

●●
●●

●

●

●
●

● ●●●●

●●

●

●
●

●

●
●

●●
●

●
●

●

●●●
●

●

●●
●

●

●

●

●

●●

●

●
●●

●●●●
●

●

●

●●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●
●●

●●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●
●

●

●
●●

●●
●

●
●●

●●
●●●

●
●

●
●

●

●●●●●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●●●●

●
●

●
●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●●●

●●
●

●
●

●

●

●
●

●

●●
●

●
●●

●
●

●

●

● ●●
●

●●

●
●

●●

●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●●
●

●

●
●●

●
●

●

●
●●●

●
●

●

●

●

●

●
●●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

0 10 30 50 70

−3

−2

−1

0

1

2

3

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls ●

●

●

●

●

●

●
● ●

●

●

0 2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0

Autocorrelation

Lag

C
or

re
la

tio
n

Figure 2.11: Selected overall diagnostics for the mixed-effects fit of the Height and Di-
ameter model for Stage’s data.

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1),

+ las = 1, cex.axis = 0.9)

> ref.forest <- ranef(hd.lme.3, level = 1, standard = T)[[1]]

> ref.tree <- ranef(hd.lme.3, level = 2, standard = T)[[1]]

> ref.tree.frame <- ranef(hd.lme.3, level = 2, augFrame = T,

+ standard = T)

> ref.var.tree <- tapply(residuals(hd.lme.3, type = "pearson",

+ level = 1), stage$Tree.ID, var)

50

ForValueNet

> ref.var.forest <- tapply(ref.tree, ref.tree.frame$Forest,

+ var)

> qqnorm(ref.forest, main = "QQ plot: Forest")

> qqline(ref.forest)

> qqnorm(ref.tree, main = "QQ plot: Tree")

> qqline(ref.tree)

> qqnorm(residuals(hd.lme.3, type = "pearson"), main = "QQ plot: Residuals")

> qqline(residuals(hd.lme.3, type = "pearson"), col = "red")

> par(opar)

●

●

●

●

●

●

●

●

●

−1.5 −0.5 0.5 1.5

−1.0

−0.5

0.0

0.5

QQ plot: Forest

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

−2 −1 0 1 2

−2

−1

0

1

2

QQ plot: Tree

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●●

●

●
●

●●●

●●

●

●
●

●●

●●
●●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●●●●
●

●

●

●●

●

●

●
●

●

●

●

●

●●●●●
●

●

●
●●

●
●

●
●

●
●

●
●

●●●

●●●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●●●●

●
●

●●
●

●
●●●●●

●
●

●●

●

●

●

●
●

●●

●

●

●
●

●●
●●●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●
●●●

●

●●

●
●

●
●
●

●

●

●

●●

●●●●●●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●●

●
●

●●●

●

●
●

●
●●

●●

●
●

●●

●●
●●

●

●

●
●

●●●●●

●●

●

●
●

●

●
●

●●
●

●
●

●

●●●
●

●

●●
●

●

●

●

●

●●

●

●
●●

●●●●
●

●

●

●●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●
●●

●●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●●
●

●
●

●

●
●

●

●
●●

●●
●

●
●●

●●
●●●

●
●

●
●

●

●●●●●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●●●
●

●
●

●
●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●●●

●●
●

●
●

●

●

●
●

●

●●
●

●
●●

●
●

●

●

●●●
●

●●

●
●

●●

●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●●
●

●

●
●●

●
●

●

●
●●●

●
●

●

●

●

●

●
●●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

QQ plot: Residuals

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

Figure 2.12: Selected quantile-based diagnostics for the mixed-effects fit of the Height
and Diameter model for Stage’s data.

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> boxplot(ref.tree ~ ref.tree.frame$Forest,

+ ylab = "Tree Effects", xlab = "National Forest",

+ notch=T, varwidth = T, at=rank(ref.forest))

> axis(3, labels=format(ref.forest, dig=2), cex.axis=0.8,

+ at=rank(ref.forest))

> abline(h=0, col="darkgreen")

> boxplot(residuals(hd.lme.3, type="pearson", level=1) ~ stage$Tree.ID,

+ ylab = "Innermost Residuals", xlab = "Tree",

+ notch=T, varwidth = T, at=rank(ref.tree))

> axis(3, labels=format(ref.tree, dig=2), cex.axis=0.8,

+ at=rank(ref.tree))

> abline(h=0, col="darkgreen")

> plot(ref.forest, ref.var.forest, xlab="Forest Random Effect",

+ ylab="Variance of within-Forest Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col="purple")

> plot(ref.tree, ref.var.tree, xlab="Tree Random Effect",

+ ylab="Variance of within-Tree Residuals")

> abline(lm(ref.var.forest ~ ref.forest), col="purple")

> par(opar)

Everything in these figures look good except for the residual plots and the correlation
of the within-tree residuals, which show an unacceptably strong signal. At this point one

51

ForValueNet

●

7 9 2 8 4 1 3 6 5

−2

−1

0

1

2

National Forest

Tr
ee

 E
ffe

ct
s

−1.093 −0.492 0.063 0.443 0.764

●
●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

66 28 45 77 42 67 50 1 40

−4

−2

0

2

4

6

Tree
In

ne
rm

os
t R

es
id

ua
ls

−2.200 −0.565 −0.194 0.417 0.984

●
●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

0.0

0.5

1.0

1.5

2.0

2.5

Forest Random Effect

V
ar

ia
nc

e
of

 w
ith

in
−

F
or

es
t R

es
id

ua
ls

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

Tree Random Effect

V
ar

ia
nc

e
of

 w
ith

in
−

Tr
ee

 R
es

id
ua

ls

Figure 2.13: Selected random-effects based diagnostics for the mixed-effects fit of the
Height and Diameter model for Stage’s data.

might think that the next step is to try to fit an autocorrelation function to the within-
tree residuals, but the kink in the residual plot suggests that it seems more valuable to
take a look at a different diagnostic first.

The augmented prediction plot overlays the fitted model with the observed data, at an
optional level within the model. It is constructed using xyplot() from lattice graphics,
and accepts arguments that are relevant to that function, for further customization. This
allows us to sort the trees by national forest, to help us pick up any cluster effects.

> trees.in.forests <- aggregate(x = list(measures = stage$height.m),

+ by = list(tree = stage$Tree.ID, forest = stage$Forest.ID),

+ FUN = length)

> panel.order <- rank(as.numeric(as.character(trees.in.forests$tree)))

> plot(augPred(hd.lme.3), index.cond = list(panel.order))

52

ForValueNet

dbhib.cm

he
ig

ht
.m

0
20
40
60

0 20 40 60 80

●●●●●●
●

●
●

Kan/6

●●●●●
●

●

Kan/7

0 20 40 60 80

●●
●

●
●

●
●

Kan/34

●●●●●●●●
●

●●●●

Kan/65

0 20 40 60 80

●●●●●●●●●●●

Cd'A/11

●●●●●
●●●●

Cd'A/12

0 20 40 60 80

●●●●
●

●●●

Cd'A/13

●●●●●●●●●●

Cd'A/19

0 20 40 60 80

●●
●

●
●

●
●

Cd'A/33

●●●●●
●

●

Cd'A/38

●●
●●●

●●●

Cd'A/39

●●●●●
●

●●

StJoe/4

●
●

●●●●

StJoe/5

●●●●●

StJoe/15

●●●●
●

●●

StJoe/60

●●●●●●●●
●

●
●

●●

StJoe/61

●●●●●
●●

●●
●●

StJoe/77

0
20
40
60

●●
●●●

Cw/1
0

20
40
60

●●●●●●●●●●

Cw/2

●
●●●●●●●●●

●
●

Cw/3

●●●●●●●●●●
●

●

Cw/17

●
●

●
●

Cw/18

●●●●●●●●●●
●

●

Cw/30
●●●●●●●●●

●
●

●
●

Cw/31

●●●●●●●
●●●

●
●

●

Cw/59

●●●●●●●●●●
●

●

NP/28

●●
●

●
●

●
●

NP/29

●
●

●
●

NP/32

●●
●●

●

NP/35

●●●●

NP/36

●●●●●●
●●●

●●●

NP/37

●●
●●●●●●

NP/40

●●●●●●●●●●

NP/48

●●●●
●

●●●

NP/49

●
●

●●

NP/50

0
20
40
60

●●●
●●●

NP/51
0

20
40
60

●●●●●
●●●●●●

NP/52

●●●●●●
●

●●●

NP/53

●●
●

●
●●

NP/54

●●
●

●●

NP/55

●
●

●
●●

NP/56

●●●●●●●●●●
●

●
●

NP/57

●●
●

●●●

NP/58

●●
●

●
●

●

NP/74

●●●●●
●

NP/75

●●●●●

NP/76

●●●●●●●●
●●

●
●●

CF/62

●●●●●
●

●
●●

CF/64

●●●●●●

Uma/63

●●●●
●

●●
●

●●

Uma/68

●●●
●

●●

Uma/69

●●
●

●
●

Uma/70

●●●●●●●●●●

Uma/71

0
20
40
60

●●●●●
●

●
●

●●●

Uma/72
0

20
40
60

●●
●

●

Uma/73

●●●●●●●●●●●

Uma/84

●●●●●
●

●●

Wall/66

●●●●●●●●

Wall/67

●●●●●●●●
●

●
●

Wall/85

●●●
●

●
●

●
●

Ptte/41

●●
●

●●
●

●
●

Ptte/42

●●
●●●●

Ptte/43

●●●●●●●●●●●

Ptte/44

●●
●●●

●●●●

Ptte/45

0 20 40 60 80

●
●●●

Ptte/46

0
20
40
60

●
●

●●

Ptte/47

Figure 2.14: Height against diameter by tree, augmented with predicted lines.

The augmented prediction plot (Figure 2.14) shows that a number of the trees have
curvature in the relationship between height and diameter that the model fails to pick
up, whilst others seem pretty linear. It also shows that the omission of a random slope
appears to be problematic.

At this point we have several options, each of which potentially leads to different
resolutions for our problem, or, more likely, to several further approaches, and so on.
How we proceed depends on our goal. We can:

1. add a quadratic fixed effect;

2. add a quadratic random effect;

3. add quadratic fixed and random effects;

4. correct the model by including a within-tree correlation; and

53

ForValueNet

5. switch to non-linear mixed-effects models and use a more appropriate functional
form.

Since we do not believe that the true relationship between height and diameter could
reasonably be a straight line, let’s add a fixed and a random quadratic diameter effect,
by tree, and see how things go. For a start this will increase the number of diagnostic
graphs that we want to look at to about 22! We’ll show only a sample here.

> hd.lme.4 <- lme(height.m ~ dbhib.cm + I(dbhib.cm^2),

+ random = ~ dbhib.cm + I(dbhib.cm^2) | Tree.ID,

+ data = stage)

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1), las = 1,

+ cex.axis = 0.9)

> plot(fitted(hd.lme.4, level=0), stage$height.m,

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.4), residuals(hd.lme.4, type="pearson"),

+ main = "Model Structure (II)",

+ xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.4, resType = "n")

> plot(acf.resid$lag[acf.resid$lag < 10.5],

+ acf.resid$ACF[acf.resid$lag < 10.5],

+ type="b", main="Autocorrelation",

+ xlab="Lag", ylab="Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5],

+ -stdv[acf.resid$lag < 10.5],

+ col="darkgray")

> abline(0,0,col="gray")

> par(opar)

This has improved the model somewhat, but it looks like we do need to include some
accounting for the within-tree correlation. Pinheiro and Bates (2000) detail the options
that are available. Also, we’ll use update() because that starts the model fitting at the
most recently converged estimates, which speeds up fitting considerably. Finally, we need
to use a different fitting engine, for greater stability.

> hd.lme.5 <- update(hd.lme.4, correlation = corCAR1(),

+ control = lmeControl(opt="optim"))

> opar <- par(mfrow = c(1, 3), mar = c(4, 4, 3, 1),

+ las = 1, cex.axis = 0.9)

> plot(fitted(hd.lme.5, level = 0), stage$height.m,

54

ForValueNet

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●●●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

0 10 20 30 40 50

0

10

20

30

40

50

60

Model Structure (I)

Fitted Values

O
bs

er
ve

d
V

al
ue

s

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●● ●
●

●
●

●
●

●

●

●

●

●

●
● ●

●●
●●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●
●●●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●●
●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

● ●
●

●●
●

●

●

●

●
●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

0 10 20 30 40 50 60

−2

0

2

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls

●

●

●

●
●

●

●

●

●

●

●

0 2 4 6 8 10

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

Lag

C
or

re
la

tio
n

Figure 2.15: Selected diagnostics for the mixed-effects fit of the Height and Diameter
model for Stage’s data.

+ xlab = "Fitted Values", ylab = "Observed Values",

+ main = "Model Structure (I)")

> abline(0, 1, col = "gray")

> scatter.smooth(fitted(hd.lme.5), residuals(hd.lme.5,

+ type = "pearson"), main = "Model Structure (II)",

+ xlab = "Fitted Values", ylab = "Innermost Residuals")

> abline(0, 0, col = "gray")

> acf.resid <- ACF(hd.lme.5, resType = "n")

> plot(acf.resid$lag[acf.resid$lag < 10.5], acf.resid$ACF[acf.resid$lag <

+ 10.5], type = "b", main = "Autocorrelation",

+ xlab = "Lag", ylab = "Correlation")

> stdv <- qnorm(1 - 0.01/2)/sqrt(attr(acf.resid, "n.used"))

> lines(acf.resid$lag[acf.resid$lag < 10.5], stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> lines(acf.resid$lag[acf.resid$lag < 10.5], -stdv[acf.resid$lag <

+ 10.5], col = "darkgray")

> abline(0, 0, col = "gray")

> par(opar)

The correlation is small now.
Another element of the model that we have control over is the variance of the random

effects. We haven’t seen any red flags for heteroskedasticity in the model diagnostics, so
we haven’t worried about it. However, such situations are common enough to make an
example worthwhile.

Two kinds of heteroskedasticity are common and worthy of concern: firstly, that the
variance of the response variable is related to the response variable, and secondly, that
the conditional variance of the observations varied within one or more stratum. Some
combination of the two conditions is also possible.

We can detect these conditions by conditional residual scatterplots of the following
kind. The first is a scatterplot of the innermost Pearson residuals against the fitted values
stratified by habitat type. The code to create this graphic is part of the nlme package.

55

ForValueNet

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●●●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

0 10 20 30 40 50

0

10

20

30

40

50

60

Model Structure (I)

Fitted Values

O
bs

er
ve

d
V

al
ue

s

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●

●●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●●

●

●●
●

●
●

● ●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●●

●

●
● ●

●

●

●●

● ●

●●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●
●

● ●
●

●●
●

●

●

●

●
●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●●

●

●

●
●

●

●
●

●●●
●

●
●

●●
●

● ●

●

●●

●

●

●

●
●

●●

●●
●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

0 10 20 30 40 50 60

−3

−2

−1

0

1

2

3

Model Structure (II)

Fitted Values

In
ne

rm
os

t R
es

id
ua

ls

●

●

● ●

●

●
●

●

●

●

●

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

Lag

C
or

re
la

tio
n

Figure 2.16: Selected diagnostics for the mixed-effects fit of the Height and Diameter
model for Stage’s data.

> plot(hd.lme.5, resid(.) ~ fitted(.) | HabType.ID,

+ layout = c(1, 5))

The second is a quantile plot of the innermost Pearson residuals against the normal
distribution, stratified by habitat type. This code is provided by the lattice package,
and we found a template under ?qqmath.

> qqmath(~ resid(hd.lme.5) | stage$HabType.ID,

+ prepanel = prepanel.qqmathline,

+ panel = function(x, ...) {

+ panel.qqmathline(x, distribution = qnorm)

+ panel.qqmath(x, ...)

+ })

There seems little evidence in either of figures 2.17 and 2.18 to suggest that the
variance model is inadequate.

Had the variance model seemed inadequate, we could have used the weights argument
in a call to update with one of the following approaches:

• weights = varIdent(form = 1 | HabType.ID) This option would allow the ob-
servations within each habitat type to have their own variance.

• weights = varPower() This option would fit a power function for the relationship
between the variance and the predicted mean, and estimate the exponent.

• weights = varPower(form = dbhib.cm | HabType.ID) This option would fit a
power function for the relationship between the variance and the diameter uniquely
within each habitat type, and estimate the exponent.

• weights = varConstPower() This option would fit a power function with a con-
stant for the relationship between the variance and the predicted mean, and estimate
the exponent and constant.

56

ForValueNet

Fitted values

R
es

id
ua

ls

−4
−2

0
2
4

0 10 20 30 40 50 60

●●●
●●

●
●

● ●
●●●●● ●

●●●
●

●●

●
●

●
●●

●
●●

● ●
●

●
●● ●●●

●●
●●●●● ●●●●

●
●

● ●●
●●

●●
● ●

●●●●
●●●●●●●

● ●●
●●●

●

●
●●

Ts/Pach
−4
−2
0
2
4

●●●
●●●

●●

●

●

●
●

●

Ts/Op
−4
−2

0
2
4

●

●●●●
●●

●●●
●

●

●●●●●●
●

●●●●● ●●●●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●

●
●

●

●●●●●●●●
●

●●●
●

●
●●

●
●

●

●
●

●●●
●

●
●

●
●

●●
●●●

● ●
●

●

●
●

●
●●●●●●

●
●●

●

●

● ●
●●●●●●

●●
●●

Th/Pach
−4
−2
0
2
4

●●●●●●

●
●●

●●
●●●●●

●●●●
●●●●

●●
●

●
●

●
●●●

●●●● ●●
●●●

●
●●

●●●
●

●●
●●●

●● ●●
●●●●●● ●

●
●

●●
●●●

●●

●●
●● ●●●

●●
●●

●●●●
●●

●●
●

●
●

●
● ●●
●●

●
●

●●
●●●●

●●●●●
● ●●●●

●

●
●

● ●●●●●
●

●

●●●
●

●●
●

●

●
●●●●●● ●●●

●

●

●●● ●
●●

●
●

●
●

● ●●●
●●

●

●
●

●
●

●●
●●●

●●●●
●

●●●
●●

●●●●●● ●●
●●

●
●

●●
●

● ●
●●●●

● ●●●●
● ●

●
●●●

●
●

●
●

●●

AG/Pach
−4
−2

0
2
4

●●
●●

● ●
●●●

●●

●
●

●● ●●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●●

●●
●●

●

●●● ●●
●●●●

●
●

●
●

●
●

●●●●
●

●
●●

●
●● ●

●

●

●●
● ●●●●●●

● ●●●●●●●●
●

●
●●● ●●

●●●●
●

●●
●

●
●● ●●●

●
●●●

●

●

PA/Pach

Figure 2.17: Innermost Pearson residuals
against fitted values by habitat type.

qnorm

re
si

d(
hd

.lm
e.

5)

−4

−2

0

2

4

−3 −2 −1 0 1 2 3

● ●●●●●
●●●●

●●●
●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●
●
●●

●

●

Ts/Pach

●

●

●●●
●●

●●●●

●

●

Ts/Op

−3 −2 −1 0 1 2 3

●
●●

●●●●
●
●●●●

●●●●●
●●●●●●
●●●
●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●
●●●

●●●
●●●

●

Th/Pach

●
●●

●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●

●●●
●

●

AG/Pach

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

●
●
●●

●
●●●

●●●●●●●
●●
●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●
●
●●●

●
●

●●

●

PA/Pach

Figure 2.18: Quantile plots of innermost
Pearson residuals against the normal distri-
bution, by habitat type.

Other options are available; the function is fully documented in Pinheiro and Bates
(2000).

Then, let’s accept the model as it stands for the moment. This is the baseline model, as
it provides predictions of height from diameter, and satisfies the regression assumptions.
Other options may later prove to be better fitting, for example it may be that including
habitat type or age in the model obviates our use of the quadratic diameter term. Whether
or not this makes for a better model in terms of actual applications will vary!

> plot(augPred(hd.lme.5), index.cond = list(panel.order))

> summary(hd.lme.5)

Linear mixed-effects model fit by REML

Data: stage

AIC BIC logLik

1945.521 1992.708 -961.7604

Random effects:

Formula: ~dbhib.cm + I(dbhib.cm^2) | Tree.ID

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 0.0007992447 (Intr) dbhb.c

dbhib.cm 0.1844016124 -0.243

I(dbhib.cm^2) 0.0030927949 -0.175 -0.817

Residual 1.4223449956

Correlation Structure: Continuous AR(1)

57

ForValueNet

dbhib.cm

he
ig

ht
.m

0
20
40
60

0 20 40 60 80

●●●●●●
●

●
●

6

●●●●●
●

●

7

0 20 40 60 80

●●
●

●
●

●
●

34

●●●●●●●●
●

●●●●

65

0 20 40 60 80

●●●●●●●●●●●

11

●●●●●
●●●●

12

0 20 40 60 80

●●●●
●

●●●

13

●●●●●●●●●●

19

0 20 40 60 80

●●
●

●
●

●
●

33

●●●●●
●

●

38

●●
●●●

●●●

39

●●●●●
●

●●

4

●
●

●●●●

5

●●●●●

15

●●●●
●

●●

60

●●●●●●●●
●

●
●

●●

61

●●●●●
●●

●●
●●

77

0
20
40
60

●●
●●●

1
0

20
40
60

●●●●●●●●●●

2

●
●●●●●●●●●

●
●

3

●●●●●●●●●●
●

●

17

●
●

●
●

18

●●●●●●●●
●

●
●

●

30
●●●●●●●●●

●
●

●
●

31

●●●●●●●
●●

●
●

●
●

59

●●●●●●●●●●
●

●

28

●●
●

●
●

●
●

29

●
●

●
●

32

●●
●●

●

35

●●●●

36

●●●●●●
●●●

●●●

37

●●
●●●●●●

40

●●●●●●●●●●

48

●●●●
●

●●●

49

●
●

●●

50

0
20
40
60

●●●
●●●

51
0

20
40
60

●●●●●
●●●●●●

52

●●●●●●
●

●●●

53

●●
●

●
●●

54

●●
●

●●

55

●
●

●
●●

56

●●●●●●●●●●
●

●
●

57

●●
●

●●●

58

●●
●

●
●

●

74

●●●●●
●

75

●●●●●

76

●●●●●●●●
●●

●
●●

62

●●●●●
●

●
●●

64

●●●
●●●

63

●●●●
●

●●
●

●●

68

●●●
●

●
●

69

●●
●

●
●

70

●●●●●●●●●●

71

0
20
40
60

●●●●●
●

●
●

●●●

72
0

20
40
60

●●
●

●

73

●●●●●●●●●●●

84

●●●●●
●

●●

66

●●●●●●●●

67

●●●●●●●●
●

●
●

85

●●●
●

●
●

●
●

41

●●
●

●●
●

●
●

42

●●
●●●●

43

●●●●●●●●●●●

44

●●
●●●

●●●●

45

0 20 40 60 80

●
●●●

46

0
20
40
60

●
●

●●

47

Figure 2.19: Height against diameter by tree, augmented with predicted lines.

Formula: ~1 | Tree.ID

Parameter estimate(s):

Phi

0.6660391

Fixed effects: height.m ~ dbhib.cm + I(dbhib.cm^2)

Value Std.Error DF t-value p-value

(Intercept) -0.4959656 0.25444240 474 -1.949226 0.0519

dbhib.cm 0.8918030 0.02985028 474 29.875871 0.0000

I(dbhib.cm^2) -0.0032310 0.00052633 474 -6.138857 0.0000

Correlation:

(Intr) dbhb.c

dbhib.cm -0.514

I(dbhib.cm^2) 0.417 -0.867

58

ForValueNet

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.79993933 -0.48264758 -0.00876372 0.41456686 3.38442802

Number of Observations: 542

Number of Groups: 66

2.4.2 Extensions to the model

We can try to extend the baseline model to improve its performance, based on our knowl-
edge of the system. For example, it might be true that the tree age mediates its diameter
- height relationship in a way that has not been captured in the model. We can formally
test this assertion, using the anova function, or we can examine it graphically, using an
added-variable plot, or we can try to fit the model with the term included and see what
effect that has on the residual variation.

An added-variable plot is a graphical summary of the amount of variation that is
uniquely explained by a predictor variable. It can be constructed in R as follows. Here,
we need to decide what level of residuals to choose, as there are several. We adopt the
outermost residuals.

> age.lme.1 <- lme(Age ~ dbhib.cm, random = ~1 | Forest.ID/Tree.ID,

+ data = stage)

> res.Age <- residuals(age.lme.1, level = 0)

> res.HD <- residuals(hd.lme.5, level = 0)

> scatter.smooth(res.Age, res.HD, xlab = "Variation unique to Age",

+ ylab = "Variation in Height after all but Age")

●
● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

● ●
●●

●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●●●●●

●

●

●●

●
●

●
●

●

●
● ●●

●
●

●●●
●

● ●

●

●

●

●

●

●●

●
●

●
●

●●

●

●
●

●●●

●

●

●

●

●●
●

●●

●
●

●●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●●●●●
●

●●

●
● ● ●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●●●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●
●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●
●●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●●●
●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●●
●

●
●
●●

●
●
●

●

●
●

●

●

●● ●

●

●

●●

●

●
●

●
●

●
●

●
●●

●

●●
●

●●●●
●

●

●

●

●●

●
●

●●●

●

●

●

●●
●

●

● ●
●

●●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●●

●
● ●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●
●

●
●

● ●●
●

● ●

●
●

● ●

●

●

●●
●

●●●●

●

●
●●●

●

●

●

●●
●

●●

●

●

●

●

●● ●●●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

−40 −20 0 20 40

−
10

−
5

0
5

10

Variation unique to Age

V
ar

ia
tio

n
in

 H
ei

gh
t a

fte
r

al
l b

ut
 A

ge

Figure 2.20: Added-variable plot for Age against the ratio of Height over Diameter.

In order to assess whether we would be better served by adding habitat type to the
model, we can construct a graphical summary, thus:

59

ForValueNet

> xyplot(stage$height.m ~ fitted(hd.lme.5, level=0) | HabType.ID,

+ xlab="Predicted height (m)",

+ ylab="Observed height (m)",

+ data=stage,

+ panel = function(x, y, subscripts) {

+ panel.xyplot(x, y)

+ panel.abline(0, 1)

+ panel.abline(lm(y ~ x), lty=3)

+ }

+)

Predicted height (m)

O
bs

er
ve

d
he

ig
ht

 (
m

)

0

10

20

30

40

50

60

0 10 20 30 40 50

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

Ts/Pach

●
●

●
●

●
●

●
●

●

●

●
●

●

Ts/Op

0 10 20 30 40 50

●

●
●

●
●

●
●

●
●

●

●

●

●
●●

●●
●●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

Th/Pach

●
●

●●●●●●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●
●

●●
●

●

●

●

AG/Pach

0 10 20 30 40 50

0

10

20

30

40

50

60

●
●

●
●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●●

●

●

●

●

PA/Pach

Figure 2.21: Plot of predicted height against observed height, by habitat type. The solid
line is 1:1, as predicted by the model. The dotted line is the OLS line of best fit within
habitat type.

Neither of figures 2.20 or 2.21 suggest that significant or important improvements
would accrue from adding these terms to the model.

The incumbent model represents the best compromise so far. It seems to have ad-
dressed most of our major concerns in terms of model assumptions. It may be possible to
find a better model with further searching. However, there comes a point of diminishing
returns. Note finally that although the presentation of this sequence of steps seems fairly
linear, in fact there were numerous blind-alleys followed, much looping, and retracing of
steps. This is not a quick process! Introducing random effects to a fixed effects model
increases the number of diagnostics to check and possibilities to follow.

60

ForValueNet

2.5 The Model

Let’s examine our final model.

yijk = β0 + b0i + b0ij (2.16)

+ (β1 + b1i + b1ij)× xijk (2.17)

+ (β2 + b2i + b2ij)× x2
ijk (2.18)

+εijk (2.19)

In matrix form, it is still:

Y = Xβ + Zb + ε

b ∼ N (0,D)

ε ∼ N (0,R)

Here’s the structure.

• Y is the vector of height measurements. It has 542 observations.

• X is a 3× 542 matrix of 1s, diameters and squared diameters.

• β is a vector of length three: it has an intercept, a slope for the linear diameter
term, and a slope for the quadratic diameter term.

• Z is a 225× 542 unit brute. See below.

• b is a vector of intercepts, and slopes for diameter and diameter squared for each
forest, then for each tree. It will be 27 + 198 = 225 elements long. See below. The
predictions can be obtained by ranef(hd.lme.5).

• D will be a block diagonal matrix comprising 9 3 × 3 identical matrices, followed
by 66 3× 3 identical matrices. Each matrix will express the covariance between the
3 random effects within forest or within tree. See below.

• R will now be a 542×542 symmetric matrix for which the off diagonals are 0 between
trees, and a geometric function of the inter-measurement time within trees.

2.5.1 Z

The only role of Z is to allocate the random effects to the appropriate element. This
can be somewhat complicated. Our Z can be divided into two independent sections; a
27 × 542 matrix Zf associated with the forest level effects, and a 198 × 542 matrix Zt

associated with the tree-level effects. In matrix nomenclature:

Z = [Zf | Zt] (2.20)

Now, Zf allocates the random intercept and two slopes to each observation from each
forest. There are 9 forests, so any given row of Zf will contain 24 zeros, a 1, and the

61

ForValueNet

corresponding dbhib and dbhib2. For example, for the row corresponding to measurement
4 on tree 2 in forest 5, we’ll have

Zf = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, d524, d
2
524, 0, 0, 0, . . .) (2.21)

Similarly, Zt allocates the random intercept and two slopes to each observation from
each tree. There are 66 trees, so any given row of Zt will contain 195 zeros, a 1, and the
corresponding dbhib and dbhib2. It will have the same fundamental pattern as above.

2.5.2 b

The purpose of b is to contain all the predicted random effects. Thus it will be 225 units
long, which corresponds to 3 for each level of forest (intercept, slope for diameter, and
slope for diameter squared) and 3 for each level of tree (intercept, slope for diameter, and
slope for diameter squared).

b = (bf10, bf1d, bf1d2, bf20, bf2d, bf2d2, . . . , bt10, bt1d, bt1d2, bt20, bt2d, bt2d2, . . .)
′ (2.22)

The combination of b and Z serves to allocate each random effect to the appropriate
unit and measurement.

2.5.3 D

Finally, D dictates the relationships between the different random effects within the levels
of forest and tree. We’ve assumed that the random effects will be independent between
habitat types and trees. So, there are only two sub-matrices to this matrix, called Df

and Dt.

Df =

 σ2
bf0 σbf0d σbf0d2

σbf0d σ2
bfd σbfdd2

σbf0d2 σbfdd2 σ2
bfd2

 (2.23)

Dt =

 σ2
bt0 σbt0a σbt0d2

σbt0d σ2
btd σbtdd2

σbt0d2 σbtdd2 σ2
btd2

 (2.24)

Then the structure of D is simply 9 repetitions of Df , laid on a diagonal line, followed
by 66 repetitions of Dt laid on the same diagonal, and zeros everywhere else.

Exercise 6 The next steps.

1. Use the tools that we have deployed in this case study to construct a growth model
for tree diameter. Carefully document your code, and make sure that you write
down a model before you fit it. Does it makes sense? Will you be able to interpret
it? Be sure that you check all the necessary diagnostics. And, keep in mind some
excellent advice from Schabenberger and Pierce (2002): “don’t be afraid to start,
and don’t be afraid to finish!”

2. Use the tools that we have deployed in this case study to construct a growth model
for tree height.

62

ForValueNet

2.6 Wrangling

We observed earlier that the use of the control argument was a key tool for the modeller.
This element can introduce a little culture shock. Having ourselves come from traditions
of model fitting for which exact solutions were easily obtained,and convergence was un-
equivocal, it was surprising, not to say disheartening, to find that algorithms sometimes
quit before convergence. Probably we display our naivete.

The statistical tools that we have been discussing in this chapter are too complicated
to admit exact solutions. Accordingly, we have to try to maximize the likelihood, for
example, by iterative means. It is necessary and correct that the authors of the code we
use will have put in checks, to halt the code in situations where they deem continuing
unprofitable.

In any case, bitter experience, and ruthless experimentation have taught us that the
code authors do not necessarily have exactly our problem in mind when they are choosing
the default parameters for their software. In such cases, it is necessary to roll up our
sleeves and plunge our arms into the organs of our analysis. Most of the fitting tools that
we use have control arguments that will report or modify the process of model fitting.
Experimenting with these will often lead to model configurations that fit reliably.

In short, don’t be reluctant to experiment. Any or all of the following strategies might
be necessary to achieve a satisfactory fit of your model to your data.

2.6.1 Monitor

In order to be better informed about the progress of model fitting, we use the msVerbose

argument. It provides a brief, updating description of the progress of the model fit. It
will also point out problems along the way, which help the user decide what is the best
thing to do next.

2.6.2 Meddle

This strategy involves adjusting the fitting tool.
If the model is failing to converge, then often all that is required is an increase in

the number of allowable iterations. The mixed-effects model fitting algorithms in lme

use a hybrid optimization scheme that starts with the EM algorithm and then changes to
Newton-Raphson (Pinheiro and Bates, 2000, p. 80). The latter algorithm is implemented
with two loops, so we have three iteration caps. We have found that increasing both
maxIter and msMaxIter is a useful strategy. If we are feeling patient, we will increase
them to about 10000, and monitor the process to see if the algorithm still wishes to search.
We have occasionally seen iteration counts in excess of 8000 for models that subsequently
converged.

We have also had success with changing the optimization algorithm. That is, models
that have failed to converge with nlminb, by getting caught in a siNgular convergence,
have converged successfully using Nelder-Mead in optim. The default is to use nlminb,
but it may be worth switching to optim, and within optim, choosing between Nelder-

Mead, BFGS, and L-BFGS-B. Each of these algorithms has different properties, and different
strengths and weaknesses. Any might lead more reliably to a satisfactory solution.

63

ForValueNet

2.6.3 Modify

This strategy involves changing the relationship between the model and the data.
The update function fits a new model using the output of an old model as a starting

point. This is an easy way to set the starting points for parameter estimates, and should be
in common use for iterative model building in any case, due to its efficiency. Try dropping
out components of the model that complicate it, fitting a smaller, simpler model, and
then using update to fit the full model.

Alternatively, a number of the model components permit the specification of a starting
point. For example, if we provide the corAR1 function with a suitable number then the
algorithm will use that number as a starting point. Specifying this value can help the
algorithm converge speedily, and sometimes, at all. Experimenting with subsets of the
full model to try to find suitable starting points can be profitable, for example if one has
a correlation model and a variance model.

We can also think about how the elements in the data might be interacting with
the model. Is the dataset unbalanced, or are there outliers, or is it too small? Any of
these conditions can cause problems for fitting algorithms. Examining the data before
fitting any model is standard practice. Be prepared to temporarily delete data points,
or augment under-represented portions, in order to provide the update function with a
reasonable set of starting values.

2.6.4 Compromise

Sometimes a model involves a complicated hierarchy of random effects. It is worth asking
whether or not such depth is warranted, and whether a superficially more complex, but
simpler model, might suffice. The case study in this chapter serves as a good example:
although model fit benefited by allowing each individual tree to have a random slope,
there was no need to allow each national forest to have a random slope. Including a
slope for each forest made the model unnecessarily complicated, and also made fitting
the model much harder. Specifying the smaller model was a little less elegant, however.

Finally, sometimes no matter what exigencies we try, a model will not converge. There
is a point in every analysis where we must decide to cut our losses and go with the model
we have. If we know that the model has shortcomings, then it is our responsibility
to draw attention to those shortcomings. For example, if we are convinced that there
is serial autocorrelation in our residuals, but cannot achieve a reasonable fit using the
available resources, then providing a diagnostic plot of that autocorrelation is essential.
Furthermore, it is important to comment on the likely effect of the model shortcoming
upon inference and prediction. If we are fortunate enough to be able to fit a simpler
model that does include autocorrelation, for example, we might demonstrate what effect
the inclusion of that portion of the model has upon our conclusions. We would do this by
fitting three models: the complex model, the simple model with the autocorrelation, and
the simple model without the autocorrelation. If the difference between the latter two
models is modest, then we have some modest degree of indirect evidence that perhaps
our conclusions will be robust to misspecification of the complex model. It is not ideal,
but we must be pragmatic.

64

ForValueNet

2.7 Appendix - Leave-One-Out Diagnostics

Another important question is whether there are any outliers or high-influence points.
In a case like this it is relatively easy to see from the diagnostics that no point is likely
to dominate the fit in this way. However, a more formal examination of the question is
valuable. To date, there is little peer-reviewed development of the problem of outlier and
influence detection. Schabenberger (2005) provides an overview of the extensive offerings
available in SAS, none of which are presently available in R. Demidenko and Stukel (2005)
also provide some alternatives.

The simplest thing, in the case where a model fit is relatively quick, is to refit the
model dropping each observation one by one, and collecting the results in a vector for
further analysis. This is best handled by using the update() function.

> all.betas <- data.frame(labels=names(unlist(hd.lme.1$coefficients)))

> cook.0 <- cook.1 <- rep(NA, dim(stage.old)[1])

> p.sigma.0 <- length(hd.lme.1$coefficients$fixed) *

+ var(residuals(hd.lme.1, level=0))

> p.sigma.1 <- length(hd.lme.1$coefficients$fixed) *

+ var(residuals(hd.lme.1, level=1))

> for (i in 1:dim(stage.old)[1]) {

+ try({ hd.lme.n <- update(hd.lme.1, data = stage.old[-i,])

+ new.betas <- data.frame(labels=names(unlist(hd.lme.n$coefficients)),

+ coef=unlist(hd.lme.n$coefficients))

+ names(new.betas)[2] <- paste("obs", i, sep=".")

+ all.betas <- merge(all.betas, new.betas, all.x = TRUE)

+ cook.0[i] <- sum((predict(hd.lme.1, level=0, newdata=stage.old) -

+ predict(hd.lme.n, level=0, newdata=stage.old))^2) /

+ p.sigma.0

+ cook.1[i] <- sum((predict(hd.lme.1, level=1, newdata=stage.old) -

+ predict(hd.lme.n, level=1, newdata=stage.old))^2) /

+ p.sigma.1

+ })

+ }

We can then examine these results with graphical diagnostics (Figures 2.22 and 2.23).
The Cook’s Distances presented here are only approximate.

> all.betas <- t(all.betas[, -1])

> len.all <- length(unlist(hd.lme.1$coefficients))

> len.fixed <- length(hd.lme.1$coefficients$fixed)

> len.ran <- length(hd.lme.1$coefficients$random$Forest.ID)

> opar <- par(mfrow=c(len.all, 1), oma=c(2,0,1,0), mar=c(0,4,0,0), las=1)

> for (i in 1:len.fixed) {

+ plot(all.betas[,i], type="l", axes=F, xlab="", ylab="")

+ text(length(all.betas[,i])-1, max(all.betas[,i], na.rm=T),

+ names(unlist(hd.lme.1$coefficients))[i],

+ adj=c(1,1), col="red")

+ axis(2)

65

ForValueNet

+ box()

+ }

> for (i in (len.fixed+1):(len.all)) {

+ plot(all.betas[,i], type="l", axes=F, xlab="", ylab="")

+ text(length(all.betas[,i])-1, max(all.betas[,i], na.rm=T),

+ names(unlist(hd.lme.1$coefficients))[i],

+ adj=c(1,1), col="red")

+ axis(2)

+ box()

+ }

> axis(1)

> par(opar)

fixed.(Intercept)

6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4

fixed.dbhib.cm

0.555
0.560
0.565
0.570
0.575
0.580
0.585

random.Forest.ID1

−0.7
−0.6
−0.5
−0.4
−0.3
−0.2

random.Forest.ID2

−1.0
−0.8
−0.6
−0.4

random.Forest.ID3

0.4
0.6
0.8
1.0
1.2

random.Forest.ID4

0.1
0.2
0.3
0.4
0.5

random.Forest.ID5

−0.8
−0.6
−0.4
−0.2

0.0

random.Forest.ID6

−1.4
−1.2
−1.0
−0.8
−0.6

random.Forest.ID7

0.2
0.4
0.6
0.8
1.0

random.Forest.ID8

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

random.Forest.ID9

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

0 10 20 30 40 50 60

Figure 2.22: The parameter estimates for the fixed effects and predictions for the random
effects resulting from omitting one observation.

> cook <- data.frame(id=stage.old$Tree.ID, fixed=cook.0, forest=cook.1)

> influential <- apply(cook[,2:3], 1, max) > 1

> plot(cook$fixed, cook$forest, type="n",

+ xlab="Outermost (Fixed effects only)",

+ ylab="Innermost (Fixed effects and random effects)")

> points(cook$fixed[!influential], cook$forest[!influential])

> if(sum(influential) > 0)

66

ForValueNet

+ text(cook$fixed[influential], cook$forest[influential],

+ cook$id[influential], col="red", cex=0.85)

0.00 0.05 0.10 0.15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Outermost (Fixed effects only)

In
ne

rm
os

t (
F

ix
ed

 e
ffe

ct
s

an
d

ra
nd

om
 e

ffe
ct

s)

●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

Figure 2.23: Cook’s Distances for outermost and innermost residuals. Values greater than
1 appear in red and are identified by the tree number. The corresponding observations
bear further examination.

And, what about the removal of entire forests? We can compute the effects similarly.

67

Chapter 3

GLMM

In previous sessions, we have covered the analysis of two distinct extensions of the linear
model: first, when the response was, conditionally, distributed according to a member
of the exponential family (generalised linear models), and second, models for which the
response was a function of both fixed and random effects (mixed-effects models). In
this session, we bring these two topics together, with a moderately light touch, to allow
for models that combine these characteristics (generalised linear mixed-effects models,
glmm).

Numerous books and articles have been written about glmm, but the science is yet to
settle. Bolker et al. (2009) has some nice reading. Here, we wander through a brace of
problems that glmm can be used to tackle.

The package that we deploy is lme4 (Bates and Maechler, 2010). This package is
under development, and some functionality is missing for some models — sadly, the
glmm offerings are still relatively nascent.

> library(lme4)

3.1 Wabbits

Dana Sanchez, one-time PhD student in wildlife at the University of Idaho1, did her
dissertation on various aspects of the ecology of pygmy rabbits (Brachylagus idahoensis).
In the analysis picked up for this exercise, Dana was interested in the changes of status of
pygmy rabbit burrows as a function of the status of the burrow, the location, the season,
and the year. The work was published in Sanchez et al. (2009)2.

3.1.1 Burrow Entrance Count

Our first goal is to explain variation in the changes in the number of active burrow
entrances, with specific attention to the effects of season and location. The data comprise
60 burrows, 30 in each of two locations, which have been visited up to 8 times. It
is reasonable to fit a model where the unit of replication is the burrow, rather than
a burrow visit by the researcher, that is, the burrow should be a random effect. The
tentative model will be:

1Now Dr. Sanchez!
2I have permission to use the data for the purposes of demonstration, but they are otherwise encum-

bered.

68

ForValueNet

yij ∼ Poisson(λij) (3.1)

where log λij = αi + βj + bi + cj (3.2)

where yij is the count of active burrow entrances for burrow i at measurement j, αi is a
factor with two levels that depends on the location of burrow i (CG or RC), βj is a factor
with four levels that depends on the season of measurement time j, bi is a burrow-specific
random effect to capture burrow-specific variation, and tj is a year-specific random effect
to capture year-specific variation. Note that here we have crossed random effects: burrow
and year.

We will also assume that:

• The linear form of the model is appropriate.

• the bi are independent and identically distributed; bi ∼ N (0, σ2
b)

We brush over the preparatory steps of using lattice or ggplot2 to construct condi-
tioning plots with the data and smooth lines. However, clever use of graphics to guide
model choice and communicate the model outcome are very valuable.

Note that the model lacks a residual term, and also any assumption about the dis-
tribution of the residuals. This characteristic is a key distinction of the glm: inference
is performed on the conditional distribution of the observations. We fit the model as
follows.

> ent.glmm.1 <- lmer(count ~ season + location + (1|year) + (1|burrow),

+ family = poisson,

+ data = burrows)

Most of the function call is self-explanatory in the context of mixed-effects or gener-
alized linear models. The model formula contains both the fixed and the random effects;
the random effects are denoted as (1|burrow), which asks for each burrow to have a ran-
dom intercept and (1|year), which asks for each year to have its own random intercept.
We are also required to nominate a member of the exponential family for the conditional
distribution.

As always, we need to assess the fit of the model before we proceed further. This
assessment involves two substantial components: checking the conditional distribution of
the response variable, and checking the distribution of the random effects.

In order to check the conditional distribution of the response variable, recall that the
distribution is poisson, conditional on the fixed and the random effects. We can obtain
the linear predictor, which comprises both the fixed and random effects, by

> eta.hat <- ent.glmm.1@eta

Note that we used @ to extract the matrix, instead of the $ with which we have been
more familiar. This is a consequence of the lme4 package supporting S4 classes instead
of S3 classes, and is irrelevant but necessary. This quantity is:

η̂ij = α̂i + β̂j + b̂i + ĉj (3.3)

We now transform the linear predictor using the link function:

69

ForValueNet

> y.ij.hat <- exp(eta.hat)

The model assumption is now that all our observations are conditionally poisson with this
variable as the mean. We can assess this assumption a few ways. The most compact and
useful is to provide a scatterplot of the predicted values against the observed values, and
augment the plot with some lines that reflect increases in the underlying variation. Recall
that the mean and the variance for the poisson distribution are the same. Therefore, we
would expect to see about half the data appearing within the bands ŷij±

√
ŷij, and most

of the data within the bands ŷij ± 2 ·
√
ŷij.

We produce this graph, presented in Figure 3.1, using the following code. The figure
suggests that the nominated (lienar) functional form is appropriate, but that there is
some under-dispersion; that is, the variation of the observations conditional on the model
is too small. Almost all of the data are within one standard deviation of the mean.

> par(las = 1)

> plot(y.ij.hat, burrows$count, xlab = "Fitted Count", ylab = "Observed Count")

> abline(0, 1, col = "red")

> curve(x - sqrt(x), col = "red", lty = 2, add = TRUE)

> curve(x + sqrt(x), col = "red", lty = 2, add = TRUE)

> curve(x - 2 * sqrt(x), col = "red", lty = 2, add = TRUE)

> curve(x + 2 * sqrt(x), col = "red", lty = 2, add = TRUE)

●●●●●●●● ●

●●●●●

●●

●●●●●●●

●●●●●●

●

●

●

●

●●

●●●●●

●●●●

●●●●

●●●●●●●●●●●●●

●

●

●

●●●●

●●

●●

●●●

●

●●●●●

●

●

●●●

●

●

●

●●●●

●●●

●●

●●●●

●●●●●

●●●●●

●

●

●●●●●●

●

●

●●●●●

● ●

●

●●

●

●●●●

●●●

●●

●

●

●●●

●●●

●● ●

●●

●

●●●●

●●●●●●●●●

●●●●●●

●●●●●●●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●●●●●●●●

●

●

●●

●●●●

●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●

●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●

●

●

●●●

●● ●●●●

●●●●●●●●●●

●

●

●

●

●●

●

●

●

●●

●●●

●

●●●●●● ●

●●●

●

●

●

●●●

●

●●●

●●●●●●●

●

●●●●

●●

●

●

●●●●

●●

●●●●●●●●●

●

●●●

●

●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●

●●

●●

● ●●●●●●

●●●●●●●●

●●●

●●●● ●

●●

●●●

●●

●●

●●

●●

●

●●●●●

●

●●

●●●●●●●

2 4 6 8

0

2

4

6

8

10

Fitted Count

O
bs

er
ve

d
C

ou
nt

Figure 3.1: Distributional check for conditional poisson model. The fitted count includes
the fixed and random effects. The solid red line is x = y. The inner dashed lines are one
standard deviation from x = y; the outer dashed lines are two standard deviations from
x = y.

We also need to check the assumption of normality of the random effects. This diag-
nostic graph is presented in Figure 3.2, and is computed using the following code:

> qqmath(ranef(ent.glmm.1, post = TRUE))[["burrow"]]

70

ForValueNet

Standard normal quantiles

−
1

0
1

2

−2 −1 0 1 2

● ●

●

● ● ●
●●●

●●●●●●●●●●●●●●●
●●

●

●
●●●●●●

●●●●●●
●●●●●

●
●
●●

●
●●●

●●
●

●
●

●

●

(Intercept)

Figure 3.2: Diagnostic plot for the basic model of burrow active entrance count. This
plot is a qq-norm plot of the predicted random effects with their prediction intervals.

The assumption of normality seems questionable — there is evidence that the left tail is
shorter and the right tail longer, characteristic of skewed distributions.

We’re not entirely satisfied by the model, so we’ll proceed only tentatively. In a
modelling exercise we may try other terms, transformations, etc., but here we will simply
pledge to interpret all subsequent statistics in the light of the possible failure of our
assumptions to match the data-model interplay. We examine the model by

> print(ent.glmm.1, correlation = FALSE)

Generalized linear mixed model fit by the Laplace approximation

Formula: count ~ season + location + (1 | year) + (1 | burrow)

Data: burrows

AIC BIC logLik deviance

273.1 302.0 -129.5 259.1

Random effects:

Groups Name Variance Std.Dev.

burrow (Intercept) 0.3048711 0.552151

year (Intercept) 0.0027634 0.052568

Number of obs: 462, groups: burrow, 60; year, 3

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.449274 0.162590 2.763 0.00572 **

seasonspring -0.009036 0.138133 -0.065 0.94785

seasonsummer 0.005413 0.133540 0.040 0.96767

seasonwinter 0.040413 0.137322 0.294 0.76853

locationRC -0.002058 0.161621 -0.013 0.98984

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

71

ForValueNet

This output brings us to the saddest point of the statistician’s work. After all that
modelling effort, the compromise, the double-checking, and the reqriting of code to make
the model make sense to us, we get dumped with tiny estimates, large standard errors,
and consequently no action from the Wald normal tests. Still, at least we weren’t out in
the field. Sorry Dana!

These estimates are of the parameters in the linear predictor, so they have only an
indirect interpretation in the context of the count. The coefficients are estimates of the
(partial) gradient of the predictor variable against the log of the entrance count.

3.1.2 Burrow Status

We seek to explain variation in the changes in the status of the burrows, with specific
attention to the effects of season and location. The data comprise 60 burrows, 30 in each
of two locations, which have been visited up to 8 times. It is reasonable to fit a model
where the unit of replication is the burrow, rather than a burrow visit. Now, the response
variable will be whether or not the status of the burrow changes from one observation to
another, and the model will be designed to assess the effects of season and location upon
the transition probability. Only two burrow classes are considered. Our observations are
now Bernoulli distributed, 1 for a change in burrow status, and 0 for no change. The
tentative model will be:

E(yij|bi) = π(xij) =
exp(ηij)

1 + exp(ηij)
(3.4)

where

ηij = αj + βj + λi + αjβj + αjλi + cj + bi (3.5)

and

yij|bi ∼ Independent Bernoulli[π(xij)] (3.6)

where yij is change in burrow status from measurement j−1 to measurement j for burrow
i, αj is a factor with two levels that depends on the status of the burrow at time j − 1,
λi is a factor with two levels that represents the location of burrow i (CG or RC), βj is
a factor with four levels that depends on the season of the timespan from measurement
j− 1 to measurement j, cj is a two-level random effect that represents the year, and bi is
a burrow-specific random effect, bi ∼ N (0, σ2

b), to capture burrow-specific propensity for
change. Interactions are indicated by juxtaposition. We will assume that:

• The linear form of the model is appropriate.

• the bi are independent and identically distributed; bi ∼ N (0, σ2
b)

As before, we skip over the panel graphics that we would ordinarily use to support
our choices of functional form. We fit this model by

> rob.glmm.1 <- lmer(status.change ~ status.p * (season + location) +

+ (1 | year) + (1 | burrow), family = binomial, data = burrow.changes)

72

ForValueNet

Figure 3.3: Distributional check for conditional binomial model. The fitted count includes
the fixed and random effects. The solid red line is x = y. The inner dashed lines are one
standard deviation from x = y; the outer dashed lines are two standard deviations from
x = y.

In order to check the conditional distribution of the response variable, recall that the
distribution is binomial, conditional on the fixed and the random effects. Developing
graphics to reliably assess the former is a work in progress.

We also need to check the assumption of normality of the random effects. This diag-
nostic graph is presented in Figure 3.4, and is computed using the following code:

> qqmath(ranef(rob.glmm.1, post = TRUE))[["burrow"]]

The assumption of normality seems questionable — there is evidence that the left tail is
shorter and the right tail longer, characteristic of skewed distributions.

Standard normal quantiles

−
2

−
1

0
1

2
3

−2 −1 0 1 2

● ● ● ● ● ●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●

●●●

●●
●●

● ● ● ●
●

●

(Intercept)

Figure 3.4: Diagnostic plot for the basic model of burrow status. This plot is a qq-norm
plot of the predicted random effects with their prediction intervals.

We’re not entirely satisfied by the model, so we’ll proceed only tentatively. In a
modelling exercise we may try other terms, transformations, etc., but here we will simply
pledge to interpret all subsequent statistics in the light of the possible failure of our
assumptions to match the data-model interplay. We examine the model by

> print(rob.glmm.1, correlation = FALSE)

Generalized linear mixed model fit by the Laplace approximation

Formula: status.change ~ status.p * (season + location) + (1 | year) + (1 | burrow)

Data: burrow.changes

AIC BIC logLik deviance

276.5 324.0 -126.3 252.5

Random effects:

73

ForValueNet

Groups Name Variance Std.Dev.

burrow (Intercept) 1.2312 1.1096

year (Intercept) 0.0000 0.0000

Number of obs: 384, groups: burrow, 60; year, 2

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.330812 0.729421 -3.195 0.00140 **

status.p2 -0.312818 1.136885 -0.275 0.78320

seasonspring -0.190878 0.822846 -0.232 0.81656

seasonsummer -0.001818 0.814237 -0.002 0.99822

seasonwinter 0.297448 0.776160 0.383 0.70155

locationRC -0.433380 0.594122 -0.729 0.46573

status.p2:seasonspring -0.271483 1.290306 -0.210 0.83335

status.p2:seasonsummer 0.246948 1.244117 0.198 0.84266

status.p2:seasonwinter -1.441174 1.420841 -1.014 0.31043

status.p2:locationRC 0.996747 0.842522 1.183 0.23679

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Sadly, the story is much the same as above.

3.2 Exercise: Cow Flu

Contagious bovine pleuropneumonia (CBPP) is a major disease of cattle in Africa, caused
by a mycoplasma. This dataset describes the serological incidence of CBPP in zebu cattle
during a follow-up survey implemented in 15 commercial herds located in the Boji district
of Ethiopia. The goal of the survey was to study the within-herd spread of CBPP in newly
infected herds. Blood samples were quarterly collected from all animals of these herds to
determine their CBPP status. These data were used to compute the serological incidence
of CBPP (new cases occurring during a given time period). Some data are missing (lost
to follow-up).

These data are provided within the lme4 package.

> data(cbpp)

> m1 <- glmer(cbind(incidence, size - incidence) ~ 0 + period +

+ (1 | herd), nAGQ = 5, cbpp, binomial)

The mysterious argument is nAGQ, which specifies the number of points to use for
adaptive Gaussian quadrature. Explaining the use and choice of this argument requires
a bit of background. We use maximum likelihood as the statistical fitting technique
to determine the parameter estimates for our model. The tricky part is that in order
to be able to evaluate, and thus maximize, the likelihood, we need to estimate all the
parameters. In the case of mixed-effects models, “all the parameters” includes the random
effects. This inclusion is problematic because we chose the random effects to be random
precisely because we didn’t want to be burdened with their estimation! There is no such
dilemma in the normal case (previously covered) because the functional form of the normal
distribution allows the evaluation of the likelihood to be (relatively) conveniently handled.

74

ForValueNet

Now, however, there is no convenient solution. lme4 adopts integration: the effect of the
random effects upon the likelihood is to be integrated out. This process would be very
expensive in computer time, so instead of performing the full integration, we use an
approximation called quadrature to estimate the integral. Quadrature bascially involves
using a weighted function of the value of the function at a set of k points. Obviously,
the higher the number of points at which the function is evaluated, the more accurate
the integral estimate will be, and the longer the process will take. The nAGQ argument
tells R how many points to use. If the argument is omitted then R will use the Laplacian
approximation to the integral, which is the same as taking nAGQ = 1.

From a practical point of view, all you need to know is that approximations are being
used to make our lives easier, and it might be worthwhile fiddling with this parameter
and seeing if higher values change the inference. At present, this value can only be greater
than 1 if there is only one grouping factor. Other than that, we move on . . .

75

Chapter 4

Showcase: equivalence tests

4.1 Introduction

Model validation and environmental monitoring are essential components of the manage-
ment and protection of biodiversity and natural resources. Yet, validation and monitoring
are poorly served by traditional, established statistical tools.

Equivalence tests, described in detail below, are a relatively new branch of statistics.
Equivalence tests are ideal for demonstrating that predictions from a model conform to
field observations, or that field observations conform to legislated norms. Equivalence
tests are more appropriate for these tasks than the traditional hypothesis tests.

A characteristic of the traditional hypothesis tests is that they start from the position
that two things are the same, and try to prove otherwise (that is, they are designed to
split). Equivalence tests start from the position that two things are different, and try to
prove that they are the same. That is, equivalence tests are designed to lump.

The goal of both validation and monitoring is to compare measurements with some
expectation, whether those be from model predictions, as in the case of a model validation
exercise, or from a nominal standard, as in the case of environmental or natural resource
monitoring. In each case, it is desirable to be able to conclude that the predictions and
the observations are the same, or that the field observations meet the required standard.

Of course, we can never conclude that these quantities are identical, instead we wish
to conclude that they are sufficiently similar that differences are irrelevant.

Various authors have recommended the use of equivalence tests instead of the tradi-
tional hypothesis tests for specific situations, for example in environmental management
(McBride, 1999), biology (Parkhurst, 2001), ecology (Dixon and Pechmann, 2005), med-
ical studies (see Berger and Hsu, 1996, among many others), psychology (Rogers et al.,
1993), and model validation (Robinson and Froese, 2004).

Some equivalence tests are available in R via the equivalence package.

> library(equivalence)

4.2 TOST 1

A popular equivalence test is an intersection-union test called the TOST, for Two-One-
Sided Tests, which can be used to try to assess the equivalence between the means of two
populations based only on a sample from each (Schuirmann, 1981; Westlake, 1981). The
TOST is applied as follows.

76

ForValueNet

1. Choose

(a) a test statistic, for example, the mean of the differences between the samples,

(b) a size, which is essentially the probability of a false positive for the test, e.g.
α = 0.05, and

(c) a region of similarity, which is a span of numbers within which we think that if
the two population means are this far apart then we can treat them as though
they were the same.

2. Compute the statistic and two one-sided confidence intervals, one lower and one
upper, each with nominal coverage equal to 1− α.

3. If the overlap of the two intervals computed in step 2 is inside the region determined
in step 1c then conclude that the means of the populations are statistically similar.

This test is easy to apply and interpret, although it is not the most powerful available
(Berger and Hsu, 1996; Wellek, 2003). Here, we run the TOST in R using the equivalence
package.

We have a dataset of height and diameter measurements taken from the University
of Idaho Experimental Forest (UIEF). In the summer of 1991, a stand examination was
made of the Upper Flat Creek unit of the UIEF. 144 plots were located on a square
grid, with north-south inter-plot distance of 134.11 m and east-west inter-plot distance
of 167.64 m. A 7.0 m2/ha BAF variable-radius plot was installed at each plot location.
Every tree in the plot was measured for species and diameter at 1.37 m (dbh), recorded
in mm, and a subsample of trees was measured for height, recorded in dm. The inventory
data are stored in the ufc object, which is provided by the equivalence package.

Our goal is to assess whether the Prognosis height-diameter model is suitable for
this stand. We will assume that the sampling units are the trees, and we will ignore
the clustering in the sample design for the purposes of this demonstration, this point is
discussed further below.

> data(ufc)

> str(ufc, strict.width = "cut")

’data.frame’: 633 obs. of 10 variables:

$ Plot : int 1 2 2 3 3 3 3 3 3 3 ...

$ Tree : int 1 1 2 1 2 3 4 5 6 7 ...

$ Species : Factor w/ 13 levels "","DF","ES","F",..: 1 2 12 11 6..

$ Dbh : int NA 390 480 150 520 310 280 360 340 260 ...

$ Height : int NA 205 330 NA 300 NA NA 207 NA NA ...

$ Height.ft : num NA 67.3 108.3 NA 98.4 ...

$ Dbh.in : num NA 15.4 18.9 5.9 20.5 ...

$ Height.ft.p: num NA 83.5 107.3 44.2 106.1 ...

$ Height.m : num NA 20.5 33 NA 30 NA NA 20.7 NA NA ...

$ Height.m.p : num NA 25.4 32.7 13.5 32.3 ...

The height predictions have already been computed for the trees. Hence our goal is
to perform an equivalence test on the two variables: measured (Height.m) and predicted
(Height.m.p) heights, both expressed in metres. Let’s check these data first.

77

ForValueNet

> lapply(ufc[, c("Height.m", "Height.m.p")], summary)

$Height.m

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.0 18.7 24.0 24.0 29.0 48.0 248.0

$Height.m.p

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

8.921 20.100 25.240 24.260 28.980 46.350 18.000

Our test involves computing a confidence interval for the differences of two means.
We’ll need to invoke the central limit theorem (CLT) in order to compute the confidence
interval. Sometimes we have to do this on blind faith, but here we have a sample of
differences that we can assess for proximity to normality. We provide the qq-norm plot
in Figure 4.1, using the following code.

> error.hats.m <- ufc$Height.m - ufc$Height.m.p

> qqnorm(error.hats.m)

> qqline(error.hats.m)

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●●

−3 −2 −1 0 1 2 3

−
40

−
30

−
20

−
10

0
10

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.1: QQ norm plot of the treee height prediction errors, in metres.

The plot shows good agreement with our needs in order to invoke the CLT, but also
shows that two of the observations differ quite substantially from the predictions. Let’s
drill down and inspect the trees.

> subset(ufc, error.hats.m < -15,

+ select = c(Plot, Tree, Species, Dbh, Height.m, Height.m.p))

78

ForValueNet

Plot Tree Species Dbh Height.m Height.m.p

372 67 6 WL 575 3.4 34.45379

411 78 5 WP 667 0.0 40.69514

The output shows that the two trees in question have very small heights for their
diameters (recall that the diameters are measured in mm). We could quite reasonably
exclude them from further consideration, and then feel comfortable with our use of the
CLT.

> ufc.nice <- subset(ufc, error.hats.m > -15)

We use 2 metres as our region of indifference; that is, we’ll say that if the average
height of the predictions is demonstrably within 2 metres of the average height of the
observations, then the null hypothesis should be rejected. Here, we save the test object
that the function creates for subsequent examination.

> fvs.test <- tost(x = ufc.nice$Height.m.p,

+ y = ufc.nice$Height.m,

+ epsilon = 2)

The returned object is a list of objects, so we’ll dig around it here.

> str(fvs.test)

List of 9

$ mean.diff: num 0.412

$ se.diff : num 0.511

$ alpha : num 0.05

$ ci.diff : atomic [1:2] -0.429 1.254

..- attr(*, "conf.level")= num 0.9

$ df : Named num 738

..- attr(*, "names")= chr "df"

$ epsilon : num 2

$ result : chr "rejected"

$ p.value : num 0.000982

$ check.me : atomic [1:2] -1.18 2

..- attr(*, "conf.level")= num 0.998

The object comprises the following pieces:

1. mean.diff is the difference between the sample means,

2. se.diff is the estimated standard error of the difference between the sample means,

3. alpha is the nominated size of the test,

4. ci.diff is the estimated (1 − α) confidence interval of the difference between the
population means,

5. df is the number of degrees of freedom used for the calculation,

6. epsilon is the nominated region of similarity,

7. result is the outcome of the hypothesis test — the null hypothesis is either rejected
or not rejected,

79

ForValueNet

8. p.value reports 1 minus the coverage of the largest possibly interval that will result
in rejection of the null hypothesis, and

9. check.me reports the largest possibly interval that will result in rejection of the
null hypothesis. As much as anything, it is produced to cross-check the reported
p-value.

Here, the outcome of the hypothesis test is:

> fvs.test$result

[1] "rejected"

with p-value

> fvs.test$p.value

[1] 0.0009824095

We conclude that there is strong evidence to support the use of the FVS height–
diameter model in this stand.

The rationale behind the interpretation of the p-value is the same as that that un-
derpins the connection between confidence intervals and traditional (splitting) hypothesis
tests: the p-value is 1 minus the coverage of the largest possible interval that includes
the null hypothesis value.

4.3 Equivalence plot

Robinson et al. (2005) suggested an extension of the TOST that could be used to identify
components of lack-of-fit, and provide an integrated summary of the relationship between
two variables along with the necessary information to make inference. For want of a better
name it is presently termed an “equivalence plot”.

The equivalence plot involves making a scatterplot of the raw data, and imposing
graphical images on the plot that summarize two TOST-based tests: a test on the inter-
cept (equivalent to a test on the sample mean) and a test on the slope. The plot is called
using the following code:

> ufc.ht <- ufc.nice[!is.na(ufc.nice$Height),]

> equivalence.xyplot(ufc.ht$Height.m ~ ufc.ht$Height.m.p,

+ alpha = 0.05, b0.ii = 1, b1.ii = 0.15, b0.absolute = TRUE,

+ xlab = "Predicted height (m)", ylab = "Measured height (m)")

and is shown in Figure 4.2. We are comparing field measurements of tree height against
predictions from models published by Wykoff et al. (1982). Here the test rejects the null
hypothesis of difference from the intercept to 0 and the slope to 1. The mean of the
model predictions is close to the mean of the height measurements, and the tall trees are
predicted to be taller than the short trees. We can use this model for the population from
which the sample came with some confidence.

It is worth noting that the quality of the match between the data and the model here
is quite extraordinary, and we would normally not expect the concordance between the
model and the test data to clear quite so high a bar.

80

ForValueNet

Predicted height (m)

M
ea

su
re

d
he

ig
ht

 (
m

)

10

20

30

40

50

10 20 30 40

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

Figure 4.2: TOST embedded in a regression framework (see Robinson et al., 2005). The
TOST for the intercept is carried out by assessing whether the (grey) intercept error bar
is inside the grey rectangle, which represents a region of similarity of ±1m of the mean.
The TOST for the slope is carried out by assessing whether the (black) slope error bar is
inside the dotted rays, which represent a region of similarity of ±15% of the slope. Here,
the slope and intercept error bars are coincident, owing to the large sample size. The test
rejects the null hypothesis of difference from the intercept to 0 and the slope to 1.

81

Bibliography

Bates, D., Maechler, M., 2010. lme4: Linear mixed-effects models using S4 classes. R
package version 0.999375-33.
URL http://CRAN.R-project.org/package=lme4

Berger, R. L., Hsu, J. C., 1996. Bioequivalence trials, intersection-union tests and equiv-
alence confidence sets. Statistical Science 11 (4), 283–319.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M.
H. H., White, J.-S. S., 2009. Generalized linear mixed models: a practical guide for
ecology and evolution. Trends in Ecology & Evolution 24 (3), 127–135.

Box, G. E. P., 1953. Non-normality and tests on variances. Biometrika 40 (3/4), 318–335.

Daubenmire, R., 1952. Forest vegetation of Northern Idaho and adjacent Washington,
and its bearing on concepts of vegetation classification. Ecological Monographs 22,
301–330.

Demidenko, E., Stukel, T. A., 2005. Influence analysis for linear mixed-effects models.
Statistics in Medicine 24, 893–909.

Dixon, P. M., Pechmann, J. H. K., 2005. A statistical test to show negligible trend.
Ecology 86 (7), 1751–1756.

Fitzmaurice, G., Laird, N., Ware, J., 2004. Applied Longitudinal Analysis. John Wiley
& Sons, 506 p.

Gelman, A., Hill, J., 2007. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press, 625 p.

Laird, N. M., Ware, J. H., 1982. Random-effects models for longitudinal data. Biometrics
38, 963–974.

McBride, G. B., 1999. Equivalence tests can enhance environmental science and manage-
ment. Australian and New Zealand Journal of Statistics 41 (1), 19–29.

Parkhurst, D. F., 2001. Statistical significance tests: equivalence and reverse tests should
reduce misinterpretation. Bioscience 51 (12), 1051–1057.

Pinheiro, J. C., Bates, D. M., 2000. Mixed-effects models in S and Splus. Springer-Verlag,
528 p.

Robinson, A. P., Duursma, R. A., Marshall, J. D., 2005. A regression-based equivalence
test for model validation: shifting the burden of proof. Tree Physiology 25, 903–913.

82

http://CRAN.R-project.org/package=lme4

ForValueNet

Robinson, A. P., Froese, R. E., 2004. Model validation using equivalence tests. Ecological
Modelling 176, 349–358.

Robinson, G. K., 1991. That BLUP is a good thing: The estimation of random effects.
Statistical Science 6 (1), 15–32.

Rogers, J. L., Howard, K. I., Vessey, J. T., 1993. Using significance tests to evaluate
equivalence between two experimental groups. Psychological Bulletin 113 (3), 553–565.

Sanchez, D., Rachlow, J., Robinson, A., Johnson, T., 2009. Survey indicators for pygmy
rabbits: Temporal trends of burrow systems and pellets. The Western North American
Naturalist 69 (4), 426–436.

Schabenberger, O., 2005. Mixed model influence diagnostics. In: SUGI 29. SAS Institute,
pp. Paper 189–29.

Schabenberger, O., Pierce, F. J., 2002. Contemporary statistical models for the plant and
soil sciences. CRC Press, 738 p.

Schuirmann, D. L., 1981. On hypothesis testing to determine if the mean of a normal
distribution is contained in a known interval. Biometrics 37, 617.

Stage, A. R., 1963. A mathematical approach to polymorphic site index curves for grand
fir. Forest Science 9 (2), 167–180.

Venables, W. N., Ripley, B. D., 2000. S programming. Springer-Verlag, 264 p.

Venables, W. N., Ripley, B. D., 2002. Modern applied statistics with S and Splus, 4th
Ed., 4th Edition. Springer-Verlag, 495 p.

Wellek, S., 2003. Testing statistical hypotheses of equivalence. Chapman and Hall/CRC.

Westlake, W. J., 1981. Response to T.B.L. Kirkwood: Bioequivalence testing–a need to
rethink. Biometrics 37, 589–594.

Wykoff, W. R., Crookston, N. L., Stage, A. R., 1982. User’s guide to the Stand Prognosis
model. GTR-INT 133, USDA Forest Service.

83

	Data
	Data: Objects and Classes
	Classes of Data
	Numeric
	String
	Factor
	Logical
	Missing Data

	Structures for Data
	Vector
	Dataframe
	Matrix (Array)
	List

	Merging Data
	Reshaping Data
	Sorting Data

	Hierarchical Models
	Introduction
	Methodological
	General

	Some Theory
	Effects
	Model Construction
	Dilemma
	Decomposition

	A Simple Example
	The Deep End
	Maximum Likelihood
	Restricted Maximum Likelihood

	Case Study
	Stage Data
	Extensions to the model

	The Model
	Z
	b
	D

	Wrangling
	Monitor
	Meddle
	Modify
	Compromise

	Appendix - Leave-One-Out Diagnostics

	GLMM
	Wabbits
	Burrow Entrance Count
	Burrow Status

	Exercise: Cow Flu

	Showcase: equivalence tests
	Introduction
	TOST 1
	Equivalence plot

	Bibliography

