Comparison of Nearest Neighbor Methods for Estimating Basal Area
and Stems per Hectare Using Aerial Auxiliary Variables
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Abstract: Simulations were used to compare variable-space nearest neighbor methods for imputing stems per
ha and basal area per ha (ground measured) for complex stands (many species and sizes) of southeastern British
Columbia, Canada. Species composition and other characteristics obtained for every stand by interpreting aerial
photography were used as auxiliary variables. The simulations included three distance metrics (squared
Euclidean distance, most similar neighbor, and absolute distance), three intensities of stands with full informa-
tion (20%, 50%, and 80%), two sets of aerial variables (mixed versus moderately high correlations with ground
variables), and three averaging methods (nearest neighbor, average of three nearest neighbors, and distance
weighted average of three nearest neighbors weighted). Increasing the number of stands with full information to
50% from 20% resulted in increased accuracy, with no noticeable improvement with a further increase to 80%.
Of the three distance metrics, the most similar neighbor measure gave good results in imputing stems per ha and
basal area per ha, particularly when there was a mixture of correlations, high and moderate, between the auxiliary
(aerial) variables, and the ground variables. No large gain was noted in using the average of three neighbors
rather than a single neighbor. FOR. ScI. 51(2):109-119.
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OMMONLY, FORESTED LANDS ARE DIVIDED into

polygons based on forest type. Information for each

polygon often includes variables that are measured
on aerial photographs (e.g., height class), and additional
variables derived from the aerial variables using yield or
other models (e.g., estimated volume per ha). Ground sam-
pling of every polygon for detailed information, such as the
amount of coarse woody debris, stand structure, or tree lists
(stems per ha by species and diameter) is usually not pos-
sible. However, this information would be useful to repre-
sent the current inventory, and as model inputs to project
future conditions.

Imputation methods have been used to estimate the vari-
ables of interest from auxiliary variables and spatial posi-
tions. For geostatistical data, where each observation rep-
resents a point in continuous space (Cressie 1993, Schaben-
berger and Pierce 2002), a wide variety of kriging methods
(e.g., universal kriging, regression kriging; see Odeh et al.
1995 and Nalder and Wein 1998 for comparisons of meth-
ods) and spatial nearest neighbor methods have been used to
estimate variables of interest for unsampled points in space
from sampled points in space (Cressie 1993, Schabenberger
and Pierce 2002). However, forest polygons (stands) repre-
sent an aggregate of space, termed irregular lattice data
(Cressie 1993, Schabenberger and Pierce 2002). Unlike
climate and soils data, forests across stand boundaries are
not continuous over space (Tuominen et al. 2003 [1]).

Finally, there may be many variables of interest that need to
be imputed for each stand. For these types of data, kriging
and spatial nearest neighbor (NN) methods are not strictly
appropriate (Cressie 1993, Schabenberger and Pierce 2002).
Instead, variable-space NN methods (also called feature-
space or spectral-space NN methods when remote sensing
data are used [e.g., Hardin 1994] or covariate space, [e.g.,
McRoberts et al. 2002]) have been demonstrated by many
authors to estimate the variables of interest (Y) for un-
sampled polygons via similarities in auxiliary (X)
variable-space.

Variable-space NN methods for forest polygon data in-
volve choosing a substitute for stands without detailed in-
formation (target stands) from a pool of stands that have
detailed tree and stand data (reference stands), based on
stand (or plot) level characteristics (X variables) that are
available for every polygon. Variable-space NN methods
include NN (e.g., Moeur 2000), most similar neighbor
(Moeur and Stage 1995), k-NN (e.g., Maltamo and Kangas
1998), and tabular imputation methods (Ek et al. 1997,
Hassani et al. 2004). The distance metric used to measure
similarity, and the number of neighbors selected and aver-
aged to obtain the imputed values, differ among
applications.

In comparison to other estimation methods using auxil-
iary variables (e.g., regression or double sampling meth-
ods), for variable-space NN methods:
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1. The averages calculated using the imputed and measured
Y variables will not be unbiased estimates of the popu-
lation mean (see example in Appendix 1).

2. As sample size increases (more stands with full infor-
mation), there is no guarantee that the mean of the Ys
(measured and estimated values) will approach the true
mean (not consistent; see simple example given in Ap-
pendix 1). Better matches would be found as the sample
size increases, because the X values for the selected
reference stand would be closer (or the same distance) to
their target stand-measured X values. However, there is
no guarantee that the estimated Y values would be closer
to their estimated values.

3. If more than one neighbor is averaged and used to
estimate the missing Y values, some estimates may not
be within the realm of real values (e.g., averaging one
reference stand with species 1 and 2, with another of
species 2 and 3, results in an average with three species,
a combination that may not exist; Temesgen et al. 2004).
Also, the variance in the estimates declines as more
neighbors are averaged.

4. There is no guarantee that increasing the number of X
variables will improve the results (McRoberts et al.
2002).

5. If there are several Y variables or “rare” polygons
(stands), a good match will be very difficult to find
(McRoberts et al. 2002).

Despite the disadvantages of NN methods, they are very
attractive, because they:

1. can retain attribute variance structures of the data (Moeur
and Stage 1995, Ek et al. 1997);

2. will result in estimates that are within the bounds of
biological reality (Moeur and Stage 1995, Haara et al.
1997), and the logical relationships among Y variables
will be maintained. Because a match is found from the
sampled polygons, the estimate will, necessarily, exist in
the population, if a single neighbor is used in the
imputation;

3. are distribution-free (nonparametric [2]), in that there is
no assumption of distributional characteristics for the
auxiliary variables nor for the variables of interest (Haara
et al. 1997; Katila and Tomppo 2002); and

4. are multivariate, in that many variables of interest can be
estimated at once for each polygon (Katila and Tomppo
2002).

Choices in using variable-space NN methods include: (1)
What should be used as the distance metric in locating
similar polygons? (2) How does the strength of the relation-
ships between the auxiliary variables and the detailed infor-
mation affect the choice of the distance metric? (3) What
proportion of stands with full information is needed to
obtain a good result? (4) Does averaging more than one
polygon result in a better substitute? and (5) What fit
statistics give useful measures of whether the substitute is
suitable, because unbiasedness and consistency of estimates
is not assured? Research concerning these choices has been
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presented in the literature, including previously referenced
authors. However, much of this research has been con-
ducted in stands with few species, and one or two vertical
strata. Also, little was found on the sample size needed to
obtain good matches.

In this article, simulations were used to examine these
issues in the case of imputing stems per ha and basal area
per ha (ground measured) to every polygon for complex
stands (many species and sizes) in southeastern British
Columbia (BC), Canada. Auxiliary variables were species
composition and other characteristics obtained by interpret-
ing aerial photography. The simulations included three dis-
tance metrics, three averaging methods, two sets of aerial
variables, and three intensities of stands with full informa-
tion (ground and aerial data; 20%, 50%, and 80%).

Simulations
Data Description

Ground and aerial data for 96 complex stands collected
in 1996 for southeastern BC were used for this study. The
stands included several tree species: Douglas-fir (Pseudo-
tsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus con-
torta Dougl. ex Loud.), western white pine (Pinus monti-
cola Dougl. ex D.Don), Ponderosa pine (Pinus ponderosa
Dougl. ex Laws.), whitebark pine (Pinus albicaulis
Englem.), western larch (Larix occidentalis Nutt.), trem-
bling aspen (Populus tremuloides Michx.), subalpine fir
(Abies lasiocarpa (Hook.) Nutt.), spruce (Picea glauca
(Moench) Voss and P. engelmannii Parry ex Engelm. and
hybrids), black cottonwood (Populus trichocarpa Torr. &
Gray), western hemlock (Tsuga heterophylla (Raf.) Sarg.),
white birch (Betula paperifera Marsh.), and western red-
cedar (Thuja plicata Donn. ex D. Don). The aerial variables
available from inventory databases for each stand were
percent crown closure class, percent composition by spe-
cies, height class, age class, and site index. Height classes 2,
3, and 4 were assigned heights of 15, 25, and 35 meters,
respectively, and age classes 4, 5, 6, 7, and 8 were assigned
ages of 70, 90, 110, 130 and 180 years, respectively, based
on the class midpoints. Using the aerial information, a stand
level growth and yield model, Variable Density Yield Pro-
jection model (VDYP) (BC Ministry of Forests 1995), was
used to obtain estimates of volume per ha, average height,
and quadratic mean diameter for each stand. For the ground
data, four variable radius plots were randomly located in
each stand, and the species, dbh (1.3 m aboveground), and
status (i.e., live or dead) for all trees with a dbh of 12.5 cm
or greater were recorded, along with other tree variables
(BC Ministry of Forests 1998). The live trees for all ground
data were compiled, and, for each stand, the average volume
per ha, stems per ha, and basal area per ha were obtained for
all species combined, and by species. The variable ranges in
the data set were quite wide, including predicted volumes
from 84.3 to 938.0 m>/ha (Table 1). The 96 sampled stands
were randomly divided into reference and target stands for
simulations.



Table 1. Descriptive statistics for ground and aerial variables for the 96 polygons (FD = Douglas fir, PL. = pine, Predicted volume/ha = predicted

volume per ha from a stand level model)

Correlation Correlation
Standard With With Basal
Mean Deviation Minimum Maximum Stems/ha area/ha
Ground
Stems/ha 807.7 358.6 220.1 2413.6
Basal area/ha 37.2 144 15.0 87.5
Aerial
Age Class 116.6 43.5 70.0 180.0 —0.2643 0.2362
Crown closure Class 48.4 15.1 20.0 80.0 0.4242 0.3172
Height Class 23.3 6.9 15.0 35.0 —0.1843 0.3790
Percent FD 21.5 28.3 0.0 100.0 —0.1666 —0.0198
Percent PL 25.9 333 0.0 100.0 0.2816 —0.1854
Predicted Volume/ha 3734 184.0 84.3 938.0 —0.0464 0.5336

Range of Simulations
Distance Metrics

For all distance metrics, standardized values are often
used to remove the effects of scale of the X variables. For
imputation using continuous variables, commonly used dis-
tance metrics include:

1. Squared Euclidean distance for standardized X vari-
ables, calculated as

d]2] = (Xi - )(j)’(xi - Xj)»

where, X; is a vector of standardized values of the stand
level variables for the ith target polygon, and X; is a vector
of standardized values of the aerial variable for the jth
reference polygon. The square root of this distance metric
was used by Korhonen and Kangas (1997).

2. Most similar neighbor (Moeur and Stage 1995),

d12/ = (Xi - X_,‘)TAZF’(XI' - Xj)7

based on a canonical correlation of the X and Y variable sets,
where I' is a matrix of standardized canonical coefficients
for the X variables, and A? is a diagonal matrix of squared
canonical correlations.

3. Absolute distance or weighted absolute distance
(Maltamo and Kangas 1998),

p
d;= > cibey — Xjtls
=1
where [ is one of the p stand characteristics, and ¢, is the
weight for stand variable /.

For imputations using categorical variables, or a mixture
of categorical and continuous variables, other measures
could be used, including similarity (or distance measures)
that use the number of matches for class data, such as the
City Block distance (Dillon and Goldstein 1984) and the
generalized distance for discrete variables (Kurczynski
1970).

The variables selected for use in these simulations were
all continuous variables. Therefore, squared Euclidean dis-
tance, most similar neighbor, and absolute distance (with
equal weights) were used. The squared Euclidean distance

(Equation 1) gives equal weight to each of the X variables,
but larger distances are given more emphasis because these
are squared. The absolute value of the distance (Equation 3)
reduces the emphasis of larger differences. The most similar
neighbor distance metric (Equation 2) uses the strength of
the relationship between the X and Y variable sets to provide
weights; stronger correlations result in higher weights for a
particular X variable. Equation 2 is intuitively appealing,
because higher weights on X variables that have high cor-
relations with the Y variables might be expected to result in
better matches for the variables of interest, the Y set. How-
ever, because the selection of neighbors is multivariate in
nature, this might result in a particularly good match for one
Y variable, and not for other Y variables. Equal weighting of
the X variables might result in a better match for overall Y
variables, combined, and was used with Equation 3.

Single or Weighting of Many Reference
Polygons

Once NN are found for the target stand, the imputation
of detailed information from the Y set of variables has been
based on:

1. using the information for the NN as the substitute (e.g.,
Moeur and Stage 1995);

2. using an average of the Y variables over the kth nearest
neighbors (KNN; e.g., Korhonen and Kangas 1997, Mal-
tamo and Kangas 1998); or

3. using a weighted average of the kth nearest neighbors,
often based on distance from (or similarity to) the target
stand (WKNN; e.g., Maltamo and Kangas 1998).

The choice of how many neighbors to use and what
weight to use in calculating the average values is not clear,
and is sometimes chosen to meet an objective criterion (e.g.,
small root mean squared error used by McRoberts et al.
2002 for pixel classification). Tuominen et al. 2003 noted
that “The higher the value of k, the more averaging that
occurs in the estimates. Thus, the optimal value of k is a
trade-off between the accuracy of estimates and the varia-
tion retained in the estimates.” McRoberts et al. 2002 also
noted that, as k increases, the biases (average difference
between observed and predicted values) rise for extreme
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values of the variables of interest. Using one neighbor
would likely provide the best results if there were a high
proportion of stands with full information, because these
reference stands would represent the population well. Con-
versely, if there were a low proportion of stands with full
information, using more than one neighbor might give bet-
ter results because averaging would provide a wider variety
of Y variables. Using too many neighbors might result in
less variability in the imputed values than was present in the
population because of averaging of values. Also, as noted
earlier, values that do not exist in the population may also
result by means of averaging.

For each simulation, imputed values were repeated using
the first nearest neighbor (NN), average of three nearest
neighbors (KNN), and weighted average of three nearest
neighbors (WKNN). The k value of three was selected
because the stands are very variable in species and sizes.
Using a larger value of k would most likely result in aver-
ages that were not biologically possible.

Choice of Variables

The choice of variables used as the X set depends on
what information is available for every plot or stand, and
how these variables relate to the Y set of variables. Exam-
ples of variables that have been used include:

1. basal area of growing stock, location, altitude, site class,
soil type, dominant tree species, mean diameter, and age
of growing stock to impute sample tree information
(Korhonen and Kangas 1997);

2. aerial variables such as crown closure class, height class,
age class, species composition by crown closure class,
and site index to impute tree-lists (LeMay and Temesgen
2001);

3. stand records, maps, and aerial photographs to impute
volume variables (Moeur and Stage 1995);

4. forest cover type, based on relative stocking of tree
species to impute postharvest regeneration (Ek et al.
1997);

5. basal area per ha and basal area median diameter to
impute basal-area diameter distribution; and

6. stand age, basal area, basal area median diameter, and
stand height to impute diameter distributions (Maltamo
and Kangas 1998).

If the X and Y variables are very well correlated, then a
good match on the X variables (as measured by the distance
metrics) would result in a good match on the Y variables.
More often, there is a mixture of high and moderate or low
correlations between the two sets of variables. The results
will be dependent on the strength of the correlations, but
may also be confounded by the choice of distance metric,
and the proportion of stands with full information.

For the simulations, the variables of interest (Y) were
basal area per ha and stems per ha. Two sets of X variables
were used. For the first variable set, the X variables were
predicted volume per ha (m>/ha), crown closure class (%),
percent Douglas-fir (FD) by crown closure, and percent
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Figure 1. Mean distance over the 1,000 sampling replications using (a)
variable set 1 (mixed correlations) and (b) variable set 2 (moderately
high correlations).

lodgepole pine (PL) by crown closure, representing a mix-
ture of high and low correlations with the Y set (Table 1).
Correlations between the aerial and ground variables were
low to moderately high, with the highest correlation
(0.5336) for ground basal area per ha with predicted volume
per ha. Correlations between the ground variables and per-
cent FD and percent PL were the lowest. The second vari-
able set included variables that have moderately high cor-
relation with the Y set, and were predicted volume per ha,
height class (m), crown closure class (%), and age class

(years).

Proportion of Stands with Full Information

The stands (or plots) with information on all variables
form the reference set. If the reference set were based on a
simple random selection of stands (or plots) from the pop-
ulation, a larger proportion should result in better imputa-
tion results, as least in matching the X variables, because the
reference set would better represent the variability in the
population. If the reference set represents the variability
present in the population for the Y set of variables, and the
X and Y sets of variables are well correlated, then the
imputation should work well. The proportion (or number of
observations) needed to obtain a “good” representation of
the population will increase with increasing variability of
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Figure 2. Absolute value for mean of biases over 1,000 sampling
replications for (a) all four X variables combined using variable set 1
(mixed correlations), and (b) both Y variables using variable set 1.

the Y variables in the population, and decrease with increas-
ing correlations between X and Y variables. Also, a greater
proportion would be needed as the number of Y variables
increases, because it will be difficult to find a match that is
similar for all Y variables.

For this simulation, three sampling intensities were se-
lected: 20%, 50%, and 80%. Moeur (2000) indicated that
20% sampling intensity is likely sufficient for estimating
stand level variables. LeMay and Temesgen (2001) used
simulations to compare the use of different proportions for
imputing tree lists from aerial variables. They noted that
there was an improvement in results when the proportion of
stands with full information was increased from 20% to
50%, but little gain in extending to 80%.

Measures of Accuracy

For each of the 54 combinations (two variable sets, three
distance metrics, three sample sizes, and three weightings),
the random separation of the data into target versus refer-
ence stands was repeated 1,000 times. Fit statistics com-
monly used by other authors are based on comparing ob-
served with estimated values in the simulated target data set,
and in particular, the average difference (often called bias)
and root mean squared error (square root of the average
squared difference; RMSE) are often calculated.

As the example in the introduction illustrates, the aver-
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Figure 3. Absolute value for mean of biases over 1,000 sampling
replications for (a) all four X variables using variable set 2 (moderately
high correlations), and (b) both Y variables using variable set 2.

age of the measured and estimated Y values will not be an
unbiased estimator of the population average, even if there
is only one variable of interest in the variable-space NN
imputation. For more than one variable of interest, a small
average difference in one variable could be compensated by
small average difference in another variable. Also, large
negative and positive differences would result in an average
difference of zero. The RMSE gives a better indication of
the imputation results, because differences are squared be-
fore averaging. Moeur and Stage (1995) suggested that the
distance metrics could be used to assess the adequacy of
results. If distance metrics were high for some stands, then
no suitable match was found in the reference set.

To evaluate the results for each simulation, bias (average
difference) and RMSE were calculated for each replicate, as
follows:

1. Bias for each variable in the X and Y sets of the target
data, as shown for the /th X variable:

bias = >, (x; — x;)/n

i=1

2. RMSE for each variable in the X and Y sets, as shown
for the /th X variable,
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RMSE, = />, (x;, — xﬂ)z/n,
| ’

where 7 is the number of stands with missing ground
data (target stands) for the replicate. Because a large
value for one variable might be compensated by a
small value for another variable, these two statistics
were also obtained by replicate for all Y variables
combined and for all X variables combined, as shown
for the Y variables,

KNN-Eq 1
WKNN-Eq 2

3. Bias for all Y variables combined:

n alY

bias = | > > (vy — yy)/n

i=1j=1

4. RMSE for all Y variables combined,

n ally

RMSE = / E E (v — yjl) *In.

i=1j=1

The mean, minimum, maximum, and range of each of
these two statistics were summarized over the 1,000 sam-
pling replications. In addition, the mean distance was also
calculated for each simulation and then averaged over the
1,000 sampling replications. Although the motivation for
imputation is to obtain estimates for the Y set of variables,
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Figure 5. Mean RMSE over 1,000 sampling replications for (a) all four
X variables using variable set 2 (moderately high correlations), and (b)
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statistics for the X variables were also calculated using only
the imputed (target) polygons. Because the X set is used to
find a polygon match, these fit statistics could give insights
into what polygons are not well matched in terms of the
variables that are known for every polygon. This informa-
tion could be used to inform the sampling designer on
possible changes to the sampling design (e.g., stratification)
to improve the subsequent imputation results for a given
sampling cost.

Results and Discussion
Mean Distances

Distances cannot be compared across the three distance
equations. However, comparisons across the three methods
(NN, KNN, and WKNN), variable sets, and proportions of
stands with full information were made for each distance
equation.

As expected, the mean distances (mean of the average
distances over all 1,000 replicates) decreased with increas-
ing sample size, because the availability of more polygons
with the larger reference set must result in the same or lower
distances (Figure 1). Distances were necessarily lowest for
NN that uses the nearest neighbor, and were the same for
KNN and WKNN because the same three neighbors were
selected. Distances were lower for variable set 2 versus set
1, when Equations 1 and 3 were used. Likely, this occurred
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because the percent FD and percent PL used in variable set
1 (mixed correlations) are quite variable, whereas height
class and age class used in variable set 2 (moderately high
correlations) are less variable. This resulted in better
matches and lower squared Euclidean distances using vari-
able set 2. Conversely, the distances using variable set 1
were very similar to those for variable set 2, using Equation
2. Since the percent FD and percent PL had lower correla-
tions, these would have been given less weight in Equation
2 distance calculation. As a result, there were no real dif-
ferences in distances between variable sets 1 and 2 when
Equation 2 was used.

Distances decreased with the increasing proportion of
stands with full information, with the greatest gain from
20% to 50%, and less gain from 50% to 80%. This result is
similar to that noted by LeMay and Temesgen (2001) for
imputing tree lists. Conversely, Moeur (2000) suggested
that 20% might be sufficient. However, the stands used in
this current study are more variable in structure, particularly
numbers of species, than those used by Moeur. As a result,
50% of the stands with full information would be preferred
for imputation in complex stands of southeastern BC.

Average Differences

For variable set 1, the bias (average difference) for the
combined X variables averaged over the 1,000 sampling
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Figure 7. Mean RMSE over 1,000 sampling replications for Y vari-
ables using variable set 2 (moderately high correlations): (a) basal area
per ha, and (b) stems per ha.

replications (mean bias) was close to zero for the 80%
reference sets using Equation 2, all methods, and using
Equations 1 and 3 for NN only (Figure 2a [3]). For the 50%
and 80% reference sets, Equation 2 gave lower (absolute
value) mean biases using all three methods, indicating an
improvement resulting from weighting the X variables using
correlations with the Y variables. For variable set 2, the
mean bias was close to zero for all methods and equations
using the 80% reference sets, indicating that it was easier to
find good matches for these four variables versus those in
variable set 1 (Figure 3a). For both variable sets, there was
no noticeable reduction in the absolute value of mean bias in
using the KNN or WKNN methods over using a single
neighbor (NN), nor in using the 50% over the 20% reference
sets (Figures 2a and 3a).

For the variables of interest, the Y set, the mean biases
were not close to zero (Figures 2b and 3b). In their simu-
lations, Moeur and Stage (1995) showed percent biases of
—4.0 to 0.6% using Equation 2 and NN to impute volume
variables from land classification variables. For imputing
diameter distributions, Maltamo and Kangas (1998) also
obtained nonzero biases. Mean biases in the Y variables
tended to increase with an increase in the proportion repre-
sented in the reference sets, using either set of X variables
(Figures 2b and 3b). For variable set 1, mean biases were
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nearly zero for the 20% reference sets, for all methods and
equations (Figure 2b). Also, mean biases tended to be lower
using Equation 2, as might be expected, because the canon-
ical correlations between the X and Y variables are used to
weight the distance metric. Using Equation 2, some reduc-
tion in mean bias was obtained through using the KNN and
WKNN approaches, over the NN approach. For variable set
2, mean biases were again lower using Equation 2, and
some reduction in mean bias occurred using the KNN and
WKNN approaches (Figure 3b).

Mean, Minimum, and Maximum RMSEs

The RMSE for the X variables averaged over all 1,000
sampling replications (mean RMSE) consistently decreased
or remained the same with increasing proportions of data
with full information (Figures 4a and 5a). There was a large
reduction in mean RMSE from 20 to 50% reference sets, but
very little reduction in using the 80% reference sets, corre-
sponding to the decreases in mean distances.

For the Y variables, generally there were some reductions
in mean RMSE values, although this varied with the
method, equation, and variable set (Figures 4b and 5b).
Generally, lower mean RMSE values were obtained using
KNN and WKNN over NN for both variable sets, with no
large difference between KNN and WKNN. For variable set
1 with mixed correlations, Equation 2 was slightly better,
particularly for KNN and WKNN. For variable set 2 with
moderately high correlations between X and Y variables,
Equations 1 and 3 performed slightly better than Equation 2.
The weighting using correlations (Equation 2) only pro-
vided better results when the correlations varied more
greatly among variables. Because the stems per ha values
are very large compared to the basal area per ha values, the
mean RMSE combined for the Y variables, is mostly reflec-
tive of the stems per ha variable (Figures 6 and 7). However,
a similar pattern of results was obtained for each of the
individual Y variables.

Generally, the minimum of the 1,000 RMSE values for
each Y variable decreased with increasing proportions of
stands with full information for all simulations, indicating
improvements with an increase in the number of reference
stands (Tables 2 and 3). However, the maximum of the
1,000 RMSE values decreased for 50% over 20% of stands
with full information, but then increased for the 80%. Be-
cause the RMSE is calculated using target stands only, a
large squared difference between observed and estimated
values for one target stand would have more impact on the
RMSE for the 80% proportion. For example, given volume
per ha values of 300, 300, 350, 350, 400, 400, 375, 375, 800,
and 800 m>/ha, eight stands would be selected as the refer-
ence set and two stands as the target stands using the 80%
proportion. RMSE values would be small, except when the
two stands of 800 m*/ha were selected as the target stands
in the simulation. Using 50%, the large maximum RMSE
value obtained with the 80% proportion would not occur,
because the RMSE values would be averaged over five
stands. In application, this would translate into a situation
where the number of target stands is few, and these differ
greatly from the reference stands. As noted by Moeur and
Stage (1995), the distance metric should indicate this prob-
lem. In this case, approaches other than nearest neighbor
methods might give better results. Although the mini-
mum RMSE may be useful in comparing methods, the
maximum RMSE value must, therefore, be interpreted
with caution.

Slightly smaller minimum and maximum RMSE values
were consistently obtained using KNN and WKNN over
NN. The smallest minimum RMSE values were obtained
using variable set 2, WKNN, 80% of stands with full
information, for all distance equations. Using the average
of three stands to impute stems per ha and basal area per
ha reduced the possibility of a poor match when the target
stands were quite different from the remainder of the
stands.

Table 2. Minimum and maximum RMSE for Y variables over 1,000 sampling replications of each nearest neighbor simulation for variable set 1,

mixed correlations

Equation/ NN KNN WKNN
Variable Prop* 20% 50% 80% 20% 50% 80% 20% 50% 80%
Equation (1)
Basal area/ha Min 13.689 13.074 8.056 12.094 9.503 6.966 11.365 9.213 7.417
Max 24.730 23.920 26.264 19.171 19.465 24.166 19.914 19.441 26.064
Stems/ha Min 344290  309.342  200.007  303.253 250909  188.622  306.450  257.397  189.187
Max. 726462  685.784  711.780  486.376  496.113  698.063  511.793  495.226  717.084
Equation (2)
Basal area/ha Min 12.815 12.305 7.918 11.790 9.871 4.565 11.767 10.977 6.126
Max 28.983 22.811 27.506 22.226 18.921 23.824 21.351 19.550 25.635
Stems/ha Min 332.299  277.142 240493  303.094  256.095 195901  317.135  278.540  185.698
Max.  831.757 631.285 752968  507.025 484.019 603.543  539.509  509.546  606.263
Equation (3)
Basal area/ha Min 13.115 12.950 7.036 11.591 9.769 6.686 11.684 9.531 6.592
Max 25.282 24217 26.952 19.243 19.612 25.046 19.564 19.653 26.443
Stems/ha Min 346.897  304.497  199.524  303.984  257.777  184.214  296.284  256.625  191.830
Max.  742.898 724463  728.854 489377  490.706  706.974  500.438  485.665  720.809

* Proportion of stands with full information, ground and aerial attributes
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Table 3. Minimum and maximum RMSE for Y variables over 1,000 sampling replications of each nearest neighbor simulation for variable set 2,
moderately high correlations

NN KNN WKNN
Equation./Variable =~ Prop* 20% 50% 80% 20% 50% 80% 20% 50% 80%
Equation (1)
Basal area/ha Min 13.139 11.808 8.977 12.156 9.303 6.330 12.418 10.588 5.591
Max 27.769 25.060 25.613 20.338 18.932 24.343 21.071 19.111 26.095
Stems/ha Min 315414 265.139  226.804  288.730  251.282 185.283  303.978  258.617  201.966
Max. 799.791  769.366  802.733  529.476  473.300  644.147  577.189  490.768  637.017
Equation (2)
Basal area/ha Min 13.225 10.633 8.236 11.445 9.832 7.171 11.890 10.707 7.171
Max 27.176 23.893 25.678 19.969 18.521 22.331 21.738 18.803 22.331
Stems/ha Min 332.666  305.974 193976  307.615 581.013  307.615 296.278  264.622 173.288
Max. 889.533  696.139  831.283 43.832  274.088 43.832  598.385  508.844  716.671
Equation (3)
Basal area/ha Min 13.359 12.627 9.402 11.823 9.856 6.626 12.003 9.815 6.291
Max 26.821 25.705 25.031 20.720 19.062 23.302 20.817 19.354 23.900
Stems/ha Min 306.517  273.018 215487  298.558  244.483 171.630  305.738  252.097 168.608
Max. 815.663  758.400  823.389  544.633  480.664  625.804  548.735  484.392 615435

* Proportion of stands with full information, ground and aerial attributes

Overall

The distance metric does indicate when matches are
“poor,” as noted by Moeur and Stage (1995). This metric
would normally be available in applying NN methods, as
would the distributions of actual and imputed values of the
X variables. When testing alternative methods via simula-
tion, a combination of distances, mean bias, and mean
RMSE better indicate the “success” of the imputation.

For very large tracts of forested lands, such as those in
Canada and other countries, the sampling proportion might
be 20% or less. In this study, the distances indicated im-
provements in sampling 50% over 20%, but no great im-
provement was obtained in using the 80% versus the 50%.
The data used represent complex stands with up to nine
species, and a wide range of tree sizes. For forested areas
with less variability, the 20% sampling intensity might be
sufficient. For forested areas with even higher variability,
such as tropical stands of more than 100 species, a very
large sampling intensity would likely be needed.

The mean biases over the target stands were lower for the
X variables when the 80% was used, but this did not
translate into lower mean biases for the Y variables. The use
of a more correlated set of X variables, represented by
variable set 2, did not show the anticipated decrease in the
mean bias for the Y variables. However, the use of Equation
2, incorporating the correlations between X and Y variables,
did result in lower mean biases for the Y variables for both
variable sets. The mean RMSE values reflected the mean
distances, in that no real gain was obtained in using 80%
over 50% of stands with full information. Generally, the
KNN and WKNN methods showed some improvement over
the NN method, but no real gain in accuracy was noted in
using the WKNN over the KNN method. MacLeod et al.
(1987) indicated that a weighted distance measure was
better than an unweighted measure for imputing class data,
given a carefully selected weight function. Korhonen and
Kangas (1997) used a search to select weights to obtain the

lowest MSE. Although this study indicated no improvement
in using WKNN over KNN, a weight other than the inverse
of the distance might have yielded different results, based
on results from other studies.

Conclusions

Aerial data are commonly available for forested lands.
These data can be used as auxiliary variables to impute
variables of interest obtained from ground information, col-
lected on a proportion of stands. For complex stands of
southeastern BC, increasing the number of stands with full
information to 50% from 20% resulted in increased accu-
racy, not noted in a further increase to 80%. For less
complex stands, with one or two species, a smaller sample
size would likely be sufficient to obtain good matches, and
impute a few Y variables. Of the three equations tested, the
most similar neighbor distance metric gave good results for
estimating the variables of interest, stems per ha, and basal
area per ha, particularly when there was a mixture of cor-
relations, high and moderate, between the auxiliary vari-
ables, the aerial variables, and the variables of interest. A
small decrease in mean RMSE was noted in using the
average of three neighbors rather than a single neighbor.
Greater advantage in averaging neighbors over using a
single neighbor would likely occur if more than two Y
variables were of interest.

Endnotes

[1] Tuominen et al.2003 stated that “geostatistical interpolation is likely
to be futile when it is extended beyond the stand border.”

[2] Note that nonparametric methods have been used in literature to
indicate distribution-free methods or methods based on distributions
other than the normal distribution.

[3] Because mean biases can be positive or negative, the absolute values
of mean biases are shown in Figures 2 and 3.
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Appendix 1. Example to Illustrate Bias and
Inconsistency of Variable Space NN Methods

The averages calculated using the imputed and measured
Y variables from variable space NN will not be unbiased
estimates of the population mean. For example, if there are
three polygons with X and Y values of (1, 10), (3, 30), and
(4,50) and w, = 30, two of these polygons are randomly
sampled without replacement, and the third is imputed,
there are three possible outcomes:

1. Polygons 1 and 2 are sampled and used to impute Poly-
gon 3. Polygon 2 is closest, based on the X variable. The
outcome is then Y values (measured and estimated) of y,
=10, y, = 30, and $; = 30, with y = 23.3.

2. Polygons 1 and 3 are sampled and used to impute Poly-
gon 2. Polygon 3 is closest with the outcome of y, = 10,
¥, = 50, y; = 50, with y = 36.7.

3. If Polygons 2 and 3 are sampled and used to impute
Polygon 1, Polygon 2 is closest. The outcome is ¥, = 30,
v, = 30, and y; = 30, with y = 36.7.

The average of these three possible outcomes is 32.3, not
equal to the true mean of 30.

Variable space NN methods will not necessarily provide
consistent estimates. Using the same data and using a sam-
ple size of 1, the following results are obtained:

1. Polygon 1 is sampled and used to impute Polygons 2 and
3. The outcome is then Y values (measured and esti-
mated) of y, = 10, , = 10, and y; = 10, with y = 10.0.

2. Polygon 2 is sampled and used to impute Polygons 1 and
3. The result is y, = 30, y, = 30, and y; = 30, with y =
30.0.

3. If Polygon 3 is sampled and used to impute Polygons 1
and 2, the outcome is ¥, = 50, ¥, = 50, and y; = 50, with
y = 50.0.

The average of these three outcomes (expected value) is
30.0, equal to the true mean. The outcome, in this case, was
closer with the smaller sample size. Larger populations
would produce similar outcomes.
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