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Experimental Design  

Sampling versus experiments 
 
• similar to sampling and inventory design in that information 

about forest variables is gathered and analyzed 

• experiments presuppose intervention through applying a 

treatment (an action or absence of an action) to a unit, called 

the experimental unit.  The experimental unit is an item on 

which the treatment is applied.   

• The goal is to obtain results that indicate cause and effect.    
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Definitions of terms and examples  
 
• For each experimental unit, measures of the variables of 

interest (i.e., response or dependent variables) are used to 

indicate treatment impacts.    

• Treatments are randomly assigned to the experimental units. 

• Replication is the observation of two or more experimental 

units under identical experimental conditions.   

• A factor is a grouping of related treatments.   
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Examples: 

1. 1,000 seedlings in a field. Half of the seedlings get a “tea 

bag” of nutrients, others do not, randomly assigned.   

Experimental unit: the seedling.   

Treatments are: no tea bag, and tea bag.   

Factor:  only one – fertilizer (none, tea bag) 

Replications:  500 seedlings get each treatment 

2. 300 plant pots in a greenhouse:  Each pot gets either 1) 

standard genetic stock; 2) genetic stock from another 

location; 3) improved genetic stock.   

Treatments:   the three types of genetic stock 

Experimental Unit:  The pot 

Factor(s):  Genetic Stock (one factor only) 

Replications:   300 pots /3 treatments = 100 pots /treatment 
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3.  The number of tailed frogs in different forest types is of 

interest.  There are six areas.  Three are cut and the other 

three are not cut. 

Treatments:   cut, uncut 

Experimental Unit:   each of the six areas 

Factor(s):   only one, cutting with two levels 

Replications:   six areas/ two cutting levels = 3 replicates per 

treatment. 

4. Two forest types are identified, Coastal western hemlock and 

interior Douglas fir.  For each, a number of samples are 

located, and the growth of each tree in each sample is 

measured. 

Treatments:  NOT AN EXPERIMENT!! 

Experimental Unit: 

Factor(s): 

Replications:
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What does it mean that  treatments are randomly assigned 

to experimental units? 

• Haphazard vs. random allocation 

• Practical problems and implications 

Other terms: 

• The null hypothesis is that there are no differences among the 

treatment means.  For more than one factor, there is more than 

one hypothesis 

• The sum of squared differences (termed, sum of squares) 

between the average for the response variable by treatment 

versus the average over all experimental units represents the 

variation attributed to a factor.    

• The degrees of freedom, associated with a factor, are the 

number of treatment levels within the factor minus one.    
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Example of hypotheses: 

Factor A, fertilizer:  none, medium, heavy (3 levels) 

Factor B, species:  spruce, pine (2 levels) 

Number of possible treatments: 6  e..g, spruce, none is one treatment. 

Experimental Unit:  0.001 ha plots 

Replicates planned:  2 per treatment (cost constraint).  How many 

experimental units do we need? 

Variable of interest:  Average 5-year height growth for trees in the 

plot 

Null hypotheses: 

There is no different between the 6 treatments.  This can be broken 

into: 

1) There is no interaction between species and fertilizer. 

2) There is no difference between species. 

3) There is no difference between fertilizers. 
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• Experimental error is the measure of variance due to chance 

causes, among experimental units that received the same 

treatment.    

• The degrees of freedom for the experimental error relate to 

the number of experimental units and the number of treatment 

levels.    

• The impacts of treatments on the response variables will be 

detectable only if the impacts are measurably larger than the 

variance due to chance causes.   

• To reduce the variability due to causes other than those 

manipulated by the experimenter, relatively homogenous 

experimental units are carefully selected.   
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• Random allocation of a treatment to an experimental unit 

helps insure that the measured results are due to the treatment, 

and not to another cause.    

Example:  if we have applied the no fertilizer treatment to 

experimental units on north facing sites, whereas moderate and 

heavy fertilizer treatments are applied only to south facing sites, 

we would not know if differences in average height growth were 

due to the application of fertilization, the orientation of the sites, 

or both.  The results would be confounded and very difficult to 

interpret.    
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Variations in experimental design 
 

Introduction of More Than One Factor:   

• Interested in the interaction among factors, and the effect of 

each factor.   

• A treatment represents a particular combination of levels from 

each of the factors.   

• When all factor levels of one factor are given for all levels of 

each of the other factors, this is a crossed experiment.  

Example: two species and three fertilization levels = six 

treatments using a crossed experiment.     
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Fixed, Random, or Mixed Effects: 

• Fixed factors:  the experimenter would like to know the 

change that is due to the particular treatments applied; only 

interested in the treatment levels that are in the experiment 

(e.g., difference in growth between two particular genetic 

stocks) [fixed effects] 

• Random factors: the variance due to the factor is of interest, 

not particular levels (e.g., variance due to different genetic 

stocks—randomly select different stock to use as the 

treatment) [random effects] 

• Mixture of factor types: Commonly, experiments in forestry 

include a mixture of factors, some random and some fixed 

[mixed effect]. 
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Restricted Randomization Through Blocking:  Randomized 

Block (RCB),  Latin Square, and Incomplete Blocks Designs: 

• Randomize treatments with blocks of experimental units 

• Reduces the variance by taking away variance due to the item 

used in blocking (e.g., high, medium and low site productivity 

• Results in more homogeneous experimental units within each 

block. 

 

 12 

Restricted Randomization Through Splitting Experimental 

Units: 

• Called “split plot” 

• An experimental unit is split.  Another factor is randomly 

applied to the split. 

Example:  The factor fertilizer is applied to 0.001 ha plots.  Each 

of the 0.001 ha plot is then split into two, and two different 

species are planted in each.  Fertilizer is applied to the whole 

plot, and species is applied to the split plot.  Species is therefore 

randomly assigned to the split plot, not to the whole 

experimental unit. 
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Nesting of Factors 

• Treatment levels for one factor may be particular to the level 

of another factor, resulting in nesting of treatments.    

Example, for the first level of fertilizer, we might use medium 

and heavy thinning, whereas, for the second level of fertilizer, 

we might use no thinning and light thinning.    
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Hierarchical Designs and Sub-Sampling:  

• Commonly in forestry experiments, the experimental unit 

represents a group of items that we measure.  E.g. several pots 

in a greenhouse, each with several plants germinating from 

seeds.    

• Treatments are randomly assigned to the larger unit (e.g, to 

each plot not to each seedling). The experimental unit is the 

larger sized unit.   

• May want variance due to the experimental unit (pots in the 

example) and to units within (plants in the example).  These 

are 1) nested in the treatment; 2) random effects; and 3) 

hierarchical 

• A common variation on hierarchical designs is measuring a 

sample of items, instead of measuring all items in an 

experimental unit.     
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Introduction of Covariates   

 
• The initial conditions for an experiment may not be the same 

for all experimental units, even if blocking is used to group 

the units.    

• Site measures such as soil moisture and temperature, and 

starting conditions for individuals such as starting height, are 

then measured (called covariates) along with the response 

variable 

• These covariates are used to reduce the experimental error.   

• Covariates are usually interval or ratio scale (continuous).    
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Designs in use 

• The most simple design is one fixed-effects factor, with 

random allocation of treatments to each experimental unit, 

with no 1) blocking; 2) sub-sampling; 4) splits;  or 5) 

covariates 

• Most designs use combinations of the different variations.  

For example, one fixed-effects factor, one mixed-effects 

factor, blocked into three sites, with trees measured within 

plots within experimental units (sub-sampling/hierarchical), 

and measures taken at the beginning of the experiment are 

used as covariates (e.g., initial heights of trees.   
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Why?   

• Want to look at interactions among factors and/or is cheaper 

to use more than one factor in one experiment than do two 

experiments. 

• Experiments and measurements are expensive – use sampling 

within experimental units to reduce costs 

• Finding homogeneous units is quite difficult: blocking is 

needed 

BUT can end up with problems: 
• some elements are not measured,  
• random allocation is not possible, or  
• measures are correlated in time and/or space.   

 
 
In this course, start with the simple designs and add complexity.   
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Main questions in experiments 

Do the treatments affect the variable of interest? 

For fixed effects: Is there a different between the treatment 

means of the variable of interest?  Which means differ?  What 

are the means by treatment and confidence intervals on these 

means? 

For random effects: Do the treatments account for some of the 

variance of the variables of interest?  How much? 
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Completely Randomized Design (CRD) 

• Homogeneous experimental units are located 

• Treatments are randomly assigned to experimental units 

• No blocking is used 

• We measure a variable of interest for each experimental 

unit 

 

CRD:  One Factor Experiment, Fixed Effects  

Main questions of interest 
 
Are the treatment means different? 

Which means are different? 

What are the estimated means and confidence intervals for these 

estimates? 
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Notation: 
 
Population:  ijjijy ετμ ++=    OR ijjijy εμ +=  

ijy  = response variable measured on experimental unit i and 
treatment j 
 
j=1 to J treatments 
 
μ = the grand or overall mean regardless of treatment 
 

jμ = the mean of all measures possible for treatment j 
 

jτ = the difference between the overall mean of all measures 
possible from all treatments and the mean of all possible 
measures for treatment j, called the treatment effect 
 

ijε = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment j that was 
applied to it 

jijij y με −=  
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For the experiment:   
ijjij eyy ++= •• τ̂    OR ijjij eyy += •  

 
••y = the grand or overall mean of all measures from the 

experiment regardless of treatment; under the assumptions for 
the error terms, this will be an unbiased estimate of μ  
 

jy• = the mean of all measures for treatment j; under the 
assumptions for the error terms, this will be an unbiased 
estimate of jμ  
 

jτ̂ = the difference between the mean of experiment measures 
for treatment j and the overall mean of measures from all 
treatments; under the error term assumptions, will be an 
unbiased estimate of jτ  
 

ije = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment j that was 
applied to it 

jijij yye •−=  
nj = the number of experimental units measured in treatment j 
 
nT = the number of experimental units measured over all 

treatments = ∑
=

J

j
jn

1
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Example:  Fertilization Trial 
 
A forester would like to test whether different site preparation 
methods result in difference in heights.  Twenty five areas each 
0.02 ha in size are laid our over a fairly homogeneous area.  Five 
site preparation treatments are randomly applied to 25 plots.  
One hundred trees are planted (same genetic stock and same 
age) in each area.  At the end of 5 years, the heights of seedlings 
in each plot were measured, and averaged for the plot.   
 
i = a particular 0.02 ha area in treatment j, from 1 to 5. 

Response variable ijy :  5-year height growth (one average for 
each experimental unit) 
 
Number of treatments:  J=5 site preparation methods 
 
nT  = the number of experimental units measured over all 

treatments = ∑
=

5

1j
jn =25 

 
n1 = n2 =n3 =n4 =n5 =5 experimental units measured each 
treatment  
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Schematic of Layout: 
3 4 4 5 1 
1 2 3 5 2 
2 1 2 4 2 
5 4 3 1 5 
4 3 1 5 3 

 
Data Organization and Preliminary Calculations 
 
For easy calculations by hand, the data could be organized in a 
spreadsheet as: 
 

Obs: 
Treatment, j=1 to J 

 

i=1 to nj 1 2 3 … J  
1 y11 y12 y13 … y1J  
2 y21 y22 y23 … y2J   
3 y31 y32 y33 … y3J   

… … … … … …  
n yn1 yn2 yn3 … ynJ   

Sum y.1 y.2 y.3 … y.J y.. 
Averages 

1•y  2•y  3•y   
Jy• ••y

 

 

    
1 11 T

J

i

n

i
ij

j

j
j

n

i
ijj n

yyyy
n
y

yyy
jj

••
••

= =
••

•
•

=
• ==== ∑ ∑∑

NO

TE:  may not be the same number of observations for 
each treatment. 
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Example: 
 
J= 5 site preparation treatments randomly applied to n=25 plots.   
 
Response Variable:  Plot average seedling height after 5 years  
 
Plot Average Heights (m) 
     
  Treatments Overall
Observation 1 2 3 4 5   

1 4.6 4.9 4.0 3.4 4.3  
2 4.3 4.3 3.7 4.0 3.7  
3 3.7 4.0 3.4 3.0 3.7  
4 4.0 4.6 3.7 3.7 3.0  
5 4.0 4.3 3.0 3.4 3.4   

SUMS 20.600 22.100 17.800 17.500 18.100 96.100
Means 4.120 4.420 3.560 3.500 3.620 3.844
nj 5 5 5 5 5 25

 
Example Calculations: 
 

∑
=

• =++++==
5

1
11 12.45/)3.40.47.33.46.4(

i
iyy  

844.325/1.965/)1.185.178.171.226.20(5

1

5

1

5

1 ==++++==

∑

∑∑

=

= =
••

j
j

j i
ij

n

y
y
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We then calculate: 

1) Sum of squared differences between the observed values and 

the overall mean (SSy): 

( ) ∑∑∑
== =

•• −=−=
J

j
j

J

j

n

i
ij ndfyySSy

j

11 1

2 1  

 
Also called, sum of squares total (same as in regression)  

2) Sum of squared differences between the treatment means, and 

the grand mean, weighted by the number of experimental units 

in each treatment (SSTR) 

( ) ( ) 1
2

11 1

2 −=−=−= ∑∑∑
=

•••
= =

••• JdfyynyySS
J

j
jj

J

j

n

i
jTR

j

 

3) Sum of squared differences between the observed values for 
each experimental unit and the treatment means (SSE) 

( )∑∑
= =

• −=−=
J

j

n

i
Tjij

j

JndfyySSE
1 1

2  

SSESSSSy TR +=  
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Alternative formulae for the sums of squares that may be 
easier to calculate are: 
 

TR

T

J

j
jjTR

T

J

j

n

i
ij

SSSSySSE
n
yynSS

n
yySSy

j

−=

−=

−=

••

=
•

••

= =

∑

∑∑

     

     

2

1

2

2

1 1

2
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For the example, differences from treatment means (m): 
 
  Treatments Overall
Obs. 1 2 3 4 5   
1 0.480 0.480 0.440 -0.100 0.680  
2 0.180 -0.120 0.140 0.500 0.080  
3 -0.420 -0.420 -0.160 -0.500 0.080  
4 -0.120 0.180 0.140 0.200 -0.620  
5 -0.120 -0.120 -0.560 -0.100 -0.220   
SUMS 0.000 0.000 0.000 0.000 0.000 0.000
Sum of 
Squares 
Error 0.468 0.468 0.572 0.560 0.908 2.976
nj 5 5 5 5 5 25
s2

j 0.117 0.117 0.143 0.140 0.227   
 
Example Calculations: 
 

( )

468.0)12.40.4()12.40.4()12.47.3()12.43.4()12.46.4(

1ent for treatm 

22222

5

1

2
11

=−+−+−+−+−=

−= ∑
=

•
i

i yySSE
 

117.0
15

468.0
1

1 for  

1

1
2 =

−
=

−
=

n
treatmentSSEs  

 

( )

2.976    0.9080.5600.5720.4680.468  
5 for  SSE  ...2 for  SSE 1 for 

 
1 1

2

=++++=
+++=

−= ∑∑
= =

•

treatmenttreatmenttreatmentSSE

yySSE
J

j

n

i
jij

j
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Differences from grand mean (m) 
    
  Treatments Overall 
Obs. 1 2 3 4 5   
1 0.756 1.056 0.156 -0.444 0.456  
2 0.456 0.456 -0.144 0.156 -0.144  
3 -0.144 0.156 -0.444 -0.844 -0.144  
4 0.156 0.756 -0.144 -0.144 -0.844  
5 0.156 0.456 -0.844 -0.444 -0.444   
SUMS 1.380 2.880 -1.420 -1.720 -1.120 0.000 
Sum of 
Squares 
Total 0.849 2.127 0.975 1.152 1.159 6.262 
nj 5 5 5 5 5 25 
 
 

( )

6.262   1.1591.1520.97502.1270.849  
5 for SSy   ...2 for SSy  1 for 

 
1 1

2

=++++=
+++=

−= ∑ ∑
= =

••

treatmenttreatmenttreatmentSSy

yySSy
J

j

n

i
ij

j
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Difference between treatment means and grand mean (m) 
 
  Treatments Overall
  1 2 3 4 5   
Mean 4.120 4.420 3.560 3.500 3.620  
Difference 0.276 0.576 -0.284 -0.344 -0.224 0.000
Sum of 
Squares 
Treatment 0.076 0.332 0.081 0.118 0.050 3.286
nj 5 5 5 5 5 25
 
Example Calculations: 

( ) ( ) ( )

( ) ( ) ( )
286.3

)844.3620.3(5)844.3500.3(5)844.3560.3(5

)844.3420.4(5)844.3120.4(5

222

22

1

2

=
−×+−×+−×+

−×+−×=−= ∑
=

•••

J

j
jjTR yynSS
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Test for differences among treatment means 
 
The first main question is:  Are the treatment means different? 

    H0: μ1 = μ2 = … = μJ 
H1: not all the same 

OR:   
  H0: Jτττ === L21 = 0 

H1: not all equal to 0 
OR: 

 
H0: (φTR+σ2

ε) /σ2
ε  = 1 

H1: (φTR+σ2
ε)/σ2

ε > 1 
 

Where σ2
ε  is the variance of the error terms;  

φTR is the effect of the fixed treatments (see page 234 for more 

details on what this is). 

 

If the treatment does not account for any of the variance in the 

response variable, then treatment effects are likely all = 0, and 

all the treatment means are likely all the same. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
Treatment J-1 SSTR MSTR= 

SSTR/(J-1) 
F= 
MSTR/MSE 

Prob F>  
F(J-1),( nT -J), 

(1- α) 
Error nT -J SSE MSE= 

SSE/(nT-J) 
  

Total nT -1 SSy    
 

MSE
MS

JnSSE
JSS

nSSE

JSSF TR

T

TR
J

j
j

TR =
−
−

=
−

−
=

∑
=

)/(
)1/(

)1(/

)1/(

1

 

 
Under H0, and the assumptions of analysis of variance, this 
follows an F-distribution.  If    

 

)1,,1( α−−−> JnJ T
FF  

 
We reject H0 and conclude that there is a difference between the 
treatment means.  
 
Notice that this is a one-sided test, using 1-α 
 
This is because we are testing if the ratio of variances is > 1. 
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For example, if we have 4 treatments, and 12 experimental units, 
and we want α=0.05: 

If the calculated F is larger than 4.07, we reject H0:  The 

treatments means are likely different, unless a 5% error has 

occurred. 

OR:  We take our calculated F value from our experiment and 

plot it on this F curve.  Then, find the area to the right of this 

value (p-value).  We reject a hypothesis if the probability value 

(p-value) for the test is less than the specified significance level.    

0 2.4 4.8

F(3,8; 0.95)=4.07

Rejection Region
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For the example:  
  
If assumptions of ANOVA are met then interpret the F-value.   
 
H0:  μ1= μ2 =μ3 =μ4 =μ5 

 
H1:   not all equal 
 
Analysis of Variance (ANOVA) Table: 
     
Source df SS MS F p-value
Treatment 5-1=4 3.286 0.821 5.51 0.004
Error 25-5=20 2.976 0.149   
Total 25-1=24 6.262       
 

If assumptions of ANOVA are met then interpret the F-value.  
NOTE:  Fcritical for alpha=0.05, df treatment=4 and df error=20 
is 2.87.  
 

Since the p-value is very smaller (smaller than alpha=0.05), we 

reject H0 and conclude that there is a difference in the treatment 

means.  BUT this is only a good test if the assumptions of 

analysis of variance have been met.  Need to check these first 

(as with regression analysis). 
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Assumptions regarding the error term 

For the estimated means for this experiment to be unbiased 

estimates of the means in the population, and the MSE to be an 

unbiased estimate of the variance within each experimental unit, 

the following assumptions must be met: 

1. Observations are independent – not related in time nor in 

space [independent data] 

2. There is normal distribution of the y-values [or the error 

terms] around each treatment mean [normally distributed] 

3. The variances of the y’s around each treatment mean [or 

the error terms] are the same (homogeneous) for all 

treatment means [equal variance] 
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Similar to regression: 

• a normal probability plot for the error terms can be 

used to check the assumption of normality, and  

• a residual plot can be used to visually check the 

assumption of equal variance.   

OR, these can be tested using (1) normality tests (as with 

regression); (2) Bartlett’s test for equal variances (for more than 

one factor or for other designs with blocking, etc. this becomes 

difficult). 
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Transformations to meet assumptions 
 
Similar to regression: 
• logarithmic transformations can be used to equalize 

variances 
• arcsine transformation can be used to transform proportions 

into normally distributed variables 
• rank transformation can be used when data are not 

normally distributed and other transformations do not 
“work” [nonparametric analysis of variance using ranks] 

 
Unlike regression you must transform the y-variable  
 
Process: 
• do your analysis with the measured response variable 
• if assumptions of the error term are not met, transform the 

y-variable 
• do the analysis again and check the assumptions; if not me, 

try another transformation 
• may have to switch to another method:  generalized linear 

models, etc.
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Expected values:   
 

Under the assumptions of analysis of variance, MSE is an 

unbiased estimate of σ2
ε  and MSTR is an unbiased estimate of 

φTR+σ2
ε.  Therefore, this F-test will give the correct 

probabilities under the assumptions.   

 

This is the same as saying that the expected value of MSE is 

σ2
ε , and the expected value of   MSTR is φTR+σ2

ε.   The F-test 

is then a measure of how much larger the value is when the 

treatment means are accounted for. 
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For the example, before interpreting the ANOVA table, we must 
check assumptions of ANOVA: 
 
Is there equal variance across treatments?  (estimated by MSE as 
0.149 on our ANOVA table).  Using a residual plot and EXCEL: 
 

Residual Plot

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

        4   3  5                                1                  2
Pred. Values (Treat. Means in m)
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)
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Are residuals normally distributed? Again using EXCEL: 
 

Residuals vs. normal z(0,1)

0.00

0.20

0.40

0.60

0.80

1.00

-2 -1 0 1 2

z-values

C
um
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at
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e 
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ob
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ty

Stand. Res
z(0,1)

 
 
Where standardized residuals are calculated by: 
 

MSE
e

e i
i

0
)edstandardiz(

−
=  

 
Compare these to z-values for a standard normal distribution with a mean of zero 
and a variance of 1 (z(0,1))  
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Differences among particular treatment means 
 
If there are differences among means detected, which means 
differ? 
 
Can use: 
• Orthogonal contrasts – see textbook 
• Multiple comparisons 

 
Multiple comparisons (or contrasts): 
 
• Many different types, e.g. 

o T-test for every pair of means; must adjust the alpha 
level used by dividing by the number of pairs. 

o Scheffe’s multiple comparisons 
o Bonferonni’s adjustments 

 
• Try to “preserve” the alpha level used to test all the means 

together (the F-test) 
 

 
For the example, given that there is a difference among 
treatment means, which pairs of means differ? 
 
t-test for pairs of means: 
• determine the number of pairs possible   

 

means of  pairs   possible  10
!2!3

!5
2
5

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Comparing Treatments 2 (largest estimated mean) versus 4 
(smallest estimated mean):  

686.3

5
1

5
1149.0

)5.34.4(

11

0)(

     0:H
:H         OR      0:H

42
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⎛
+
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Under H0:  This follows: 
 

Jn T
t −− ,2/1 α  
 
Using alpha=0.005 (0.05/10=0.005), for 5 treatments and 25 
observations, the t-value is 3.153.  Result?  
 
Another way to assess this is to obtain the p-value for t=3.686, 
with 20 degrees of freedom (25-5).   
 
This is 0.001464.  Since this is less than 0.005, we reject H0 and 
conclude that these two means differ.    
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Confidence limits for treatment means 
 
Under the assumptions, confidence intervals for each treatment 
mean can be obtained by: 
 

j
Jnj n

MSEty
T 21),( α−−• ±  

Since MSE estimates the variance that is assumed to be equal, 

and the observations are normally distribution and independent. 

For the example:  

j
nj n

MSEty
T 2/1),1( α−−• ±  

6.35.36.34.41.4 54321 ===== ••••• yyyyy

equal all are   since same  theall are    All j
j

n
n

MSE
 

09.2173.0
5
149.0

975.0,20 == t  

 
For treatment 1: 

)46.4,74.3(
36.01.4173.009.21.4 ±×±

 



 

 43

Using SAS and R: 
 
For entry into statistical programs like SAS and R, the data 
should be organized as: 
 

Treatment Obs: Response
j=1 to J i=1 to nj  
1 1 y11 
1 2 y21 
1 3 y31 
… … … 
1 n1 y(n1) 1 
2 1 y12 
2 2 y22 
2 3 y32 
… … … 
2 n2 Y(n2) 2 
… … … 
J 1 y1J 
J 2 y2J 
J 3 y3J 
… … … 
J n J y(nJ) 3 
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For the example, we can put the data into an EXCEL file: 
 
Treatment Observation AveHt

1 1 4.6
1 2 4.3
1 3 3.7
1 4 4.0
1 5 4.0
2 1 4.9
2 2 4.3
2 3 4.0
2 4 4.6
2 5 4.3
3 1 4.0
3 2 3.7
3 3 3.4
3 4 3.7
3 5 3.0
4 1 3.4
4 2 4.0
4 3 3.0
4 4 3.7
4 5 3.4
5 1 4.3
5 2 3.7
5 3 3.7
5 4 3.0
5 5 3.4
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Power of the Test: 

A Type I error rate (α, significance level), the chance of 

rejecting a null hypothesis when it is true (you reject when the 

means are actually the same) must be selected.  Given: 

• a particular number of experimental units 

• sizes of the differences between true population means, and  

• variation within the experimental units 

this will set the Type II error rate (β), the chance of accepting a 

null hypothesis when it is false (you fail to reject when the 

means are actually different) 

The power of the test is 1- β, the probability you will reject 

the null hypothesis and conclude that there is a difference 

in means, when there IS a difference between population 

means. 
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If the difference between population means (real treatment 

means) is very large, than a small number of experimental units 

will result in rejection of the null hypothesis. 

 

If the number of experimental units is very large, then even a 

small difference between population means will be detected. 

 

If the variation within experimental units is very small, then the 

difference will be detected, even with a small difference 

between population means, and even with only a few treatment 

units. 
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Statistical Significance is not the same as differences of 

Practical importance!  UNLESS you: 

• have some idea of within experimental unit variation from 

a previous study with the same conditions (e.g., MSE from 

a previous study) 

• know the size of the difference that you wish to detect 

• have selected the α level 

Then: 

You can calculate the number of experimental units per 

treatment that will result in rejection of H0: when the 

differences are that large or greater. 

Alternatively: 

You can calculate the power of the test for an experiment you 

have already completed.   

[see examples in www.forestry.ubc.ca/biometrics course 

materials for FRST 430/533] 
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Methods based on maximum likelihood rather than least squares 

ML methods can be used when: 

• Treatments are random rather than fixed (more on this 

later) 

• Transformations do not result in assumptions being met 

• Your dependent variable is a count, or it is a binary variable 

(e.g., yes or no; dead or alive; present or absent) 
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CRD:  Two Factor Factorial Experiment, Fixed Effects 

Introduction  

• Treatments can be combinations of more than one factor 

• For 2-factor experiment, have several levels of Factor A and 

of Factor B 

• All levels of Factor A occur for Factor B and vice versa 

(called a Factorial Experiment, or crossed treatments) 

Example:   

• Factor A, (three levels of fertilization: A1, A2, and A3) 

• Factor B (four species: B1, B2, B3 and B4) 

• Crossed: 12 treatments 

• Four replications per treatment for a total of 48 experimental 

units 

• Measured Responses:  height growth in mm 
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Schematic and Measured Response for the Example: 

A1B1=10 A3B2=25 A3B4=35 A2B2=23 A1B2=14 A2B3=24 

A1B4=24 A2B2=22 A1B2=15 A2B4=28 A3B3=32 A3B2=25 

A3B2=27 A1B4=23 A3B3=29 A3B2=26 A1B3=17 A1B1=11 

A3B4=35 A1B2=13 A1B4=22 A1B1=11 A2B3=24 A3B3=30 

A1B3=19 A2B1=18 A2B4=30 A3B3=31 A2B3=23 A1B4=22 

A3B1=22 A2B4=29 A3B1=23 A2B1=18 A1B2=15 A3B1=23 

A2B2=25 A3B4=37 A1B1=9 A3B1=24 A3B4=36 A2B4=28 

A1B3=17 A2B1=18 A2B2=20 A2B1=18 A2B3=26 A1B3=18 

 

A1B1=10 indicates that the response variable was 10 for this 

experimental unit that received Factor A, level 1 and Factor B, 

level 1.  Treatments randomly assigned to the 48 experimental 

units. 
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Organization of data for analysis using a statistics package: 
A B result 
1 1 10 
1 1 11 
1 1 9 
1 1 11 
1 2 15 
1 2 15 
1 2 13 
1 2 14 
1 3 17 
1 3 18 
1 3 17 
1 3 19 
1 4 22 
1 4 23 
1 4 24 
1 4 22 
2 1 18 
2 1 18 
2 1 18 
2 1 18 
2 2 20 

. . .   
3 3 32 
3 4 35 
3 4 36 
3 4 37 
3 4 35 
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Main questions 

1. Is there an interaction between Factor A and Factor B 

(fertilizer and species in the example)?  Or do the means by 

Factor A remain the same regardless of Factor B and vice 

versa? 

2. If there is no interaction, is there a difference  

a. Between Factor A means? 

b. Between Factor B means? 

3. If there are differences:  

a. If there is an interactions, which treatment means 

differ? 

b. If there is no interaction, then which  levels of Factor 

A means differ?  Factor B means? 
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Notation, Assumptions, and Transformations 
 
Models  
 

Population:  ijkjkABBkjAijky ετττμ ++++=     

ijky  = response variable measured on experimental unit i and 
factor A level j, factor B level k 
 
j=1 to J levels for Factor A; k=1 to K levels for Factor B 
 
μ = the grand or overall mean regardless of treatment 
 

Ajτ = the treatment effect for Factor A, level j 
 

Bkτ = the treatment effect for Factor B, level k 
 

ABjkτ = the interaction for Factor A, level j and Factor B, level k 
 

ijkε = the difference between a particular measure for an 
experimental unit i, and the mean for a treatment: 

)( ijABBkjAijkijk y τττμε +++−=  
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For the experiment:   
ijkjkABBkjAijk eyy ++++= ••• τττ ˆˆˆ  

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions for 
the error terms, this will be an unbiased estimate of μ  

jky• = the mean of all measures from the experiment for a 
particular treatment jk  

•• jy = the mean of all measures from the experiment for a 
particular level j of Factor A (includes all data for all levels of 
Factor B) 

ky •• = the mean of all measures from the experiment for a 
particular level k of Factor B (includes all data for all levels of 
Factor A) 
 

ABjkBkAj τττ ˆ,ˆ,ˆ = under the error term assumptions, will be 
unbiased estimates of corresponding treatment effects for the 
population 
 

ijke = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment jk that was 
applied to it 

jkijkijk yye •−=  
njk = the number of experimental units measured in treatment jk 
nT = the number of experimental units measured over all 

treatments = ∑∑
− =

K

k

J

j
jkn

1 1
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Means for the example: 

Factor A:  16 observations per level 

A1=16.25, A2=23.38, A3=28.75 

 

Factor B:  12 observations per level 

B1=17.08, B2=20.83, B3=24.17, B4=29.08   

 

Treatments (A X B):  4 observations per treatment 
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Sums of Squares:    

SSESSSSy TR += as with CRD: One Factor.  BUT 

TRSS is now divided into: 

SSABSSBSSASSTR                                    ++=  

SSy:  The sum of squared differences between the observations 

and the grand mean: 

( ) 1 
1 1 1

2 −=−=∑∑∑
= = =

••• T

K

k

J

j

n

i
ijk ndfyySSy

jk

 

SSA:  Sum of squared differences between the level means for 

factor A and the grand mean, weighted by the number of 

experimental units for each treatment: 

( ) 1
1 1

2 −=−=∑∑
= =

••••• JdfyynSSA
K

k

J

j
jjk  



 

 57

SSB:  Sum of squared differences between the level means for 

factor B and the grand mean, weighted by the number of 

experimental units for each treatment: 

( ) 1
2

1 1
−=−=∑∑

= =
••••• KdfyynSSB

K

k

J

j
kjk  

SSAB:  Sum of squared differences between treatment means for 

jk and the grand mean, minus the factor level differences, all 

weighted by the number of experimental units for each 

treatment: 

∑∑
= =

•••••••••••••• −−−−−=
K

k

J

j
jkjkjk yyyyyyn

SSAB

1 1

2))()()(( Sin

ce some of the estimated grand means cancel out we obtain: 

  )(
1 1

2∑ ∑
= =

•••••••• +−−=
K

k

J

j
jkjkjk yyyynSSAB  

)1)(1( −−= KJdf
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SSE: Sum of squared differences between the observed values 

for each experimental unit and the treatment means: 

( )∑∑∑
= = =

• −=−=
K

k

J

j
T

n

i
jkijk JKndfyySSE

jk

1 1 1

2 
 

 

Alternative computational formulae: 

TRTR

T

K

k

J

j
kjk

T

K

k

J

j
jkjkTR

T

K

k

J

j
jjk

T

K

k

J

j

n

i
ijk

SSSSySSESSBSSASSSSAB
n

yynSSB
n

yynSS

n
yynSSA

n
yySSy

jk

−=−−=

−=−=

−=−=

•••

= =
••

•••

= =
•

•••

= =
••

•••

= = =

∑∑∑∑

∑∑∑∑∑
2

1 1

2
2

1 1

2

2

1 1

2
2

1 1 1

2

     

      

 

[See Excel Spreadsheet for the Example]
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Assumptions and Transformations: 

Assumptions regarding the error term 

• Must meet assumptions to obtain unbiased estimates of 

population means, and an unbiased estimate of the variance of 

the error term (same as CRD: One Factor) 

o independent observations (not time or space related) 

o normality of the errors,  

o equal variance for each treatment.   

• Use residual plot and a plot of the standardized errors against 

the expected errors for a normal distribution to check these 

assumptions.  

Transformations: 
 
As with CRD: One Factor, you must transform the y-variable  
 
Process: 
• do your analysis with the measured response variable 
• if assumptions of the error term are not met, transform the 

y-variable 
• do the analysis again and check the assumptions; if not me, 

try another transformation 
• may have to switch to another method:  generalized linear 

models, etc. 
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Test for Interactions and Main Effects 

 
The first main question is:  Is there an interaction between the 

two factors?   

       H0: No interaction 
H1: Interaction 

OR:   
 

H0: (φAB+σ2
ε) /σ2

ε  = 1 
H1: (φAB+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φAB is the interaction effect of the fixed treatments. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
 A J-1 SSA MSA= 

SSA/(J-1) 
F= 
MSA/MSE 

Prob F>  
F(J-1),(dfE), 1- α  

B K-1 SSB MSB= 
SSB/(K-1) 

F= 
MSB/MSE 

Prob F>  
F(K-1),(dfE),1- α 

A X B (J-1)(K-1) SSAB MSAB= 
SSAB/ 
(J-1)(K-1) 

F= 
MSAB/MSE 

Prob F>  
F dfAB,dfE,,1- α 

Error nT -JK SSE MSE= 
SSE/(nT -J) 

  

Total nT -1 SSy    
 

 

Source df MS  E[MS] 
A J-1  MSA 

Aφσε +
2

 

B K-1  MSB 
Bφσε +

2

 

A X B (J-1)(K-1)  MSAB 
ABφσε +

2

 

Error nT -JK  MSE 2

εσ  

Total nT -1    
 
See Neter et al., page 826, Table 19.8 for details on expected mean squares; φ  is 
used here to represent fixed effects. 
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For the interactions: 
 

MSE
MSAB

JKnSSE
KJSSABF

T

=
−

−−
=

)/(
)1)(1/(

 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1)(K-1), and df2 is from the denominator (nT-

JK) 

• If the F calculated is greater than the tabular F, or if the p-

value for F calculated is less than α , reject H0. 

o The means of Factor A are influenced by the levels of 

Factor B and the two factors cannot be interpreted 

separately. 

o Graph the means of all treatments 

o Conduct multiple comparisons all treatments (rather then 

on means of each Factor, separately 

o Not as much power (reject H0 when it is false), if this 

occurs. 
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If there are no interactions between the factors, we can look 

at each factor separately – fewer means, less complicated. 

Factor A: 

       H0: μ1 = μ2 = … = μJ 
 

OR:   
 

H0: (φA+σ2
ε))/σ2

ε  = 1 
H1: (φA+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φA is fixed effect for Factor A. 
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From the ANOVA table: 
 

MSE
MSA

JKnSSE
JSSAF

T

=
−
−

=
)/(

)1/(
 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1) and df2 is from the denominator (nT-JK) 

• If the F calculated is greater than the tabular F, or if the p-

value for F calculated is less than α , reject H0. 

o The means of Factor A in the population are likely not 

all the same 

o Graph the means of Factor A levels 

o Conduct multiple comparisons between means for the J 

levels of Factor A, separately 

 

The analysis and conclusions would follow the same pattern for 

Factor B. 



 

 65

Analysis of Variance Table Results for the Example 

Source Degrees 

of 

Freedom 

Sum  

of 

Squares 

Mean 

Squares 

F p 

A 2 1258.17 629.08 514.70 <0.0001

B 3 934.75 311.58 254.93 <0.0001

A X B 6 17.00 2.836 2.32 0.0539

Error 36 44.00 1.22 

Total 47 2253.92  

 

If assumptions met, (residuals are independent, are normally distributed, 

and have equal variances among treatments), we can interpret the 

results.  
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Interpretation using α =0.05: 

• No significant interaction (p=0.0539); we can examine 

species and fertilizer effects separately.   

• Are significant differences between the three fertilizer levels 

of Factor A (p<0.0001), and between the four species of 

Factor B (p<0.0001).   

• The mean values based on these data are:   

A1=16.25, A2=23.38, A3=28.75 

B1=17.08, B2=20.83, B3=24.17, B4=29.08   

Did not have to calculate these for each of the 12 treatments 

since there is no interaction. 
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Further analyses, for each Factor separately:   

• Scheffé’s test for multiple comparisons, could then be used to 

compare and contrast Factor level means.  

o The number of observations in each factor level are:  16 

for Factor A, and 12 for Factor B 

o Use the MSE for both Factor A and for Factor B 

(denominator of their F-tests) 

• t-tests for each pair of means could be used instead. 

o Again, use MSE, and 16 observations for Factor A 

versus 12 for Factor B 

o Must split alpha level used in the F-tests by the number 

of pairs 
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Factor A: t-tests for pairs of means 
 
Determine the number of pairs possible   
 

means of  pairs   possible  3
!2!1

!3
2
3

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Use a significance level of 0.05/3 pairs=0.017 for each t-test 
 
Comparing Factor Levels 1 and 2: A1 vs. A2 
 

258.18

16
1

16
122.1

)38.2325.16(

11

0)(

     0:H1      0:H0

1
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1
1

21

2121

−=

⎟
⎠
⎞

⎜
⎝
⎛ +×

−
=

⎟
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⎟
⎟

⎠

⎞

⎜
⎜
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⎜

⎝

⎛

+

−−
=

≠−=−

∑∑
==

••
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t

nn
MSE

yyt

K

k
k

K

k
k

μμμμ
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Critical t value from a probability table for:  
 
• df(error) = 36 based on ( nT – JK), and 0.017 significance 

level (For α =0.05 use 0.05/3 pairs for each t-test), 2-sided 
test 

• Using an EXCEL function:  =tinv(0.017,36), returns the value 
of 2.50 (this assumes a 2-sided test).  

• Since the absolute value of the calculated t is greater than 2.50 
we reject H0. 

OR  
• enter your t-value, df (error), and 2 (for 2-sided) into the 

EXCEL function  =tdist(18.258,36,2) 
• Returns a p-value of <0.000. (NOTE that you must enter the 

positive value, and the p-value is for the two “ends” (area 
greater than 18.258 plus area less than -18.258) 

• Since p<0.017, we reject H0 
 
The mean of treatment A1 differs from the mean of A2. 
 

For Factor B 

• Recalculate the number of possible pairs for 4 factor levels 

(will be 6 pairs; divide alpha by this for each test ) 

• The observations per factor level is 12, rather than 16 

• Df(error) and MSE are the same as for Factor A. 

 

 70 

A Different Interpretation using α =0.10: 

• There is a significant interaction (p=0.0539) using α =0.10; 

cannot interpret main effects (A and B) separately. 

• The mean values based on these data are:  [Excel] 

A1B1=10.25  A1B2=14.25  A1B3= 17.75  A1B4= 22.75    
A2B1=18.00  A2B2=22.50  A2B3= 24.25  A2B4=28.75     
A3B1= 23.00 A3B2=25.75  A3B3=30.50   A3B4=35.75   

 

12 mean values as there is a significant interaction 
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Further analyses: 

• Scheffé’s test for multiple comparisons (or others)  could then 

be used to compare and contrast treatment means (pairs or 

other groupings of means).  The number of observations in 

each treatment are 4 [lower power than if there was no 

interaction], and use the MSE. 

 

• Using t-tests for pairs of means, the number of observations 

are 4 for each jk treatment, use the MSE, and recalculate the 

number of possible pairs out of 12 treatments (will be 66 

pairs!  Retaining α =0.10, we would use 0.10/66 = 0.0015 for 

each t-test )
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Confidence limits for factor level and treatment means 

 
Treatment means: 

jk
JKnjk n

MSEty 21),( α−−• ±
 

Factor A means: 

∑
=

−−•• ± K

k
jk

JKnj

n

MSEty

1

21),( α
 

Factor B means: 

∑
=

−−•• ± J

j
jk

JKnk

n

MSEty

1

21),( α

 

[see www.forestry.ubc.ca/biometrics course materials 

for FRST 430/533 for other designs] 


