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Fitting Equations  
Idea: 

• The variable of interest (dependent variable,  yi) is 

hard to measure.   

• There are “easy to measure” variables (predictor/ 

independent) that are related to the variable of 

interest, labeled x1i , x2i,.....xmi 

We measure the y and the x’s for a sample and use 

this sample to fit a model. 

Once the model is fitted, we can then just measure the 

x’s, and get an estimate  of  y without measuring it 

 

Types of Equations 

Simple Linear Equation: 

yi = βo + β1 xi + εi 

Multiple  Linear Equation: 

yi = β0 + β1 x1i + β2 x2i +...+βm xmi +εi 

Nonlinear Equation:  takes many forms, for example: 

yi = β0 + β1 x1i β2  x 2i
β3 +εi 
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Example:  Tree Height (m) – hard to measure;  Dbh 

(diameter at 1.3 m above ground in cm) – easy to measure 

– use Dbh squared for a linear equation  

 

yyi −  Difference between measured y and the mean of  y 

ii yy ˆ−     Difference between measured y and predicted y 
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Objective: 

Find estimates of  β0, β1, β2 ... βm such that the sum of 

squared differences between measured yi and 

predicted yi (usually labeled as iŷ , values on the line 

or surface) is the smallest (minimize the sum of 

squared errors, called least squared error).          

OR 

Find estimates of β0, β1, β2 ... βm such that the 

likelihood (probability) of getting these y values is the 

largest (maximize the likelihood). 

 

Finding the minimum of sum of squared errors is 

often easier.  In some cases, they lead to the same 

estimates of parameters. 
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Least Squares Solution:  Finding the Set of Coefficients 

that Minimizes the Sum of Squared Errors 

To find the estimated coefficients that minimizes SSE for a 

particular set of sample data and a particular equation (form 

and variables): 

1. Define the sum of squared errors (SSE) in terms of the 

measured minus the predicted y’s (the errors); 

2. Take partial derivatives of the SSE equation with respect 

to each coefficient  

3. Set these equal to zero (for the minimum) and solve for 

all of the equations (solve the set of equations using 

algebra or linear algebra).   
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Simple Linear Regression 

• There is only one x variable 

• There will be two coefficients 

 

The estimated intercept is found by: 

 

xbyb 10 −=  

 

And the estimated slope is found by: 
 

( )( )

( ) SSx
SPxy

ns
ns

xx

xxyy
b

x

xy

n

i
i

n

i
ii

=
−

−
=

−

−−
=

∑

∑

=

=

)1(
)1(

2

2

1

2

1
1

 

 
Where SPxy refers to the corrected sum of cross products 
for x and y;   SSx refers to the corrected sum of squares for 
x [Class example]
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Properties of b0 and  b1  
 
b0 and  b1  are least squares estimates of β0 and β1 .  Under 
assumptions concerning the error term and sampling/ 
measurements, these are: 
• Unbiased estimates; given many estimates of the slope 

and intercept for all possible samples, the average of 
the sample estimates will equal the true values 

 
• The variability of these estimates from sample to 

sample can be estimated from the single sample; these 
estimated variances will be unbiased estimates of the 
true variances (and standard errors) 

 
• The estimated intercept and slope will be the most 

precise (most efficient with the lowest variances) 
estimates possible (called “Best”) 

 
• These will also be the maximum likelihood estimates 

of the intercept and slope 
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Assumptions of SLR 
 

Once coefficients are obtained, we must check the 

assumptions of SLR.  Assumptions must be met to:  

• obtain the desired characteristics 

• assess goodness of fit (i.e., how well the regression 

line fits the sample data) 

• test significance of the regression and other 

hypotheses 

• calculate confidence intervals and test hypothesis for 

the true coefficients (population)  

• calculate confidence intervals for mean predicted y 

value given a set of x value (i.e. for the predicted y 

given a particular value of the x)  

Need good estimates (unbiased or at least consistent) of 

the standard errors of coefficients and a known 

probability distribution to test hypotheses and calculate 

confidence intervals. 
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Checking the following assumptions using residual Plots 

 

1.  a linear relationship between the y and the x;  

2.  equal variance of errors across the range of the y 

variables; and  

3.  independence of errors (independent observations), not 

related in time or in space. 

 

A residual plot shows the residual (i.e., yi - iŷ ) as the y-axis 

and the predicted value ( iŷ ) as the x-axis.  

 

Residual plots can also indicate unusual points (outliers) 

that may be measurement errors, transcription errors, etc. 
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 Examples of Residual Plots Indicating Failures to Meet 

Assumptions: 

1.  The relationship between the x’s and y is linear.   If not 

met, the residual plot and the plot of y vs. x will show a 

curved line: [CRITICAL ASSUMPTION!!] 
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Result: If this assumption is not met:  the regression line 

does  not fit the data well; biased estimates of coefficients 

and standard errors of the coefficients will occur 
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2. The variance of the y values must be the same for 

every one of the x values.  If not met, the spread around the 

line will not be even. 

 

 

 

 

 

 

 

 

Result:  If this assumption is not met, the estimated 

coefficients (slopes and intercept) will be unbiased, but the 

estimates of the standard deviation of these coefficients will 

be biased. 

∴ we cannot calculate CI nor test the significance of the x 

variable.  However, estimates of the coefficients of the 

regression line and goodness of fit are still unbiased 



 11

3. Each observation (i.e., xi and yi) must be independent of 

all other observations.  In this case, we produce a different 

residual plot, where the residuals are on the y-axis as 

before, but the x-axis is the variable that is thought to 

produce the dependencies (e.g., time).  If not met, this 

revised residual plot will show a trend, indicating the 

residuals are not independent. 

 

 

 

 

 

 

 

Result:  If this assumption is not met, the estimated 

coefficients (slopes and intercept) will be unbiased, but the 

estimates of the standard deviation of these coefficients will 

be biased. 

∴ we cannot calculate CI nor test the significance of the x 

variable.  However, estimates of the coefficients of the 

regression line and goodness of fit are still unbiased 
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Normality Histogram or Plot 

A fourth assumption of the SLR is: 

4. The y values must be normally distributed for each of 

the x values.  A histogram of the errors, and/or a normality 

plot can be used to check this, as well as tests of normality  
                 Histogram             #       Boxplot 
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HO: residuals are normal    H1: residuals are not 

normal 
Tests for Normality 
Test                  --Statistic---    -----p Value------ 
Shapiro-Wilk          W     0.991021    Pr < W      0.0039 
Kolmogorov-Smirnov    D     0.039181    Pr > D      0.0617 
Cramer-von Mises      W-Sq   0.19362    Pr > W-Sq   0.0066 
Anderson-Darling      A-Sq  1.193086    Pr > A-Sq  <0.0050 
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        Normal Probability Plot 
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Result:  We cannot calculate CI nor test the significance of 

the x variable, since we do not know what probabilities to 

use.  Also, estimated coefficients are no longer equal to the 

maximum likelihood solution. 
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Measurements and Sampling Assumptions 
The remaining assumptions are based on the measurements 

and collection of the sampling data. 

5. The x values are measured without error (i.e., the x 

values are fixed).  This can only be known if the process of 

collecting the data is known.  For example, if tree diameters 

are very precisely measured, there will be little error.  If 

this assumption is not met, the estimated coefficients 

(slopes and intercept) and their variances will be biased, 

since the x values are varying. 

6. The y values are randomly selected for value of the x 

variables (i.e., for each x value, a list of all possible y 

values is made, and some are randomly selected). Often, 

the observations will be gathered using systematic 

sampling (grid across the land area).  This does not strictly 

meet this assumption.  Also, more complex sampling 

design such as multistage sampling (sampling large units 

and sampling smaller units within the large units), this 

assumption is not met.  If the equation is “correct”, then 

this does not cause problems.  If not, the estimated equation 

will be biased.   
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Transformations  

 
Common Transformations 

• Powers  x3, x0.5, etc. for relationships that look 

nonlinear 

• log10, loge  also for relationships that look nonlinear, 

or when the variances of y are not equal around the 

line 

• Sin-1 [arcsine] when the dependent variable is a 

proportion.   

• Rank transformation:  for non-normal data  

o Sort the y variable  

o Assign a rank to each variable from 1 to n 

o Transform the rank to normal (e.g., Blom 

Transformation) 

PROBLEM:  loose some of the information in the 

original data 

• Try to transform x first and leave yi = variable of 

interest; however, this is not always possible.   

Use graphs to help choose transformations 
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Outliers:  Unusual Points 

 

Check for points that are quite different from the others on: 

• Graph of y versus x 

• Residual plot 

Do not delete the point as it MAY BE VALID!  Check: 

• Is this a measurement error?  E.g., a tree height of 100 

m is very unlikely 

• Is a transcription error? E.g. for adult person, a weight 

of 20 lbs was entered rather than 200 lbs. 

• Is there something very unusual about this point?  e.g., 

a bird has a short beak, because it was damaged. 

Try to fix the observation.  If it is very different than the 

others, or you know there is a measurement error that 

cannot be fixed, then delete it and indicate this in your 

research report.   

 

On the residual plot, an outlier CAN occur if the model is 

not correct – may need a transformation of the variable(s), 

or an important variable is missing 
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 Measures of Goodness of Fit 

How well does the regression fit the sample data?   

• For simple linear regression, a graph of the original 

data with the fitted line marked on the graph indicates 

how well the line fits the data [not possible with MLR] 

• Two measures commonly used:  coefficient of 

determination (r2) and standard error of the 

estimate(SEE).   

 

To calculate r2  and SEE, first, calculate the SSE (this is 

what was minimized): 
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The sum of squared differences between the measured and 

estimated y’s. 

Calculate the sum of squares for y: 
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the mean of y-measures.  NOTE:  In some texts, this is 
called the sum of squares total. 
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Calculate the sum of squares regression: 
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The sum of squared differences between the mean of y-

measures and the predicted y’s from the fitted equation.  

Also, is the sum of squares for y – the sum of squared 

errors. 

Then:  SSy
SSreg

SSy
SSE

SSy
SSESSyr =−=

−
= 12

 

• SSE, SSY are based on y’s used in the equation – 

will not be in original units if y was transformed 

• r2 = coefficient of determination; proportion of 

variance of y, accounted for by the regression using x 

• Is the square of the correlation between x and y 

• O (very poor – horizontal surface representing no 

relationship between y and x’s) to  1 (perfect fit – 

surface passes through the data) 
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And:   2−
=

n
SSESEE  

• SSE is based on y’s used in the equation – will not 

be in original units if y was transformed 

• SEE - standard error of the estimate; in same units as 

y 

• Under normality of the errors:   

o ±1 SEE ≅ 68% of sample observations  

o ±2 SEE ≅ 95% of sample observations 

o Want low SEE 
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y-variable was transformed:  Can calculate estimates of 

these for the original y-variable unit, called I2 (Fit Index) 

and estimated standard error of the estimate (SEE’), in order 

to compare to r2 and SEE of other equations where the y 

was not transformed.   

I2 = 1 - SSE/SSY   

• where SSE, SSY are in original units.  NOTE must 

“back-transform” the predicted y’s to calculate the 

SSE in original units.  

• Does not have the same properties as r2, however: 

o it can be less than 0  

o it is not the square of the correlation between the 

y (in original units) and the x used in the 

equation. 

Estimated standard error of the estimate (SEE’) , when the 

dependent variable, y, has been transformed: 

2
)('

−
=

n
unitsoriginalSSESEE  

• SEE’ - standard error of the estimate ; in same units 

as original units for the dependent variable 

• want low SEE’    [Class example] 
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Estimated Variances, Confidence Intervals and Hypothesis 

Tests 

Testing Whether the Regression is Significant 

Does knowledge of x improve the estimate of the mean of y? 

Or is it a flat surface, which means we should just use the 

mean of y as an estimate of mean y for any x? 

SSE/ (n-2): 

• Called the Mean squared error, as would be the average 

of the squared error if we divided by n.   

• Instead, we divide by n-2. Why?  The degrees of freedom 

are n-2; n observations with two statistics estimated from 

these, b0 and  b1   

• Under the assumptions of SLR, is an unbiased estimated 

of the true variance of the error terms (error variance) 

SSR/1: 

• Called the Mean Square Regression 

• Degrees of Freedom=1: 1 x-variable 

• Under the assumptions of SLR, this is an estimate the 

error variance PLUS a term of variance explained by 

the regression using x. 
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H0:  Regression is not significant  

H1:  Regression is significant 

Same as: 

H0:  β1 = 0 [true slope is zero meaning no relationship with 

x] 

H1:  β1 ≠ 0 [slope is positive or negative, not zero] 

 

This can be tested using an F-test, as it is the ratio of two 

variances, or with a t-test since we are only testing one 

coefficient (more on this later)  

 

Using an F test statistic: 

MSE
MSreg

nSSE
SSregF =

−
=

)2(
1

 

• Under H0, this follows an F distribution for a 1- α/2 

percentile with 1 and n-2 degrees of freedom.   

• If the F for the fitted equation is larger than the F from 

the table, we reject H0 (not likely true).  The 

regression is significant, in that the true slope is likely 

not equal to zero.     
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Information for the F-test is often shown as an Analysis of 
Variance Table: 

 
Source df SS MS F p-value 
Regression 1 

SSreg 
MSreg= 
SSreg/1 

F= 
MSreg/MSE

Prob F>  
F(1,n-2,1- α) 

Residual n-2 SSE MSE= 
SSE/(n-2) 

  

Total n-1 SSy    
 

[Class example and explanation of the p-value] 
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Estimated Standard Errors for the Slope and Intercept 

Under the assumptions, we can obtain an unbiased 

estimated of the standard errors for the slope and for the 

intercept [measure of how these would vary among 

different sample sets], using the one set of sample data. 
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Confidence Intervals for the True Slope and Intercept 

Under the assumptions, confidence intervals can be 

calculated as: 

For βo:      02,210 bn stb ×± −−α  

For β1:       12,211 bn stb ×± −−α  

 

[class example]
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Hypothesis Tests for the True Slope and Intercept 

H0:  β1 = c [true slope is equal to the constant, c] 

H1:  β1 ≠ c [true slope differs from the constant c] 

Test statistic: 

1

1

bs
cbt −

=
 

Under H0, this is distributed as a t value of  tc = tn-2, 1-α/2.  

Reject Ho if ⎟ t⎟ > tc. 

• The procedure is similar for testing the true intercept 

for a particular value 

• It is possible to do one-sided hypotheses also, where 

the alternative is that the true parameter (slope or 

intercept) is greater than (or less than) a specified 

constant c.  MUST be careful with the tc as this is 

different.  

[class example] 
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Confidence Interval for the True Mean of y given a 

particular x value 

For the mean of all possible y-values given a particular 

value of x (μy|xh): 

hxynh stxy |ˆ21,2|ˆ ×± −− α  

where 
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Confidence Bands 

Plot of the confidence intervals for the mean of y for 

several x-values.  Will appear as: 
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5.0 10.0 15.0 20.0 25.0 30.0 35.0

 28

Prediction  Interval for 1 or more y-values given a 

particular x value 

For one possible new y-value given a particular value of x: 

hxnewynhnew stxy |)(ˆ21,2)( |ˆ ×± −− α  

Where 
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For the average of g new possible y-values given a 

particular value of x: 

hxnewgynhnew stxy |)(ˆ21,2)( |ˆ ×± −− α  

where 
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[class example] 
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Selecting Among Alternative Models 

Process to Fit an Equation using Least Squares 

Steps: 

1. Sample data are needed, on which the dependent variable 

and all explanatory (independent) variables are 

measured. 

2. Make any transformations that are needed to meet the 

most critical assumption:  The relationship between y 

and x is linear.   

Example:  volume = β0 + β1 dbh2 may be linear  whereas 

volume versus dbh is not.  Use yi = volume  ,  xi = dbh2.   

3.  Fit the equation to minimize the sum of squared error.    

4.  Check Assumptions.  If not met, go back to Step 2. 

5.  If assumptions are met, then interpret the results. 

• Is the regression significant? 

• What is the r2?  What is the SEE? 

• Plot the fitted equation over the plot of y versus x. 
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For a number of models, select based on: 

1. Meeting assumptions:  If an equation does not meet the 

assumption of a linear relationship, it is not a candidate 

model 

2. Compare the fit statistics.  Select higher r2 (or I2), and 

lower SEE (or SEE’) 

3. Reject any models where the regression is not 

significant, since this model is no better than just using 

the mean of y as the predicted value. 

4. Select a model that is biologically tractable.  A simpler 

model is generally preferred, unless there are 

practical/biological reasons to select the more complex 

model 

5. Consider the cost of using the model 

 

[class example] 
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Simple Linear Regression Example 

 
Temperature 

(x) 
Weight 

(y) 
Weight 

(y) 
Weight 

(y) 
0 8 6 8 

15 12 10 14 
30 25 21 24 
45 31 33 28 
60 44 39 42 
75 48 51 44 

 
Observation temp weight 

1 0 8 
2 0 6 
3 0 8 
4 15 12 
5 15 10 
6 15 14 
7 30 25 
8 30 21 

Et cetera…   
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Obs. temp weight x-diff x-diff. sq.

1 0 8 -37.50 1406.25 
2 0 6 -37.50 1406.25 
3 0 8 -37.50 1406.25 
4 15 12 -22.50 506.25 

Et cetera     
     

mean 37.5 27.11 
   
 
SSX=11,812.5 SSY=3,911.8 SPXY=6,705.0 
 

xbyb
SSx

SPxyb ×−== 101  
 
b1: 0.567619 
b0: 5.825397 
 
NOTE:  calculate b1 first, since this is 
needed to calculate b0.
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From these, the residuals (errors) for the 
equation, and the sum of squared error 
(SSE) were calculated: 
 

Obs. weight y-pred residual
residual 

sq. 
1 8 5.83 2.17 4.73 
2 6 5.83 0.17 0.03 
3 8 5.83 2.17 4.73 
4 12 14.34 -2.34 5.47 

Et cetera 
 
SSE:  105.89
 
And SSR=SSY-SSE=3805.89 
 
ANOVA    
    
Source df SS MS
Model  1 3805.89 3805.89
Error  18-2=16 105.89 6.62
Total 18-1=17 3911.78  
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F=575.06   with p=0.00 (very small) 
 
In excel use:  = fdist(x,df1,df2) to obtain a 
“p-value” 
 
 
r2: 0.97 
Root 
MSE   
 Or 
SEE : 2.57 
 
BUT:  Before interpreting the ANOVA 
table, Are assumptions met?   
 
If assumptions were not met, we would 

have to make some transformations and 

start over again! 
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residual plot
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Linear? 
 
Equal variance? 
 
Independent observations? [need another 
plot – residuals versus time or space, that 
cause dependencies]
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Normality plot: 
 
Obs. sorted Stand.  Rel. Prob.

 resids resids Freq. 
z-

dist.
1 -4.40 -1.71 0.06 0.04 
2 -4.34 -1.69 0.11 0.05 
3 -3.37 -1.31 0.17 0.10 
4 -2.34 -0.91 0.22 0.18 
5 -1.85 -0.72 0.28 0.24 
6 -0.88 -0.34 0.33 0.37 
7 -0.40 -0.15 0.39 0.44 
8 -0.37 -0.14 0.44 0.44 
9 -0.34 -0.13 0.50 0.45 

Etc. 
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Probability plot
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Questions: 
 
1.  Are the assumptions of simple linear 
regression met?  Evidence? 
 
2.  If so, interpret if this is a good equation 
based on goodness of it measures. 
 
3.  Is the regression significant? 
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For 95% confidence intervals for b0 and b1, 
would also need estimated standard errors: 
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The t-value for 16 degrees of freedom and 
the 0.975 percentile is 2.12 (=tinv(0.05,16) 
in EXCEL)  

For βo:      075.1120.2825.5
02,210

×±

×± −− bn stb α

 

For β1:       0237.0120.2568.0
12,211

×±

×± −− bn stb α
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  Est. Coeff St. Error 
For b0: 5.825396825 1.074973559
For b1: 0.567619048 0.023670139

 
CI: b0 b1
t(0.975,16) 2.12 2.12
lower 3.54645288 0.517438353
upper 8.104340771 0.617799742
 

Question: Could the real intercept be equal 

to 0? 

 

Given a temperature of 22, what is the 

estimated average weight (predicted value) 

and a 95% confidence interval for this 

estimate? 
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Given a temperature of 22, what is the 

estimated weight for any new observation, 

and a 95% confidence interval for this 

estimate? 
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 Multiple Linear Regression (MLR) 

 

Population:  yi = β0 + β1 x 1i + β2 x 2i +...+βp xmi+εi 

Sample:       yi = b0 + b1 x 1i + b2 x 2i +...+bp xmi +ei 

iiimimiii yyexbxbxbby ˆˆ 22110 −=++++= K  

βo is the y intercept parameter 

β1, β2, β3, ..., βm  are slope  parameters 

x1i, x2i, x3i ... xmi independent variables  

εi -  is the error term or residual  

 - is the variation in the dependent variable (the y) 

which is not accounted for by the independent variables 

(the x’s).   

 

For any fitted equation (we have the estimated parameters), 

we can get the estimated average for the dependent 

variable, for any set of x’s.   This will be the “predicted” 

value for y, which is the estimated average of y, given the 

particular values for the x variables.  NOTE:  In text by 

Neter et al.  p=m+1.  This is not be confused with the p-

value indicating significance in hypothesis tests. 
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For example: 
 

Predicted log10(vol) = - 4.2 + 2.1 X log10(dbh) + 1.1 X  log10(height) 

 

where bo= -4.2; b1= 2.1  ;   b1= 1.1  estimated by finding the 

least squared error solution. 

 

Using this equation for dbh =30 cm, height=28m, 

logten(dbh) =1.48, logten(height) =1.45; logten(vol) = 

0.503.    ∴ volume (m3) = 3.184.  This represents the 

estimated average volume for trees with dbh=30 cm and 

height=28 m. 

 

Note:  This equation is originally a nonlinear equation: 

εcb htdbhavol ××=  

Which was transformed to a linear equation using 

logarithms: 

ε10log)(10log)(10log)(10log)(10log +++= htcdbhbavol
 

And this was fitted using multiple linear regression
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For the observations in the sample data used to fit the 

regression, we can also get an estimate of the error (we 

have measured volume).   

 

If the measured volume for this tree was 3.000 m3, or 0.477 

in log10 units: 

026.0503.0477.0ˆ −=−=−= ii yyerror  

For the fitted equation using log10 units.  In original units, 

the estimated error is 3.000-3.184= - 0.184   

NOTE:  This is not simply the antilog of -0.026.
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Finding the Set of Coefficients that Minimizes the Sum of 

Squared Errors 

• Same process as for SLR: Find the set of coefficients that 

results in the minimum SSE, just that there are more 

parameters, therefore more partial derivative equations 

and more equations 

o E.g., with 3 x-variables, there will be 4 coefficients  

(intercept plus 3 slopes) so four equations 

• For linear models, there will be one unique mathematical 

solution.   

• For nonlinear models, this is not possible and we must 

search to find a solution  

 

Using the criterion of finding the maximum likelihood 

(probability) rather than the minimum SSE, we would need to 

search for a solution, even for linear models (covered in other 

courses, e.g., FRST 530).   
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Least Squares Method for MLR: 
 
Find the set of estimated parameters (coefficients) that 
minimize sum of squared errors  
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Take partial derivatives with respect to each of the 
coefficients, set them equal to zero and solve.   
 
For three x-variables we obtain: 
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Where SP= indicates sum of products between two 
variables, for example for y with x1: 
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And SS indicates sums of squares for one variable, for 
example for x1: 

( ) )1(1
2

2

1
1

1

2
1

1

2
111 −=

⎟
⎠

⎞
⎜
⎝

⎛

−=−=
∑

∑∑ =

==

ns
n

x
xxxSSx x

n

i
in

i
i

n

i
i  

 



 49

Properties of a least squares regression “surface”: 

1. Always passes through ),,...,,,( 321 yxxxx m  

2. Sum of residuals is zero, i.e., Σei=0 

3. SSE the least possible (least squares) 

4. The slope for a particular x-variable is AFFECTED 

by correlation with other x-variables:  CANNOT 

interpret the slope for a particular x-variable, 

UNLESS it has zero correlation with all other x-

variables (or nearly zero if correlation is estimated 

from a sample). 
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Meeting Assumptions of MLR 
 

Once coefficients are obtained, we must check the 

assumptions of MLR before we can: 

• assess goodness of fit (i.e., how well the regression 

line fits the sample data) 

• test significance of the regression 

• calculate confidence intervals and test hypothesis  

 

For these test to be valid, assumptions of MLR 

concerning the observations and the errors (residuals) 

must be met. 
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Residual Plots 

Assumptions of: 

1. The relationship between the x’s and y is linear 

VERY IMPORTANT! 

2. The variances of  the y values must be the same for 

every combination of the x values. 

3. Each observation (i.e., xi’s and yi) must be 

independent of all other observations. 

can be visually checked by using RESIDUAL PLOTS  

 

A residual plot shows the residual (i.e., yi - iŷ ) as the y-axis 

and the predicted value ( iŷ ) as the x-axis.  For the 

indepence assumption, the x-axis is time or space that 

explains the dependence of the data. 

 

THIS IS THE SAME as for SLR.  Look for problems as 

with SLR.    The effects of failing to meet a particular 

assumption are the same as for SLR 

 

What is different?  Since there are many x variables, it will 

be harder to decide what to do to fix any problems.   
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 Normality Histogram or Plot 

A fourth assumption of the MLR is: 

4. The y values must be normally distributed for each 

combination of x values.   

 

A histogram of the errors, and/or a normality plot can be 

used to check this, as well as tests of normality as with 

SLR.  Failure to meet these assumptions will result in same 

problems as with SLR. 
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Example:  Linear relationship met, equal variance, no 

evidence of trend with observation number (independence 

may be met).  Also, normal distribution met. 
Logvol=f(dbh,logdbh) 
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Linear relationship assumption not met 
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Variances are not equal 
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Measurements and Sampling Assumptions 

The remaining assumptions of MLR are based on the 

measurements and collection of the sampling data, as with 

SLR 

5. The x values are measured without error (i.e., the x 

values are fixed). 

6. The y values are randomly selected for each given set of 

the x variables (i.e., for each fixed set of x values, a list of 

all possible y values is made). 

As with SLR, often observations will be gathered using 

simple random sampling or systematic sampling (grid 

across the land area).  This does not strictly meet this 

assumption [much more difficult to meet with many x-

variables!]  If the equation is “correct”, then this does not 

cause problems.  If not, the estimated equation will be 

biased.   
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Transformations  

 
• Same as for SLR – except that there are more x 

variables; can also add variables e.g. use dbh and dbh2 

as x1 and x2. 

• Try to transform x’s first and leave y = variable of 

interest; not always possible.  

• Use graphs to help choose transformations 

• Will result in an “iterative” process: 

1. Fit the equation 

2. Check the assumptions [and check for outliers] 

3. Make any transformations based on the residual 

plot, and plots of y versus each x 

4. Also, check any very unusual points to see if 

these are measurement/transcription errors; 

ONLY remove the observation if there is a very 

good reason to do so 

5. Fit the equation again, and check the assumptions 

6. Continue until the assumptions are met [or nearly 

met] 
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Measures of Goodness of Fit 

 

How well does the regression fit the sample data?   

• For multiple linear regression, a graph of the the 

predicted versus measured y values indicates how well 

the line fits the data  

• Two measures commonly used:  coefficient of 

multiple determination (R2) and standard error of the 

estimate(SEE), similar to SLR 

 

To calculate R2  and SEE, first, calculate the SSE (this is 

what was minimized, as with SLR): 
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The sum of squared differences between the measured and 

estimated y’s.  This is the same as for SLR, but there are 

more slopes and more x (predictor) variables. 

 

 



 59

Calculate the sum of squares for y: 
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the mean of y-measures. 

 
Calculate the sum of squares regression: 
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The sum of squared differences between the mean of y-

measures and the predicted y’s from the fitted equation.  

Also, is the sum of squares for y – the sum of squared 

errors.  
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Then:  SSy
SSreg

SSy
SSE

SSy
SSESSyR =−=

−
= 12

 

• SSE, SSY are based on y’s used in the equation – 

will not be in original units if y was transformed 

• R2 = coefficient of multiple determination;  

proportion of variance of y, accounted for by the 

regression using x’s 

• O (very poor – horizontal surface representing no 

relationship between y and x’s) to  1 (perfect fit – 

surface passes through the data) 

• SSE falls as m (number of independent variable) 

increases, so R2 rises as more explanatory 

(independent or predictor) variables are added. 

 

A similar measure is called the Adjusted R2 value.  A 

penalty is added as you add x-variables to the equation: 
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And:   1−−
=

mn
SSESEE  

• SSE is based on y’s used in the equation – will not 

be in original units if y was transformed 

• n-m-1 is the degrees of freedom for the error; is the 

number of observations minus the number of fitted 

coefficients 

• SEE - standard error of the estimate; in same units as 

y 

• Under normality of the errors:   

o ±1 SEE ≅ 68% of sample observations  

o ±2 SEE ≅ 95% of sample observations 

• Want low SEE 

• SEE  falls as the number of predictor variables 

increases and SSE falls, but then rises, since n-m -1 

is getting smaller 
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y-variable was transformed:  Can calculate estimates of 

these for the original y-variable unit,  I2 (Fit Index) and 

estimated standard error of the estimate (SEE’), in order to 

compare to R2 and SEE of other equations where the y was 

not transformed, similar to SLR. 

I2 = 1 - SSE/SSY   

• where SSE, SSY are in original units.  NOTE must 

“back-transform” the predicted y’s to calculate the SSE 

in original units.  

• Does not have the same properties as R2, however it can 

be less than 0 

Estimated standard error of the estimate (SEE’) , when the 

dependent variable, y, has been transformed: 

1
)('

−−
=

mn
unitsoriginalSSESEE  

• SEE’ - standard error of the estimate ; in same units as 

original units for the dependent variable 

• want low SEE’     
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Estimated Variances, Confidence Intervals and Hypothesis 

Tests 

Testing Whether the Regression is Significant 

Does knowledge of x’s improve the estimate of the mean of 

y? Or is it a flat surface, which means we should just use 

the mean of y as an estimate of mean y for any set of x 

values? 

 

SSE/ (n-m-1): 

• Mean squared error.   

o The degrees of freedom are n-m-1 (same as        

n-(m+1) 

o n observations with (m+1) statistics estimated 

from these: b0,  b1 , b2 ,… bm 

• Under the assumptions of MLR, is an unbiased 

estimated of the true variance of the error terms (error 

variance) 
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SSR/m: 

• Called the Mean Square Regression 

• Degrees of Freedom=m:       m  x-variables 

• Under the assumptions of MLR, this is an estimate the 

error variance PLUS a term of variance explained by 

the regression using x’s. 

 

H0:  Regression is not significant  

H1:  Regression is significant 

Same as: 

H0:  β1 = β2 =β3 = . . . =βm =0 [all slopes are zero meaning 

no relationship with x’s] 

H1:  not all slopes =0  [some or all slopes are not equal to 

zero] 

If  H0 is true, then the equation is: 

yi = β0 + 0 x 1i + 0 x 2i +...+0 xmi +εi 

00 ˆ βεβ =+= iii yy  

Where the x-variables have no influence over y; they do not 

help to better estimate y.
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As with SLR, we can use an F-test, as it is the ratio of two 

variances; unlike SLR we cannot use a t-test since we are 

only testing several slope coefficients.  

Using an F test statistic: 

MSE
MSreg

mnSSE
mSSregF =
−−

=
)1(  

• Under H0, this follows an F distribution for a 1- α 

percentile with m and n-m-1 degrees of freedom.   

• If the F for the fitted equation is larger than the F from 

the table, we reject H0 (not likely true).  The regression 

is significant, in that one or more of the the true slopes 

(the population slopes) are likely not equal to zero.     

Information for the F-test in the Analysis of Variance Table: 
 

Source df SS MS F p-value 
Regression m 

SSreg 
MSreg= 
SSreg/m 

F= 
MSreg/MSE 

Prob F>  
F(m,n-m-1,1- α) 

Error n-m-1 SSE MSE= SSE/(n
m-1) 

  

Total n-1 SSy    
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Estimated Standard Errors for the Slope and Intercept 

Under the assumptions, we can obtain an unbiased 

estimated of the standard errors for the slope and for the 

intercept [measure of how these would vary among 

different sample sets], using the one set of sample data. 

 

For multiple linear regression, these are more easily 

calculated using matrix algebra.  If there are more than 2 x-

variables, the calculations become difficult; we will rely on 

statistical packages to do these calculations. 

 

Confidence Intervals for the True Slope and Intercept 

Under the assumptions, confidence intervals can be 

calculated as: 

For βo:      01,210 bmn stb ×± −−−α  

For βj:       jbmnj stb ×± −−− 1,21 α [ for any of the slopes] 

 

[See example] 
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Hypothesis Tests for one of the True Slopes or Intercept 

H0:  βj = c [the parameter (true intercept or true slope is 

equal to the constant, c, given that the other x-variables are 

in the equation] 

H1:  βj ≠ c [true intercept or slope differs from the constant 

c; given that the other x-variables are in the equation] 

 

Test statistic: 

jb

j

s
cb

t
−

=
 

Under H0, this is distributed as a t value of  tc = tn-m-1, 1-α/2.  

Reject Ho if ⎟ t⎟ > tc. 

• It is possible to do one-sided hypotheses also, where 

the alternative is that the true parameter (slope or 

intercept) is greater than (or less than) a specified 

constant c.  MUST be careful with the tc as this is 

different.  

 

 68

The regression is significant, but which x-variables should 

we retain? 

With MLR, we are particularly interested in which x-

variables to retain.  We then test: Is variable xj significant 

given the other x variables?  e.g. diameter, height - do we 

need both? 

 

H0: βj = 0,  given other x-variables  (i.e., variable not 

significant) 

 

H1: βj ≠ 0,  given other x-variables. 

 

A t-test for that variable can be used to test this.   
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Another test, the partial F-test can be used to test one x-

variable (as t-test) or to test a group of x-variables, given 

the other x-variables in the equation. 

• Get regression analysis results for all x-variables [full 

model] 

• Get regression analysis results for all but the x-variables 

to be tested [reduced model] 

( )

( )

)(
))variable(sdroppedtodue(

))(1(
)()(

OR
))(1(

)()(

fullMSE
/rSS

fullmnSSE
rfullSSEreducedSSEFpartial

fullmnSSE
rreducedSSregfullSSregFpartial

=

−−
−

=

−−
−

=

 

Where r is the number of x-variables that were dropped 

(also equals: (1)the regression degrees of freedom for the 

full model minus the regression degrees of freedom for the 

reduced model, OR (2) the error degrees of freedom for the 

reduced model, minus the error degrees of freedom for the 

full model) 
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• Under H0, this follows an F distribution for a 1- α 

percentile with r and n-m-1 (full model) degrees of 

freedom.   

• If the F for the fitted equation is larger than the F from 

the table, we reject H0 (not likely true).  The 

regression is significant, in that the variable(s) that 

were dropped are significant (account for variance of 

the y-variable), given that the other x-variables are in 

the model. 

 

Confidence Interval for the True Mean of y given a 

particular set of x values 

For the mean of all possible y-values given a particular 

value set of x-values (μy|xh): 

hymnh sty xx |ˆ21,1|ˆ ×± −−− α  

where 

output package lstatistica from 

|ˆ

|ˆ

22110

=

++++=

hy

mhmhhh

s

xbxbxbby

x

x L
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Confidence Bands 

Plot of the confidence intervals for the mean of y for 

several sets  x-values is not possible with MLR 

 

Prediction  Interval for 1 or more y-values given a 

particular set of x values 

For one possible new y-value given a particular set of x 

values: 

hnewymnhnew sty xx |)(ˆ21,1)( |ˆ ×± −−− α  

Where 

output package lstatistica from 

|ˆ

|)(ˆ

22110

=

++++=

hnewy

mhmhhh

s

xbxbxbby

x

x L

 

For the average of g new possible y-values given a 

particular value of x: 

hnewgymnhnew sty xx |)(ˆ21,1)( |ˆ ×± −−− α  

where 

output package lstatistica from 

|ˆ

|)(ˆ

22110

=

++++=

hnewgy

mhmhhh

s

xbxbxbby

x

x L
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 Selecting  and Comparing Alternative Models 
 

Process to Fit an Equation using Least Squares 

Steps (same as for SLR): 

1. Sample data are needed, on which the dependent variable 

and all explanatory (independent) variables are 

measured. 

2. Make any transformations that are needed to meet the 

most critical assumption:  The relationship between y 

and x’s is linear.   

Example:  volume = β0 + β1 dbh +β2 dbh2 may be linear 

whereas volume versus dbh is not.  Need both variables. 

3. Fit the equation to minimize the sum of squared error.    

4. Check Assumptions.  If not met, go back to Step 2. 

5. If assumptions are met, then check if the regression is 

significant.  If it is not, then it is not a candidate model 

(need other x-variables).  If yes, then go through further 

steps for MLR. 
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6. Are all variables needed?  If there are x-variables that are 

not significant, given the other variables:  

• drop the least significant one (highest p-value, or lowest 

absolute value of t)  

• refit the regression and check assumptions. 

• if assumptions are met, then repeat steps 5 and 6 

continue until all variables in the regression are significant 

given the other x-variables also in the model 
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Multiple Linear Regression Example 
 

n=28 stands     y=vol/ha (m3) 

volume/ha
m3

Age
years

Site
Index

Basal 
area/ha

m2
Stems

/ha

Top 
height

m
Qdbh

cm
559.3 82 14.6 32.8 1071 22.4 22.2

559 107 9.4 44.2 3528 17 9.3
831.9 104 12.8 50.5 1764 21.5 17
365.7 62 12.5 29.6 1728 16.4 12.1
454.3 52 14.6 35.4 2712 18.9 14.1

486 58 13.9 39.1 3144 17.5 14
441.6 34 18.5 36.2 3552 17.4 13.8
375.8 35 17 33.4 4368 15.6 12.2
451.4 33 19.1 35.4 2808 16.8 14.7
419.8 23 23.4 34.4 3444 17.3 14

467 33 17.7 42 6096 16.4 12.2
288.1 33 15 30.3 5712 13.8 5.6

306 32 18.2 27.4 3816 16.7 12.5
437.1 68 13.8 33.3 2160 19.1 16.2
633.2 126 11.4 39.9 1026 21 23.2
707.2 125 13.2 40.1 552 23.3 29.2

203 117 13.7 11 252 22.1 25.8
915.6 112 13.9 48.7 1017 24.2 25
903.5 110 13.9 51.5 1416 23.2 23
883.4 106 14.7 49.4 1341 24.3 23.7
586.5 124 12.8 35.2 2680 22.6 21.5
500.1 60 18.4 27.3 528 22.7 24.4
343.5 63 14 26.9 1935 17.6 14.1
478.6 60 15.2 34 2160 19.4 9.9
652.2 62 15.9 42.5 1843 20.5 13.2
644.7 63 16.2 40.4 1431 21 16.1
390.8 57 14.8 30.4 2616 18.3 13.9
709.8 87 14.3 42.3 1116 22.6 23.9
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Objective: obtain an equation for estimating volume per ha 
from some of the easy to measure variables such as basal 
area /ha (only need dbh on each tree), qdbh (need dbh on 
each tree and stems/ha), and stems/ha 
 

volume per ha versus basal area per 
ha
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volume per ha versus stems/ha
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volume per ha versus quadratic mean 
dbh
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Then, we would need: SSY,  SSX1, SSX2, SSX3, SPX1Y, 
SPX2Y, SPX3Y, SPX1X2, SPX1X3, SPX2X3, and insert 
these into the four equations and solve: 
 

3322110 xbxbxbyb −−−=  
 

1

31
3

1

21
2

1

1
1 SSx

xSPxb
SSx

xSPxb
SSx

ySPxb −−=  

 

2

32
3

2

21
1

2

2
2 SSx

xSPxb
SSx

xSPxb
SSx

ySPxb −−=  

 

3

32
2

3

31
1

3

3
3 SSx

xSPxb
SSx

xSPxb
SSx

ySPxb −−=  

 
And then check assumptions, make any necessary 
transformations, and start over! 
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Methods to aid in selecting predictor (x) variables 

 

Methods have been developed to help in choosing which x-

variables to include in the equation.  These include: 

1.  Forward:  Bring in variables one at a time, until the 

remaining ones are no longer significant, given the others 

already in the equation. (in only) 

2.  Backward: Drop  variables one at a time, until all 

remaining variables are significant, given the others still in 

the equation  (out only) 

3. Stepwise   (in and out) 

NOTE: 

These tools just gives candidate models.  You must check 

whether the assumptions are met and do a full assessment 

of the regression results  
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 Steps for Forward Stepwise, for example: 
 
To fit this “by hand”, you would need to do the following 
steps: 
 

1. Fit a simple linear regression for vol/ha with each of 
the explanatory (x) variables. 

2. Of the equations that are significant (assumptions 
met?), select the one with the highest F-value. 

3. Fit a MLR with vol/ha using the selected variable, plus 
each of the explanatory variables (2 x-variables in 
each equations).  Check to see if the “new” variable is 
significant given the original variable (which may now 
be not significant, but forward stepwise does not drop 
variables).  Of the ones that are significant (given the 
original variable is also in the equation), pick the one 
with the largest partial-F (for the new variable). 

4. Repeat step 3, bringing in varables until i) there are no 
more variables or ii) the remaining variables are not 
significant given the other variables. 
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 For a number of models, select based on: 
 

1. Meeting assumptions:  If an equation does not meet 

the assumption of a linear relationship, it is not a 

candidate model 

2. Compare the fit statistics.  Select higher R2 (or I2), and 

lower SEE (or SEE’) 

3. Reject any models where the regression is not 

significant, since this model is no better than just using 

the mean of y as the predicted value. 

4. Select a model that is biologically tractable.  A simpler 

model is generally preferred, unless there are 

practical/biological reasons to select the more complex 

model 

5. Consider the cost of using the model 
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Adding class variables as predictors 

  
Want to add a class variable.  Examples: 

 

1. Add species to an equation to estimate tree height. 

2. Add gender (male/female) to an equation to estimate 

weight of adult tailed frogs. 

3. Add machine type to an equation that predicts lumber 

output. 

How is this done? 

• Use “dummy” or “indicator variables to represent 

the class variable 

e.g. have 3 species.  Set up X1 and X2 as dummy 

variables: 

Species                   X1             X2 

     Cedar                      1               0 

     Hemlock                 0               1 

     Douglas fir             0               0 

Only need two dummy variables to represent the 

three species. 
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The two dummy variables as a group 

represent the species.   

• Add the dummy variables to the equation – this 

will alter the intercept 

• To alter the slopes, add an interaction between 

dummy variables and continuous variable(s) 

e.g. have 3 species, and a continuous variable, 

dbh 

Species    X1   X2     dbh   X4=X1 * dbh  X5=X2*dbh 

    Cedar        1      0        10          10                         0 

    Hemlock   0      1        22           0                        22 

    Douglas  

        fir           0      0        15           0                         0 

NOTE:  There would be more than one line of data 

(sample) for each species. 

o The two dummy variables, and the 

interactions with the continuous variable as 

a group represent the species.   
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How does this work? 

{

                  
nsinteractio

55414
dbh

33

ablesdummy vari

22110 i

i

iiiiii exbxbxbxbxbby ++++++=
44 344 214434421

 

For Cedar (CW): 

               )()(
dbh

34310 iii exbbbby ++++=
43421  

For Hemlock (HW): 

               )()(
dbh

35320 iii exbbbby ++++=
43421  

For Douglas fir (FD): 

{                
dbh

330 iii exbby ++=
 

 

Therefore:  fit one equation using all data, but get 

different equations for different species.  Also, can test 

for differences among species, using a partial-F test. 
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Other methods, than SLR and Multiple Linear Regression, when 

transformations do not work: 

 

Nonlinear least squares:  Least squares solution for nonlinear 

models; uses a search algorithm to find estimated coefficients; has 

good properties for large datasets; still assumes normality, equal 

variances, and independent observations 

 

Weighted least squares:  for unequal variances.  Estimate the 

variances and use these in weighting the least squares fit of the 

regression; assumes normality and independent observations 

 

Generalized  linear model:  used for distributions other than 

normal (e.g., binomial, Poisson, etc.), but with no correlation 

between observations; uses maximum likelihood 

 

Generalized least Squares and Mixed Models:  use maximum 

likelihood for fitting models with unequal variances, correlations 

over space, correlations over time, but normally distributed errors 

 

Generalized linear mixed models: Allows for unequal variances, 
correlations over space and/or time, and non-normal distributions; 
uses maximum likelihood 


