

Predicting Time-Since-Fire Using Forest Inventory Data: A Case Study in the Boreal Forest of Saskatchewan, Canada

Rueben Schulz, Peter Marshall, and Valerie LeMay Contact: rschulz@interchange.ubc.ca, peter.marshall@ubc.ca, and valerie.lemav@ubc.ca Department of Forest Resources Management, University of British Columbia, Vancouver, Canada

Introduction

Time-since-fire (T-S-F) can be used to calculate fire disturbance parameters such as: area vs. age curves, fire frequency, and disturbance patch sizes.

Historic fire disturbance parameters are needed to provide a baseline for emulating

natural disturbance regimes during forest management.

Predicting T-S-F information from existing forest inventory data may allow historic fire parameters to

be estimated at a lower cost than approaches which require tree ages to be measured especially for this purpose.

Image: NASA and Canadian Forest Service

Data Description

The 90 000 ha study area was located in northwest Saskatchewan. Canada.

The T-S-F data were recorded as the time since the last wildfire disturbance (to the nearest year) for all areas of the landscape.

Hierarchical Cluster 10 yr

1900 1920 1940

1910 1930

Clustering Results

1880

1890

1790 - 1870

Evaluation

T-S-F.

Observed Time-Since-Fire

-lierarchical Cluster 5 vr

The forest inventory data included variables describing tree species and ages (recorded within 10 year classes).

Human-made features such as roads and harvests created "holes" in the forest inventory where no forest age attributes were recorded.

Time-Since-Fire (10 year class) 1876 - 1885 1886 - 1895 1896 - 1905 1906 - 1915 1916 - 1925 1926 - 1935 1936 - 1945 1946 - 1955 No Predicted ne-Since-Fir Predicted T-S-F for forest inventory polygons. Significant regression variables were: Forest inventory age Inventory age from neighbouring polygons Tree species Forest modification type (harvest) Clustering Forest inventory polygons with similar predicted T-S-F were grouped into fire events.

Several approaches were evaluated.

Discussion

values from neighbouring polygons.

The methods used to derive predicted T-S-F were linked to the required uses of the output:

- Area by age class only required predicting T-S-F with regression models.
- Patch size distributions required removing "holes" and clustering forest polygons.

No strong relationship was found between T-S-F and forest inventory variables. This may be a result of different data collection methods and differing accuracy between the datasets.

Evaluation of the predicted T-S-F should focus on comparing fire disturbance parameters to those calculated from the observed T-S-F dataset.

Conclusion

A significant relationship existed between forest inventory variables and T-S-F; however, this relationship was not as strong as we had hoped.

Fire disturbance parameters were

compared for predicted and observed

Nevertheless, the predicted T-S-F were considerably better than those that could be derived simply using the ages provided by the forest inventory.

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada
- Forest Development Fund of the Saskatchewan Forest Centre Sustainable Forest Management Network
- · Forest Ecosystems Branch of Saskatchewan Environment and Resource Management
- Mistik Management Ltd.

References

- Andison, D.W. 1999. Assessing forest age data in the foothills and mountains of Alberta: Laying the groundwork for natural disturbance research. Alberta Foothills Disturbance Ecology Research Series Report No. 1. Foothills Model Forest.
- Johnson, E.A. 1992. Fire and vegetation dynamics: Studies from the North America boreal forest. Cambridge University Press, Great Brittan.