Estimating Natural Regeneration Following Mountain Pine Beetle Attacks in British Columbia Using Nearest Neighbour Analyses

by Taehee (Terry) Lee, Peter Marshall, Valerie LeMay, and Abdel-Azim Zumrawi

Presented at the 2006 Nearest Neighbors Workshop, Aug. 28-30, Minneapolis, Minnesota, USA

Introduction

•Mountain Pine Beetle (MPB) is a destructive insect of mature pine forests of western North America.

•Pine, predominantly lodgepole pine (*Pinus contorta*) covers almost 14,000,000 ha of British Columbia (BC)

•MPB is endemic in these forests, periodically becoming epidemic.

•The present epidemic, beginning in the late-1990s, is unprecedented, both in terms of the severity and the extent of the outbreak

Introduction – continued

Area of BC Affected by MPB

Provincial Level Projection of the Current MPB Outbreak

Cumulative percentage of pine killed data 1999 to 2004 projection 2005 to 2014

Supported by the Mountain Pine Beetle Initiative of the Canadian Forest Service and the BC Forest Service

Objective

Predict the number and species of natural regeneration which would occur following MPB attack and no human intervention.

- not all attacked stands will be salvage logged

- planting will not be able to take place in every attacked stand

-need to be able to predict regeneration to link into growth models to ascertain impacts of current MPB attack on long-term timber supply

Approach

We chose to apply imputation using most similar neighbour methods.

• We had reasonably good success predicting regeneration for several different species following partial harvesting using these methods previously.

(Hassani, B.T., V. LeMay, P.L. Marshall, H. Temesgen, and A.-A. Zumrawi. 2004. Regeneration imputation models for complex stands of southeastern British Columbia. For. Chron. 80:271-278.)

- Auxiliary variables were particular overstory variables measured at Time 1, following the disturbance.
- Variables of interest were quantities of regeneration, by species and height class, at some subsequent time (Time 2).
- Overstory variable values at Time 2 were the same (or nearly the same) as they were at Time 1.

Caveat

Levels of natural regeneration in MPB-attacked stands are expected to be affected by:

- extent and timing of mortality
- rate of defoliation of dead trees
- rate of fall of snags

It was not clear to us how much these factors, which essentially result in the overstory at Time 2 being considerably different than at Time 1, would impact on the effectiveness of the NN methods we used successfully in partially cut stands.

Data

 41 stands that were attacked by MPB in the mid-1980s were sampled in 1987 and 1988 as part of a Natural Resources Canada project.

(Short, T. and L. Safranyik. 1996. The impact of the mountain pine beetle, Dendroctonus ponderosae, on lodgepole pine stands in British Columbia, Canada. In: Korpilahti, E, Salonen, T., S. Ojal (eds). Caring for the forests: research in a changing world: abstract of invited papers, IUFRO XX World Congress, 6-12 August 1995. Tampere, Finland.)

Regeneration plots established in 20 of these stands (175 plots in total) were reassessed in 2001. The remaining 21 stands were no longer available due to logging or wildfire.

Year	Π	DF	SB	PS	М	S	All Zones		
	Stands Plo		Stands	Plots	Stands	Plots	Stands	Plots	
1987	13	129	20	220	3	31	36	380	
2001	9	80	9	75	2	20	20	175	

Data – continued

General Location of the Sampled Stands

Data – continued

- For each plot at both times, large trees (> 7.5 cm dbh) were measured for status (live/dead), species, and dbh.
 - measured on a variable radius plot with either a 2.3 m²/ha or a 4.59 m²/ha BAF
- Regeneration was considered to be those trees ≤ 7.5 cm dbh.
 - divided into saplings (0.1 to 7.5 cm dbh) and seedlings (< 1.5 m in height)
 - saplings were divided into two dbh classes (0.1 to 3.9 cm; 4.0 to 7.5 cm) and were measured on either 5.64 or 7.98 m radius circular plots and species and dbh recorded
 - seedlings were divided into four height classes (< 0.10 m; 0.10 to 0.49 m; 0.50 to 0.99 m; 1.00 to 1.50 m) and species and height class recorded.

NN Imputation Analysis

- The Most Similar Neighbour (MSN) imputation program (Version 2.12) was used to select the nearest neighbour from the reference dataset.
- The squared distance (similarity) measure used was:

 $d_{ij}^2 = (X_i - X_j)W(X_i - X_j)'$

where X_i is the vector of normalized X variables for the reference data, X_j is the vector of normalized X variables for the target data, and W is a weight matrix.

W was calculated as:

$$W = \Gamma \Lambda^2 \Gamma'$$

where Γ is the matrix of the standardized canonical coefficients for the X variables and Λ^2 is the diagonal matrix of squared canonical correlations between the X and the Y variables.

NN Imputation Analysis – continued

- Different sets of X and Y variables were tested.
- Y variables consisted of the regeneration data divided into species groupings and size classes
 - Two different species groupings were used: (1) shade tolerance classes (tolerant, semitolerant, intolerant); and (2) species classes (conifer expect pine, pine, deciduous)
 - Four size classes were used: (1) < 0.50 m in height; (2) 0.50 to 0.99 m in height; (3) 1.00 to 1.49 m in height; and (4) 0.10 to 7.49 cm dbh
- X variables consisted of the overstory data from 1987 and elevation, augmented by overstory data and snag fall-down rate from 2001
 - Normally, measurements from a second date would not be available
 - However, if they proved useful, they could be predicted from an overstory growth model and a snag recruitment model

NN Imputation Analysis – continued

Description of Predictor Sets

Overstory (X) Variables	Symbol
Elevation; live stems/ha, basal area/ha (BA), crown competition factor, and quadratic mean diameter (QMD)	ALL
Elevation; live stems/ha, basal area/ha, crown competition factor, quadratic mean diameter; number, BA, and QMD of snags	ALLWS
Elevation; live stems/ha and basal area/ha by three species classes (shade tolerant, semi-shade tolerant, shade intolerant), crown competition factor, and quadratic mean diameter	TC
Elevation; live stems/ha and basal area/ha by three species classes (shade tolerant, semi-shade tolerant, shade intolerant), crown competition factor, quadratic mean diameter; number, BA, and QMD of snags	TCWS
Elevation; live stems/ha and basal area/ha by three species classes (shade tolerant, semi-shade tolerant, shade intolerant), crown competition factor, quadratic mean diameter; number, BA, QMD, and fall down rate of snags	TCWS_RFY
Elevation; live stems/ha and basal area/ha by three species classes (conifer except pine, pine, deciduous), crown competition factor, quadratic mean diameter	3C
Elevation; live stems/ha and basal area/ha by three species classes (conifer except pine, pine, deciduous), crown competition factor, quadratic mean diameter; number, BA, and QMD of snags	3CWS
Elevation; live stems/ha and basal area/ha by three species classes (conifer except pine, pine, deciduous), crown competition factor, quadratic mean diameter; number, BA, QMD, and fall down rate of snags	3CWS_RFY

Assessment of Performance

- For validation, plot data from each of the three BEC zones were divided randomly into four approximately equal sets of plots.
- One of these four sets (25%) was used as the target data and the remaining plots were used as the reference data
- The imputed regeneration for each target plots was then compared to the actual regeneration and bias (average difference) and root mean squared error (RMSE) determined for each regeneration variable
- This analysis was repeated four times, using each set of plots in turn as the target data

BEC Zone	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Total Plots
IDF	18	18	20	24	75
MS	5	5	4	6	20
SBPS	17	17	20	21	80
Total	40	40	44	51	175

Prediction Using 1987 Variables – Best All Sizes

M SN Varia	ables	BEC		Bi	as			RM	SE		All S	Sizes
Over- story	Reg		1	2	3	4	1	2	3	4	Bias	RMSI
		IDF	-128	174	70	-210	8102	2865	1126	1397	-94	1099
ALL	тс	MS	2136	-265	-50	-48	11875	1217	339	461	1774	1254
		SBPS	102	44	18	-216	3687	1662	990	1788	-53	5626
		IDF	306	-116	-12	-27	8530	2317	972	1331	151	1093
ALLWS	тс	MS	580	-282	-99	-18	8439	996	378	632	181	7988
		SBPS	0	88	88	87	3067	1704	1064	1840	264	5332
		IDF	410	265	157	123	8943	2769	1403	1541	955	1186
тс	тс	MS	3263	-215	-50	-75	10100	951	287	645	2923	1059
		SBPS	71	26	0	-323	3761	1683	993	1677	-226	5854
		IDF	-393	215	128	135	7586	2743	1455	1376	85	1081
TCWS	тс	MS	1275	-232	-149	-205	12194	1026	451	449	689	1208
		SBPS	53	40	79	14	2676	1694	1060	1838	186	535
		IDF	-853	50	-41	-18	7889	2643	1151	1564	-862	1057
3C	3C	MS	50	-431	-83	50	9589	1109	355	453	-413	1012
		SBPS	133	-97	-124	-300	3167	1548	826	1772	-653	519
		IDF	608	-352	-50	-41	9920	2109	1068	1244	166	1183
3CWS	3C	MS	812	-331	-116	-108	9098	943	426	661	257	874
		SBPS	477	40	13	73	3360	1605	881	1913	603	548
		IDF	3826	1213	563	1016					6618	
Actual		MS	5035	729	265	595					6624	
		SBPS	1404	764	415	1528					4111	

Prediction Using 2001 Variables – Best All Sizes

											1	
M SN Varia	ables	BEC		Bia	as			RM	SE		All S	Sizes
Over- story	Reg		1	2	3	4	1	2	3	4	Bias	RMSE
		IDF	679	66	112	-53	9816	2396	1195	1146	804	11576
ALL	тс	MS	265	-315	-116	18	7209	1126	425	445	-148	8098
		SBPS	314	71	9	-30	3017	1711	899	1711	393	5156
		IDF	-402	215	87	141	8839	2534	1082	1474	41	10954
ALLWS	тс	MS	-248	-414	-116	-5	7422	1055	425	394	-783	8028
		SBPS	318	-110	-84	209	2862	1400	785	1540	333	4722
		IDF	348	542	248	314	9526	3080	1312	1606	1453	12137
тс	тс	MS	166	-149	-17	-25	9476	1159	451	432	-25	9893
		SBPS	322	27	35	402	3164	1443	860	1765	723	4723
		IDF	-869	480	41	93	8523	2795	1034	1766	-255	10172
TCWS	тс	MS	-1192	215	17	30	9756	1050	399	439	-931	10012
		SBPS	238	-225	-57	258	2905	1374	871	1691	213	4652
		IDF	108	749	190	241	9755	3209	1217	1944	1288	12723
TCWS_ RFY	тс	MS	-530	116	50	35	8255	1034	425	363	-329	8411
		SBPS	181	-181	-53	-55	3223	1308	859	1726	-108	4418
		IDF	3826	1213	563	1016					6618	
Actual		MS	5035	729	265	595					6624	
		SBPS	1404	764	415	1528					4111	

Prediction Using 2001 Variables – Best All Sizes (Cont.)

MSN Varia	ables	BEC		Bia	as			RM	SE		All S	izes
Over- story	Reg		1	2	3	4	1	2	3	4	Bias	RMSE
		IDF	-716	-166	-29	-207	8022	2285	1027	1191	-1118	10482
3C	3C	MS	4405	431	133	18	12092	1695	646	531	4986	12555
		SBPS	181	13	-22	-82	3525	1631	803	1957	90	5060
		IDF	2041	-104	25	-204	12012	2265	1085	1227	1759	13778
3CWS	3C	MS	-431	-331	-133	-38	10031	1005	406	436	-932	10332
		SBPS	504	-62	-75	252	3395	1450	798	1620	619	5183
		IDF	1147	137	62	-58	11161	2165	1099	1187	1288	12848
TCWS_ RFY	3C	MS	563	-199	-133	-100	9471	1180	406	521	132	9550
		SBPS	446	18	-9	38	3529	1419	806	1675	493	4958
		IDF	3826	1213	563	1016					6618	
Actual		MS	5035	729	265	595					6624	
		SBPS	1404	764	415	1528					4111	

Overall Regeneration

Overall Regeneration

Prediction Using 1987 Variables – Best for Saplings

MSN Vari	ables	BEC		Bi	as			RM	SE		All S	Bizes
Over- story	Reg		1	2	3	4	1	2	3	4	Bias	RMSE
		IDF	-128	174	70	-210	8102	2865	1126	1397	-94	10999
ALL	тс	MS	2136	-265	-50	-48	11875	1217	339	461	1774	12543
		SBPS	102	44	18	-216	3687	1662	990	1788	-53	5626
		IDF	306	-116	-12	-27	8530	2317	972	1331	151	10930
ALLWS	тс	MS	580	-282	-99	-18	8439	996	378	632	181	7988
		SBPS	0	88	88	87	3067	1704	1064	1840	264	5332
		IDF	410	265	157	123	8943	2769	1403	1541	955	11868
тс	тс	MS	3263	-215	-50	-75	10100	951	287	645	2923	10599
		SBPS	71	26	0	-323	3761	1683	993	1677	-226	5854
		IDF	-393	215	128	135	7586	2743	1455	1376	85	10812
TCWS	тс	MS	1275	-232	-149	-205	12194	1026	451	449	689	12081
		SBPS	53	40	79	14	2676	1694	1060	1838	186	5357
		IDF	-853	50	-41	-18	7889	2643	1151	1564	-862	10573
3C	3C	MS	50	-431	-83	50	9589	1109	355	453	-413	10124
		SBPS	133	-97	-124	-300	3167	1548	826	1772	-653	5194
		IDF	608	-352	-50	-41	9920	2109	1068	1244	166	11837
3CWS	3C	MS	812	-331	-116	-108	9098	943	426	661	257	8744
		SBPS	477	40	13	73	3360	1605	881	1913	603	5485
		IDF	3826	1213	563	1016					6618	
Actual		MS	5035	729	265	595					6624	
		SBPS	1404	764	415	1528					4111	

Prediction Using 2001 Variables – Best for Saplings

MSN Vari	ables	BEC		Bia	as			RMS	SE		All S	lizes
Over- story	Reg		1	2	3	4	1	2	3	4	Bias	RMSE
		IDF	679	66	112	-53	9816	2396	1195	1146	804	11576
ALL	тс	MS	265	-315	-116	18	7209	1126	425	445	-148	8098
		SBPS	314	71	9	-30	3017	1711	899	1711	393	5156
		IDF	-402	215	87	141	8839	2534	1082	1474	41	10954
ALLWS	тс	MS	-248	-414	-116	-5	7422	1055	425	394	-783	8028
		SBPS	318	-110	-84	209	2862	1400	785	1540	333	4722
		IDF	348	542	248	314	9526	3080	1312	1606	1453	12137
тс	тс	MS	166	-149	-17	-25	9476	1159	451	432	-25	9893
		SBPS	322	27	35	402	3164	1443	860	1765	723	4723
		IDF	-869	480	41	93	8523	2795	1034	1766	-255	10172
TCWS	тс	MS	-1192	215	17	30	9756	1050	399	439	-931	10012
		SBPS	238	-225	-57	258	2905	1374	871	1691	213	4652
		IDF	108	749	190	241	9755	3209	1217	1944	1288	12723
TCWS_ RFY	тс	MS	-530	116	50	35	8255	1034	425	363	-329	8411
		SBPS	181	-181	-53	-55	3223	1308	859	1726	-108	4418
		IDF	3826	1213	563	1016					6618	
Actual		MS	5035	729	265	595					6624	
		SBPS	1404	764	415	1528					4111	

Prediction Using 2001 Variables – Best for Saplings (Cont.)

MSN Vari	ables	BEC		Bia	as			RM	SE		All S	izes
Over- story	Reg		1	2	3	4	1	2	3	4	Bias	RMSE
		IDF	-716	-166	-29	-207	8022	2285	1027	1191	-1118	10482
3C	3C	MS	4405	431	133	18	12092	1695	646	531	4986	12555
		SBPS	181	13	-22	-82	3525	1631	803	1957	90	5060
		IDF	2041	-104	25	-204	12012	2265	1085	1227	1759	13778
3CWS	3C	MS	-431	-331	-133	-38	10031	1005	406	436	-932	10332
		SBPS	504	-62	-75	252	3395	1450	798	1620	619	5183
TOMO		IDF	1147	137	62	-58	11161	2165	1099	1187	1288	12848
TCWS_ RFY	3C	MS	563	-199	-133	-100	9471	1180	406	521	132	9550
TC		SBPS	446	18	-9	38	3529	1419	806	1675	493	4958
		IDF	3826	1213	563	1016					6618	
Actual		MS	5035	729	265	595					6624	
		SBPS	1404	764	415	1528					4111	

Number of Saplings

Number of Saplings

Observations

- No overstory combination worked best in all cases for either the 1987 or the 2001 datasets for either all regeneration or for saplings alone
- Bias levels generally not too bad, but there was quite high (unacceptable?) variability on a plot-by-plot basis
- In general, using the 2001 overstory and rate-of-fall variables did not improve predictions over using the 1987 overstory information for all predicting regeneration
- There were slight improvements using the 2001 overstory data for predicting the number of saplings
- Using tolerance classes for the regeneration generally resulted in slightly better predictions than using species classes
- Overall, the dataset which incorporated the 1987 overstory data plus snag information, without species or tolerance classes, provided the best predictions

What next?

- Collect more (and better) regeneration information and overstory data
- Explore alternative imputation methods
 - Focus only on a subset of the largest regeneration
 - Use m-NN to average out variability
- Explore alternative prediction methods

Acknowledgements

This study was funded by Natural Resources Canada – Canadian Forest Service under the Mountain Pine Beetle Initiative.

d Rang

Natural Resources Ressource Canada Canada

Ressources naturelles Canada

Additional funding was provided by the BC Ministry of Forests and Range to evaluate alternative data sources.

Any quetion?