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Mapping/Assessment Problem

Measures for all variables of interest and for all 
scales of interest are not available

Example:

� Forested land, divided into polygons (stands, same 
age, species, etc.) – complete census based on 
photos/remote sensing

� Ground data are available for some of the stands 

� Wish to “populate” the forested land with detailed 
information
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Imputing Missing Data

Imputation involves estimating missing values for 
variables of interest

Many methods and variations:
� Univariate (one variable of interest at a time) vs

multivariate (all variables of interest simultaneously)

� Single values or means from existing data as 
estimates for missing values

� Requires probability distribution or can be 
distribution-free

� Spatial information or variable-space?
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Univariate Methods

� Sample means used to impute missing values  

e.g all trees with missing heights get average height of 
30 m (98 ft), regardless of their diameter

� Generate a random value from a sample estimated 
distribution

� Use regression or logistic models

E.g. diameter = 50 cm (20 in), predicted height= 30 m 
(98 ft)  Trees of dbh=50 cm without measured 
heights assigned an estimated height of 30 m.
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Issues with Univariate Methods

� For means and regression, variables must be 

ratio or interval scale

� All are unbiased and statistically consistent 

estimates (if models are correct)

� Only random selection from a probability 

distribution retains variability (means lowest)

� No assurance of logical consistency across 

several variables of interest 
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Multivariate Nearest Neighbor 

Imputation Methods
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Data 

� Obtain a sample on which X’s (auxilary
variables) and Y’s (variables of interest) are 
measured [reference data set]

� Can have many Y’s

� X’s and Y’s can be class and/or continuous 
variables (will affect the methods used)

� On all other observations of the population, 
measure the X’s only [target data set]
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Target Observation, X only

Select one 

or more neighbours

that have similar X values 

(Small distance metric)

Reference Data, X and Y

Calculate Variable-Space 

Distance using X’s

Imputation Steps in General 

Use Y values

(or averages)

from selected

reference observation(s)

as Estimates for the

target observation



9

Imputation: Example

For: Use:
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Distance (Similarity) Metrics

� A number of possible metrics

� Distance in variable-space

� Different measures if some are class variables
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Tabular Method
Squared Euclidean Distance
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iX  = vector of standardized values of the 

X variables for the ith target observation 

jX  = a vector of standardized values of the 

X variables for the jth reference observation 
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Tabular MethodMost Similar Neighbor Distance = 

Weighted Euclidean Distance
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W  = weight based on canonical correlation between X and 

Y variables using the reference data 
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Other Distance (Similarity) Measures

� City Block

� Manhattan

� Absolute Difference

For Class Variables
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Variations

Single or Weighting of Many Reference 

Observations:

� Select one substitute? Or average more than 

one? Weighted or unweighted average?  

� Affects degree of “smoothing” of estimates

Pre-stratification or not?

� E.g., by ecozone? By region?
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(Single) Nearest Neighbor (NN)

� Select the closest reference observation

(smallest distance)

� Values for all Y variables from the nearest 

neighbor are the estimates for the target 

observation

� E.g., Moeur and Stage used NN with their 

distance metric, Most Similar Neighbour
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Tabular Nearest Neighbor

� Stratify reference data into groups

� Calculate variable averages (tables) by group

� Calculate similarity for X variables between a 

target observation and table averages

� Select the closest table

� Use the table average values for the Y’s as the 

estimates for the target observation
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k-Nearest Neighbors (k-NN) and 

Weighted k-NN
� Select the k most similar observations from the 

reference data

� Average the values for all Y variables from the 
k- nearest neighbors; averages are the estimates 
for the target observation

� For weighted k-NN, calculate a weighted 
average of the k-neighbors (e.g., 1/distance as 
the weight); weighted averages are the 
estimates for the target observation
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Properties: Not Necessarily 

Unbiased

Over all samples, the mean bias (bias = average 

difference between observed and estimated 

value) does not necessarily equal zero for Y or 

X variables

� For Y: match is based on X variables, not Y 

� For X: match may have lowest distance, but not 

the lowest difference, and compromised among 

variables
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Properties: Bias Example

Target: X1=2 X2=4      

Reference 1: X1=0   X2=4  Y1=10 Y2=5 

Reference 2: X1=1   X2=3   Y1=7  Y2=4

Ref. 1 better for X2 (squared Euclidean distance of 4) 

Ref. 2 better for X1 (squared Euclidean distance of 2)
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Properties: Not Necessarily 

Statistically Consistent
� The average distance between target and match 

observations tends to decline with increasing 
sample size (more likely to find a close match)

� But mean bias will not necessarily decline with 
increasing sample size

� Why? Variables that are “hard to find a match 
for” influence the distance more 

e.g. X1=300 X2=10   Will try to find a match for 
the extreme X1 value and sacrifice X2.
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Properties: May Retain Variability

� Retains the variability of the variables over the 
population if a single neighbor is used to impute 
missing values of a target observation

� If many neighbors are selected (k-NN) variation 
is not retained

� similar to regression and other models, except 
that this is multivariate
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Properties: Logical Consistency

� Logical consistency across several variables if 
using one neighbor

� the combination of variables must exist in the 
population

� Using averages of many nearest neighbors: 
some logical inconsistencies may arise 

e.g., volume by species – Ref. 1 has pine and aspen 
and Ref. 2 (next closest) has larch and spruce.  
Average will have all four species
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Other Properties

� Computationally Intensive: Need similarity 
between the target observation and each of the 
reference observations 

� Generally, better correlations between the X’s 
and the Y’s yield better imputation results

� Multivariate Estimation: can obtain estimates of 
all the Y variables simultaneously

� Variables of interest can be class or continuous 
variables or mixed

� Distribution-free
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Selecting a Nearest Neighbor:  

Demonstrations of Issues
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Photo 1

Photo 2

Photo 3

Photo 4 (Yikes!)

Q. 1

Want Coarse

Woody Debris

and Snags for 

Photo 2

Photo?

X-Variables?
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Observations

� May be very difficult to obtain the reference 

data you need

� X-variables matter
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Photo 1

Photo 2

Photo 3

Photo 4

Want soil  

moisture/

nitrogen for 

Photo 3

Photo?

X-Variables?

Q. 2
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Observations

� Stratifying by location should be considered

� For some variables, time of year when 

measures are taken are important
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Research into Forestry 

Applications
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Examples and Results of Testing Using 

Simulations

� Tree-lists: X-stand level; Y-tree level

� Regeneration: X-overstory; Y-understory, 
both at stand-level

� Other Applications:

� Volume and basal area per ha: X-aerial variables; 
Y-ground variables both at stand-level (Forest 
Science Paper)

� Wildlife Trees: X-stand level; Y-tree level 
(Conference Proceedings)
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Estimating Tree-Lists 

� A tree-list  (stems per ha by species and 
diameter) for every polygon would be 
useful 

� for projecting future stand volume, and 

� for estimating current and future stand 
structure, as inputs to habitat models

� Can we obtain reasonable estimates of tree 
lists for non-sampled polygons, based on 
aerial information?
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Data

� 96 polygons were ground-sampled using 

variable radius plots (Y)

� Up to 9 species in a polygon with a wide 

diameter range

� Aerial variables (X) were matched to the 

ground data
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X variables (8)

� Percent crown closure

� Average height (m)

� Average age (yrs)

� Site index (m)

� Percents of  F, L, and PL 

by crown closure

� Model estimated 

volume/ha (stand level 

model)

Y variables (7):

� basal area/ha 

� stems/ha  of  Douglas 

fir(D), larch (L), and 

lodgepole pine (PL)

� Max. dbh of  F, L, and 

PL

Variable Set
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Methods:

� SAS 6.12 used to simulate sampling the 
population (100 replicates) 

� Three sampling intensities (20%, 50% and 
80%)

� Two imputation methods used:  Tabular and 
Most Similar Nearest Neighbor (NN with 
MSN Distance)
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Correlations Between Ground and 

Aerial Variables

� Highest for stems per ha of fir (Y) with model 

estimated volume per ha (X) (about 0.40)

� Lowest for Maximum dbh of larch (Y) with 

crown closure class (X) (less than 0.01)
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Results Over 100 Replications
� Average correlations between targets measured 

and imputed variables:

� For X: Increased as sample size increased

� For Y: Generally increased with sample size but 

not for all variables (e.g., decreased for stems/ha 

larch using MSN)
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Results Over 100 Replications
� Mean Bias (average difference) for Y:

� Generally lower for Tabular than MSN

� Not declining with increasing sample size

� Mean of Mean Squared Errors for Y:

� Declined with increasing sample size for most 

variables

� MSN and Tabular similar
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Example of Target and Match 

Polygons (80% Sampling Intensity)

Mostly Fir

Mostly Pine
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Estimating Regeneration Under an 

Overstory After Partial Cutting

� Stands are multi-species and multi-aged, partially 

cut; measure overstory variables (X)

� Want to estimate the amount of regeneration (Y) 

expected to occur following partial cutting

� Regeneration by 4 species groups by 4 height classes 

and all very related 

� Tabular and MSN (NN with Most Similar 

Neighbor Distance)
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Tabular Imputation: E.g., Dense, Dry 

(n=18), <6 years after cutting (stems/ha)

13663136631816111522708462Total

1692743248248454Hardwood

1280041411197Intolerant

47885783729492889Semi-tol.

590349545410323921Tolerant

>130 100-

129.2 

50-99.9 15-49.9 

TotalHeight (cm)Species
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Imputation Accuracy Over Cells

Match:   Presence of regeneration in both the target

Good (>14 cells matched)   moderate (>8 to 14)    poor (<8)

Grouped plots also by root mean squared error  

low (<1000 stems per ha, all species) 

moderate (1000-2000)                          high (>2000) 

Want Good, Low
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Performance of MSN 
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Comparison of Approaches 
� Better estimates using MSN 

� MSN uses a single nearest neighbor – variability 

and logical consistency retained

� Tabular can be considered “smoothing” (k-NN 

also is smoothing) – for this problem, too much 

“smoothing” likely
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Summary for Imputation Methods

� Imputation methods are used to fill in 

missing data for variables of interest 

across and within scales

� Can be used to “fill in” data needed for long 

term monitoring, such as within stand details 

needed for risk mapping

� Many methods and variations on methods
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Summary for Imputation Methods

Nearest neighbor methods
� are multivariate and distribution-free

� can retain logical consistency and variation

� can be used for class or continuous or mixed
variables of interest

� Degree of “smoothing” – from single nearest 
neighbor to k-NN to Tabular – can adversely 
affect accuracy of results

� Need a “good” set of reference data, with 
auxiliary variables that are well related to 
variables of interest
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X-variables matter
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Websites and Acknowledgements

Articles:

www.forestry.ubc.ca/Prognosis

www.forestry.ubc.ca/biometrics

NN Software (website given on the Abstract also):

forest.moscowfsl.wsu.edu/gems/msn.html

Thank you to the organizers for inviting us to present at this 
workshop.  Funding for this research was provided by Forest 
Renewal BC, NSERC, and Forestry Investment Initiative


