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Forestry 430 Advanced Biometrics and  
FRST 533  Problems in Statistical Methods 

Course Materials  2007 
 
Instructor:  Dr. Valerie LeMay , Forest Sciences 2039,  604-822-4770,  
EMAIL: Valerie.LeMay@ubc.ca 
 
Course Objectives and Overview: 
The objectives of this course are: 

1. To be able to use simple linear and multiple linear regression to 
fit models using sample data;  

2. To be able to design and analyze lab and field experiments; 
3. To be able to interpret results of model fitting and experimental 

analysis; and 
4. To be aware of other analysis methods not explicitly covered in 

this course. 
In order to meet these objectives, background theory and examples 
will be used.  A statistical package called “SAS” will be used in 
examples, and used to help in analyzing data in exercises.  Texts are 
also important, both to increase understanding while taking the 
course, and as a reference for future applied and research work. 
 
Course Content Materials:   
These cover most of the course materials.  However, changes will be 
made from year to year, including additional examples.  Any 
additional course materials will be given as in-class handouts.   
NOTE:  Items given in Italics are only described briefly in this course.   
 
These course materials will be presented in class and are essential for 
the courses.   These materials are not published and should not be 
used as citations for papers.  Recommendations for some published 
reference materials, including the textbook for the course, will be 
listed in the course outline handed out in class.  
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I.  Short Review of Probability and Statistics (pp. 9-37) 
• Descriptive statistics 
• Inferential statistics using known probability distributions:  

normal, t , F,  Chi-square, binomial, Poisson 
 
II.  Fitting Equations  (pp. 38-40) 

• Dependent variable and predictor variables  
• Purpose:   Prediction and examination 
• General examples 
• Simple linear, multiple linear, and nonlinear regression 
• Objectives in fitting:  Least squared error or Maximum likelihood 

 
Simple Linear Regression (SLR)  (pp. 41-96) 
Definition, notation, and example uses 

• dependent variable (y) and predictor variable (x) 
• intercept, and slope, and error 

Least squares solution to finding an estimated intercept and slope 
• Derivation 
• Normal equations 
• Examples 

Assumptions of simple linear regression and properties when 
assumptions are met 

• Residual plots to visually check the assumptions that: 
o 1.  Relationship is linear MOST IMPORTANT!! 
o 2.  Equal variance of y around x (equal “spread” of errors 

around the line) 
o 3.  Observations are independent (not correlated in space 

nor time) 
• Normality plots to check assumption that: 

o 4.  Normal distribution of y around x (normal 
distribution of errors around the line) 

• Sampling and measurement assumptions:   
o 5.  x values are fixed  
o 6.  random sampling of y occurs for every x 
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Transformations and other measures to meet assumptions 
• Common Transformations for nonlinear trends, unequal 

variances, percents, rank transformation 
• Outliers:  unusual observations 
• Other methods:  nonlinear least squares,  weighted least squares, 

general least squares, general linear models  
Measures of goodness-of-fit 

• Graphs 
• Coefficient of determination (r2) [and Fit Index, I2] 
• Standard error of the estimate (SEE)  [and SEE’] 

Estimated variances, confidence intervals and hypothesis tests  
• For the equation 
• For the intercept and slope 
• For the mean of the dependent variable given a value for x 
• For a single or group of values of the predicted dependent 

variable given a value for x 
Selecting among alternative models 

• Process to fit an equation using least squares regression 
• Meeting assumptions 
• Measures of goodness-of-fit:  Graphs, Coefficient of 

determination (r2) or I2, and Standard error of the estimate (SEE) 
or SEE’ 

• Significance of the regression 
• Biological or logical basis and cost 

 
Multiple Linear Regression  (pp. 97-173) 
Definition, notation, and example uses 

• dependent variable (y) and predictor variables (x’s) 
• intercept, and slopes and error 

Least squares solution to finding an estimated intercept and slopes 
• Least Squares and comparison to Maximum Likelihood Estimation 
• Derivation 
• Linear algebra to obtain normal equations;  matrix algebra 
• Examples:  Calculations and SAS outputs 

Assumptions of multiple linear regression  
• Residual plots to visually check the assumptions that: 
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o 1.  Relationship is linear (y with ALL x’s, not each x, 
necessarily); MOST IMPORTANT!! 

o 2.  Equal variance of y around x’s (equal “spread” of 
errors around the “surface”) 

o 3.  Observations are independent (not correlated in space 
nor time) 

• Normality plots to check assumption that: 
o 4.  Normal distribution of y around x’s (normal 

distribution of errors around the “surface”) 
• Sampling and measurement assumptions:   

o 5.  x values are fixed  
o 6.  random sampling of y occurs for every combination of  

x values 
• Properties when all assumptions are met versus some are not 

met 
Transformations and other measures to meet assumptions: same as 
for SLR, but more difficult to select correct transformations 
Measures of goodness-of-fit 

• Graphs 
• Coefficient of multiple determination (R2) [and Fit Index, I2] 
• Standard error of the estimate (SEE) [and SEE’] 

Estimated variances, confidence intervals and hypothesis tests: 
Calculations and SAS outputs  

• For the regression “surface” 
• For the intercept and slopes 
• For the mean of the dependent variable given a particular value 

for each of the x variables 
• For a single or group of values of the predicted dependent 

variable given a particular  value for each of the x variables 
Methods to aid in selecting predictor (x) variables 

• All possible regressions 
• R2 criterion in SAS 
• Stepwise methods 

Adding class variables as predictors 
• Dummy variables to represent a class variable 
• Interactions to change slopes for different classes 
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• Comparing two regressions for different class levels 
• More than one class variable 

(class variables as the dependent variable – covered in FRST 530; under 
generalized linear model). 
Selecting and comparing alternative models 

• Meeting assumptions 
• Parsimony and cost 
• Biological nature of the system modeled 
• Measures of goodness-of-fit:  Graphs, Coefficient of 

determination (R2) [or Fit Index,  I2], and Standard error of the 
estimate (SEE) [or SEE’] 

• Comparing models when some models have a transformed 
dependent variable 

• Other methods using maximum likelihood criteria  
 
II.  Experimental Design and Analysis  (pp. 174-192) 

• Sampling versus experiments 
• Definitions of terms:  experimental unit, response variable, 

factors, treatments, replications, crossed factors, randomization, 
sum of squares, degrees of freedom, confounding 

• Variations in designs:  number of factors, fixed versus random 
effects, blocking, split-plot, nested factors, subsampling, 
covariates 

• Designs in use 
• Main questions in experiments 
 

Completely Randomized Design (CRD)  (pp. 193-293) 
Definition:  no blocking and no splitting of experimental units 
 One Factor Experiment, Fixed Effects  (pp. 193-237) 

• Main questions of interest 
• Notation and example: observed response, overall (grand 

mean), treatment effect, treatment means 
• Data organization and preliminary calculations: means and 

sums of squares 
• Test for differences among treatment means:  error variance, 

treatment effect, mean squares, F-test 
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• Assumptions regarding the error term:  independence, equal 
variance, normality, expected values under the assumptions 

• Differences among particular treatment means 
• Confidence intervals for treatment means 
• Power of the test 
• Transformations if assumptions are not met 
• SAS code 

Two Factor Experiment, Fixed Effects  (pp. 238-273) 
• Introduction:  Separating treatment effects into factor 1, factor 2 

and interaction between these 
• Example layout 
• Notation, means and sums of squares calculations 
• Assumptions, and transformations 
• Test for interactions and main effects:  ANOVA table, expected 

mean squares, hypotheses and tests, interpretation 
• Differences among particular treatment means 
• Confidence intervals for treatment means 
• SAS analysis for example 

One Factor Experiment, Random Effects 
• Definition and example 
• Notation and assumptions 
• Least squares versus maximum likelihood solution 

Two Factor Experiment, One Fixed and One Random Effect (pp. 274-
293) 

• Introduction 
• Example layout 
• Notation, means and sums of squares calculations 
• Assumptions, and transformations 
• Test for interactions and main effects:  ANOVA table, expected 

mean squares, hypotheses and tests, interpretation 
• SAS code 

Orthogonal polynomials – not covered 
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Restrictions on Randomization (pp. 294-397) 
Randomized Block Design (RCB) with one fixed factor (pp. 294-319) 

• Introduction, example layout, data organization, and main 
questions 

• Notation, means and sums of squares calculations 
• Assumptions, and transformations 
• Differences among treatments:  ANOVA table, expected mean 

squares, hypotheses and tests, interpretation 
• Differences among particular treatment means 
• Confidence intervals for treatment means 
• SAS code 

Randomized Block Design with other experiments (pp. 320-358) 
• RCB with replicates in each block 
• Two fixed factors 
• One fixed, one random factor 

Incomplete Block Design 
• Definition 
• Examples 

Latin Square Design: restrictions in two directions (pp. 359-377) 
• Definition and examples 
• Notation and assumptions  
• Expected mean squares 
• Hypotheses and confidence intervals for main questions if 

assumptions are met 
Split Plot and Split-Split Plot Design (pp. 378-397) 

• Definition and examples 
• Notation and assumptions  
• Expected mean squares 
• Hypotheses and confidence intervals for main questions if 

assumptions are met 
 
Nested and hierarchical designs (pp. 398-456) 
CRD: Two Factor Experiment, Both Fixed Effects, with Second Factor 
Nested in the First Factor (pp. 398-423) 

• Introduction using an example 
• Notation 
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• Analysis methods: averages, least squares, maximum likelihood 
• Data organization and preliminary calculations: means and 

sums of squares 
• Example using SAS 

CRD: One Factor Experiment, Fixed Effects, with sub-sampling (pp. 
424-449) 

• Introduction using an example 
• Notation 
• Analysis methods: averages, least squares, maximum likelihood 
• Data organization and preliminary calculations: means and 

sums of squares 
• Example using SAS 

RCB:  One Factor Experiment, Fixed Effects, with sub-sampling (pp. 
450-456) 

• Introduction using an example 
• Example using SAS 

 
Adding Covariates (continuous variables) (pp. 457-468) 
Analysis of covariance 

• Definition and examples 
• Notation and assumptions  
• Expected mean squares 
• Hypotheses and confidence intervals for main questions if 

assumptions are met 
• Allowing for Inequality of slopes 
 

Expected Mean Squares – Method to Calculate These (pp. 469-506) 
• Method and examples 

 
Power Analysis (pp. 507-524) 

• Concept and an example 
 
Use of Linear Mixed Models for Experimental Design (pp. 525-557) 

• Concept and examples 
 
Summary (pp. 558-572) 
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Probability and Statistics Review 
 
Population vs. sample:  N vs. n 
 
 
 
Experimental vs. observational studies:  in 
experiments, we manipulate the results 
whereas in observational studies we simple 
measure what is already there. 
 
 
 
Variable of interest/ dependent variable/ 
response variable/ outcome:  y 
 
 
 
Auxilliary variables/ explanatory 
variables/ predictor variables/  
independent variables/  covariates:   x 
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Observations:  Measure y’s and x’s for a 
census (all N) or on a sample (n out of the 
N) 
 
 
 
x and y can be:  1) continuous (ratio or 
interval scale); or 2) discrete (nominal or 
ordinal scale) 
 
 
 
Descriptive Statistics:  summarize the 
sample data as means, variances, ranges, 
etc. 
 
Inferential Statistics:  use the sample 
statistics to estimate the parameters of the 
population 
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Parameters for populations: 
 

1. Mean  -- μ  e.g. for N=4 and y1=5; y2=6; 
y3=7 , y4=6 μ=6 

 
2. Range:  Maximum value – minimum 

value 
 

3. Standard Deviation σ and Variance  σ2 
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5. Correlation (Pearson’s) between two 
variables, y and x:  ρ 

22
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Ranges from -1 to +1; with strong 
negative correlations near to -1 and 
strong positive correlations near to +1. 

 
6. Distribution for y  -- frequency of each 

value of y or x (may be divided into 
classes) 

 
7. Probability Distribution of y or x – 

probability associated with each y 
value 

 
8. Mode  -- most common value of y or x 

9. Median  -- y-value or x-value which 
divides the distribution (50% of N 
observations are above and 50% are 
below) 
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Example:  250 aspen trees of Alberta 
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Descriptive Statistics: age 
 
N=250 trees         Mean = 71 years 
 
Median = 73 years 
 
25% percentile = 55   75% percentile = 
82 
 
Minimum = 24       Maximum =160 
 
Variance = 514.7   Standard Deviation = 
22.69 
 

1. Compare mean versus median 
2. Normal distribution? 

 
Pearson correlation of age and dbh = 
0.573  for the population of N=250 trees 
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Statistics from the Sample:  
1. Mean  -- y  e.g. for n=3 and y1=5; y2=6; 

y3=7 , y =6 
 

2. Range:  Maximum value – minimum 
value 

 
3. Standard Deviation s and Variance  s2 
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4. Standard Deviation of the sample 
means (also called the Standard Error, 
short for Standard Error of the Mean) 
and it’s square called the variance of 
the sample means are estimated by: 

nssnss yy
222  and   ==  
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5. Coefficient of variation (CV):  The 
standard deviation from the sample, 
divided by the sample mean.  May be 
multiplied by 100 to get CV in percent. 

 
 

6. Covariance between x and y: sxy  
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Ranges from -1 to +1; with strong 
negative correlations near to -1 and 
strong positive correlations near to +1. 

 
8. Distribution for y  -- frequency of each 

value of y or x (may be divided into 
classes) 
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9. Estimated Probability Distribution of 

y  or x – probability associated with 
each y value  based on the n 
observations 

 
10. Mode  -- most common value of y or x 

11.  Median  -- y-value or x-value which 
divides the estimated probability 
distribution (50% of N observations 
are above and 50% are below) 
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Example: n=150 
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n=150 trees         Mean = 69 years 
 
Median = 68 years 
 
25% percentile = 48   75% percentile = 
81 
 
Minimum = 24      Maximum =160 
 
Variance = 699.98    
Standard Deviation = 25.69 years   
Standard error of the mean =2.12 years 
 
Good estimate of population values? 
 
Pearson correlation of age and dbh = 
0.66 with a p-value of 0.000 for the 
sample of n=150 trees from a population 
of 250 trees 
 
Null and alternative hypothesis for 
the p-value? 
What is a p-value?
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Sample Statistics to Estimate Population 
Parameters: 
If simple random sampling (every 
observation has the same chance of being 
selected) is used to select n from N, then: 
 

• Sample estimates are unbiased 
estimates of their counterparts (e.g., 
sample mean estimates the population 
mean), meaning that over all possible 
samples the sample statistics, averaged, 
would equal the population statistic.   

• A particular sample value (e.g., sample 
mean) is called a “point estimate” --  do 
not necessarily equal the population 
parameter for a given sample.   

• Can calculate an interval where the true 
population parameter is likely to be, 
with a certain probability.  This is a 
Confidence Interval, and can be 
obtained for any population parameter, 
IF the distribution of the sample statistic 
is known.  
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Common continuous distributions: 
 
Normal:   

 
 

• Symmetric distribution around μ 
• Defined by μ and σ2.  If we know that a 

variable has a normal distribution, and 
we know these parameters, then we 
know the probability of getting any 
particular value for the variable. 
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• Probability tables are for μ=0 and σ2=1, 
and are often called z-tables. 

 
• Examples:  P(-1<z<+1) = 0.68;    

P(-1.96<z<1.96)=0.95.   
Notation example: For α=0.05,  

       
96.1025.0

2
−== zzα . 

 
• z-scores:  scale the values for y by 

subtracting the mean, and dividing by 
the standard deviation.   

σ
μ−

= i
i

y
z

 
E.g.,   for mean=20, and standard 
deviation of 2 and y=10,  
     z=-5.0 (an extreme value) 
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t-distribution:   
• Symmetric distribution  
• Table values have the center at 0.  The 

spread varies with the degrees of 
freedom.  As the sample size increases, 
the df increases, and the spread 
decreases, and will approach the 
normal distribution. 

• Used for a normally distributed 
variable whenever the variance of that 
variable is not known. 

• Notation examples: 

21,1 α−−nt where n-1 is the degrees of 
freedom, in this case, and we are 
looking for the 21 α−  percentile.  For 
example, for n=5 and α=0.05, we are 
looking for t with 4 degrees of freedom 
and the 0.975 percentile (will be a value 
around 2). 
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Χ2 distribution:  
• Starts at zero, and is not symmetric 
• Is the square of a normally distributed 

variable  e.g. sample variances have a 
Χ2 distribution if the variable is 
normally distributed 

• Need the degrees of freedom and the 
percentile as with the t-distribution 
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F-distribution: 
• Is the ratio of 2 variables that each 

have a Χ2 distribution eg. The ratio of 
2 sample variances for variables that 
are each normally distributed. 

• Need the percentile, and two degrees 
of freedom (one for the numerator and 
one for the denominator)     

 
Central Limit Theorem:  As n increases, the 
distribution of sample means will approach 
a normal distribution, even if the 
distribution is something else (e.g. could be 
non-symmetric) 
 
Tables in the Textbook: 
Some tables give the values for probability 
distribution for the degrees of freedom, and 
for the percentile.  Others, give this for the 
degrees of freedom and for the alpha level 
(or sometimes alpha/2).  Must be careful in 
reading probability tables. 
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Confidence Intervals for a single mean: 
 

 Collect data and get point estimates: 

o The sample mean, y   to estimate of the 

population mean μ ---- Will be 

unbiased 

o The sample mean, 
2s       to estimate of the 

population mean 
2σ        ---- Will be 

unbiased 

 Can calculate interval estimates of each point 

estimate  e.g. 95% confidence interval for the 

true mean 

o If the y’s  are normally distributed OR 

o The sample size is large enough that the 

Central Limit Theorem holds -- y  will be 

normally distributed 
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Examples: 
 
n is: 4   

  
Plot volume ba/ha ave. dbh

  
1 200 34 50
2 150 20 40
3 300 40 55
4 0 0 0

  
mean: 162.50 23.50 36.25
variance: 15625.00 315.67 622.92
std.dev.: 125.00 17.77 24.96
std.dev.  
of mean: 62.50 8.88 12.48
t should be: 3.182 
Actual 95% 
CI 

 

(+/-): 198.88 28.27 39.71
  

NOTE:  
EXCEL:  
95%(+/-) 

122.50 17.41 24.46

t: 1.96 1.96 1.96
  not 

correct!!!
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Hypothesis Tests: 
• Can hypothesize what the true value of 

any population parameter might be, and 
state this as null hypothesis (H0: ) 

• We also state an alternate hypothesis 
(H1: or Ha: ) that it is a) not equal to this 
value; b) greater than this value; or c) 
less than this value 

• Collect sample data to test this 
hypothesis 

• From the sample data, we calculate a 
sample statistic as a point estimate of 
this population parameter and an 
estimated variance of the sample 
statistic. 

• We calculate a “test-statistic” using the 
sample estimates 

• Under H0, this test-statistic will follow a 
known distribution.   

• If the test-statistic is very unusual, 
compared to the tabular values for the 
known distribution, then the H0 is very 
unlikely and we conclude H1: 



 31

Example for a single mean: 

 

We believe that 
the average 
weight of ravens 
in Yukon is 1 kg.   

 
H0: 
 
H1: 
 
A sample of 10 birds is taken (HOW??) 
and each bird is weighed and released.  
The average bird weight is 0.8 kg, and the 
standard deviation was 0.02 kg.  
Assuming the bird weights follow a 
normal distribution, we can use a t-test 
(why not a z-test?) 
 
Mean: 
 
Variance: 
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Standard Error of the Mean:   
 
Aside:  What is the CV? 
 
 
Test statistic:  t-distribution  
 
t= 
 
 
 
 
Under H0:  this will follow a t-distribution 
with df = n-1. 
 
Find value from t-table and compare: 
 
 
 
 
 
Conclude? 
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The p-value: 
 
Is the probability that we would get a 
value outside of the sample test statistic.   
 
NOTE:  In EXCEL use:  =tdist(x,df,tails) 
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Example:  Comparing two means: 
 
We believe that the average weight of 
male ravens differs from female ravens   

 
 

H0:       0or     2121 =−= μμμμ  
 
H1:      0or     2121 ≠−≠ μμμμ  
 
A sample of 20 birds is taken and each 
bird is weighed and released.  12 birds 
were males with an average weight of 1.2 
kg and a standard deviation of 0.02 kg.  8 
birds were females with an average 
weight of 0.8 and a standard deviation of 
0.01 kg.   
 
Means? 
 
Sample Variances? 
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Test statistic:   
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t =   
 
 
Under H0:  this will follow a t-distribution 
with df = (n1+n2-2). 
 
Find t-value  from tables and compare, or 
use the p-value: 
 
 
Conclude? 
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Errors for Hypothesis Tests 
 
 

 H0 True H0 False 
Accept 1-α β  (Type II 

error)   
Reject α    (Type I 

error) 
1-β 

 
 

Type I Error:  Reject H0 when it was true.  
Probability of this happening is α 
 
Type II Error:  Accept H0 when it is false.  
Probability of this happening is β 
 
Power of the test:  Reject H0 when it is false.  
Probability of this is 1-β 
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What increases power? 
• Increase sample sizes, resulting in lower 

standard errors 
 
 
 
 

• A larger difference between mean for 
H0 and for H1 

 
 
 

• Increase alpha.  Will decrease beta. 
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Fitting Equations  
REF: 

Idea is : 

-  variable of interest (dependent variable)  yi   ; hard to 

measure 

-  “easy to measure” variables (predictor/ independent) 

that are related to the variable of interest, labeled x1i , 

x2i,.....xmi 

- measure yi, x1i,.....xmi for a  sample of n items 

- use this sample to estimate an equation that relates 

 yi (dependent variable) to x1i,..xmi (independent or 

predictor variables) 

- once equation is fitted, one can then just measure the 

x’s, and get an estimate  of  y without measuring it 

-- also can examine relationships between variables 
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Examples: 

 

1. Percent decay = yi ;    xi = logten (dbh) 

2. Logten (volume) = yi ;  x1i = logten(dbh),  

 x2i = logten(height) 

3. Branch length = yi ; x1i = relative height above ground,   

x2i = dbh,   x3i = height 

 

Types of Equations 

 

Simple Linear Equation: 

yi = βo + β1 xi + εi 

 

Multiple  Linear Equation: 

yi = β0 + β1 x1i + β2 x2i +...+βm xmi +εi 

 

Nonlinear Equation:  takes many forms, for example: 

yi = β0 + β1 x1i β2  x 2i
β3 +εi 
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Objective: 

 

Find estimates of  β0, β1, β2 ... βm such that the sum of 

squared differences between measured yi and predicted 

yi (usually labeled as iŷ , values on the line or surface) is 

the smallest (minimize the sum of squared errors, called 

least squared error).  

 

OR 

Find estimates of β0, β1, β2 ... βm such that the likelihood 

(probability) of getting these y values is the largest 

(maximize the likelihood). 

 

Finding the minimum of sum of squared errors is often 

easier.  In some cases, they lead to the same estimates of 

parameters. 
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  Simple Linear Regression (SLR) 

Population:  yi = β0 + β1 xi + εi              iY xx 10| ββμ +=       

Sample:     yi = b0 + b1 xi + ei      iiiii yyexbby ˆˆ 10 −=+=  

b0 is an estimate of  β0   [intercept] 

b1 is an estimate of  β1      [slope] 

iŷ  is the predicted y; an estimate of the average for y for a 

particular x value 

ei is an estimate of  εi, called the error or the residual; 

represents the variation in the dependent variable (the y) 

which is not accounted for by predictor variable (the x).   

 

Find bo (intercept; yi when xi = 0) and b1 (slope) so that 

SSE=∑ei
2  (sum of squared errors over all n sample 

observations) is the smallest (least squares solution)   

• The variables do not have to be in the same units.  

Coefficients will change with different units of measure. 

• Given estimates of bo and b1, we can get an estimate of 

the dependent variable (the y) for ANY value of the x, 

within the ranges of x’s represented in the original data.   

 42

Example:  Tree Height (m) – hard to measure;  Dbh 

(diameter at 1.3 m above ground in cm) – easy to measure 

– use Dbh squared for a linear equation  

 

yyi −  Difference between measured y and the mean of  y 

ii yy ˆ−     Difference between measured y and predicted y 

( ) ( )iiii yyyyyy ˆˆ −−−=−    Difference between 

predicted y and mean of y 
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Least Squares Solution:  Finding the Set of Coefficients 

that Minimizes the Sum of Squared Errors 
 

To find the estimated coefficients that minimizes SSE for a 

particular set of sample data and a particular equation (form 

and variables): 

1. Define the sum of squared errors (SSE) in terms of the 

measured minus the predicted y’s (the errors); 

2. Take partial derivatives of the SSE equation with respect 

to each coefficient  

3. Set these equal to zero (for the minimum) and solve for 

all of the equations (solve the set of equations using 

algebra or linear algebra).   
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For linear models (simple or multiple linear), there will be one 

solution.  We can mathematically solve the set of partial 

derivative equations.   

• WILL ALWAYS GO THROUGH THE POINT 

DEFINED BY ( )yx, .   

• Will always result in ∑ei=0   

 

For nonlinear models, this is not possible and we must search 

to find a solution (covered in FRST 530). 

 

If we used the criterion of finding the maximum likelihood 

(probability) rather than the minimum SSE, we would need to 

search for a solution, even for linear models (covered FRST 

530).   
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Least Squares Solution for SLR: 
 
Find the set of estimated parameters (coefficients) that 
minimize sum of squared errors  
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Take partial derivatives with respect to b0 and  b1, set them 
equal to zero and solve. 
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With some further manipulations: 
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Where SPxy refers to the corrected sum of cross products 
for x and y;   SSx refers to the corrected sum of squares for 
x [Class example]
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Properties of b0 and  b1  
 
b0 and  b1  are least squares estimates of β0 and β1 .  Under 
assumptions concerning the error term and sampling/ 
measurements, these are: 

• Unbiased estimates; given many estimates of the slope 
and intercept for all possible samples, the average of 
the sample estimates will equal the true values 

 
• The variability of these estimates from sample to 

sample can be estimated from the single sample; these 
estimated variances will be unbiased estimates of the 
true variances (and standard errors) 

 
• The estimated intercept and slope will be the most 

precise (most efficient with the lowest variances) 
estimates possible (called “Best”) 

 
• These will also be the maximum likelihood estimates 

of the intercept and slope 
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Assumptions of SLR 
 

Once coefficients are obtained, we must check the 

assumptions of SLR.  Assumptions must be met to:  

• obtain the desired characteristics 

• assess goodness of fit (i.e., how well the regression 

line fits the sample data) 

• test significance of the regression and other 

hypotheses 

• calculate confidence intervals and test hypothesis for 

the true coefficients (population)  

• calculate confidence intervals for mean predicted y 

value given a set of x value (i.e. for the predicted y 

given a particular value of the x)  

Need good estimates (unbiased or at least consistent) of 

the standard errors of coefficients and a known 

probability distribution to test hypotheses and calculate 

confidence intervals. 
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Checking assumptions using residual Plots 

 

Assumptions of :  

 

1.  a linear relationship between the y and the x;  

2.  equal variance of errors; and  

3.  independence of errors (independent observations)  

 

can be visually checked by using RESIDUAL PLOTS  

 

A residual plot shows the residual (i.e., yi - iŷ ) as the y-axis 

and the predicted value ( iŷ ) as the x-axis.  

 

Residual plots can also indicate unusual points (outliers) 

that may be measurement errors, transcription errors, etc. 
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Residual plot that meets the assumptions of a linear 

relationship, and equal variance of the observations: 

 

 

 

 

 

The data points are evenly distributed about zero and there 

are no outliers (very unusual points that may be a 

measurement or entry error).  

 

For independence: 
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Examples of Residual Plots Indicating Failures to Meet 

Assumptions: 

1.  The relationship between the x’s and y is linear.   If not 

met, the residual plot and the plot of y vs. x will show a 

curved line: 
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Result: If this assumption is not met:  the regression line 

does  not fit the data well; biased estimates of coefficients 

and standard errors of the coefficients will occur 
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2. The variance of the y values must be the same for 

every one of the x values.  If not met, the spread around the 

line will not be even. 

 

 

 

 

 

 

 

 

Result:  If this assumption is not met, the estimated 

coefficients (slopes and intercept) will be unbiased, but the 

estimates of the standard deviation of these coefficients will 

be biased. 

∴ we cannot calculate CI nor test the significance of the x 

variable.  However, estimates of the coefficients of the 

regression line and goodness of fit are still unbiased 



 53

3. Each observation (i.e., xi and yi) must be independent of 

all other observations.  In this case, we produce a different 

residual plot, where the residuals are on the y-axis as 

before, but the x-axis is the variable that is thought to 

produce the dependencies (e.g., time).  If not met, this 

revised residual plot will show a trend, indicating the 

residuals are not independent. 

 

 

 

 

 

 

 

 

 

 

Result:  If this assumption is not met, the estimated 

coefficients (slopes and intercept) will be unbiased, but the 

estimates of the standard deviation of these coefficients will 

be biased. 
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∴ we cannot calculate CI nor test the significance of the x 

variable.  However, estimates of the coefficients of the 

regression line and goodness of fit are still unbiased 

 

Normality Histogram or Plot 

A fourth assumption of the SLR is: 

4. The y values must be normally distributed for each of 

the x values.  A histogram of the errors, and/or a normality 

plot can be used to check this, as well as tests of normality  
                 Histogram             #       Boxplot 
      10.5+*                                  1                0 
          .*                                  1                | 
          .*                                  2                | 
          .*                                  2                | 
          .****                               8                | 
          .*******                           14                | 
          .**************                    27                | 
          .********************              40                | 
          .*****************************     57             +-----+ 
          .**************************        51             |     | 
          .******************************    60             *--+--* 
      -0.5+*****************************     58             |     | 
          .*************************         49             |     | 
          .*****************                 33             +-----+ 
          .**************                    28                | 
          .************                      24                | 
          .***********                       22                | 
          .****                               7                | 
          .****                               7                | 
          .***                                5                | 
          . 
          .*                                  1                0 
     -11.5+**                                 3                0 
           ----+----+----+----+----+----+ 
 

HO: data are normal    H1: data are not normal 
Tests for Normality 
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Test                  --Statistic---    -----p Value------ 
Shapiro-Wilk          W     0.991021    Pr < W      0.0039 
Kolmogorov-Smirnov    D     0.039181    Pr > D      0.0617 
Cramer-von Mises      W-Sq   0.19362    Pr > W-Sq   0.0066 
Anderson-Darling      A-Sq  1.193086    Pr > A-Sq  <0.0050 
 
               
        Normal Probability Plot 
         10.5+                                                  * 
             |                                                  * 
             |                                                +** 
             |                                             +++** 
             |                                           +**** 
             |                                        +**** 
             |                                     ***** 
             |                                  **** 
             |                              ***** 
             |                           **** 
             |                        **** 
         -0.5+                     **** 
             |                   ***+ 
             |                **** 
             |              *** 
             |           +*** 
             |        ***** 
             |      +** 
             |   +*** 
             |+**** 
             | 
             | * 
        -11.5+* 
              +----+----+----+----+----+----+----+----+----+----+ 

 

Result:  We cannot calculate CI nor test the significance of 

the x variable, since we do not know what probabilities to 

use.  Also, estimated coefficients are no longer equal to the 

maximum likelihood solution. 

 

Example: 
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Measurements and Sampling Assumptions 
 

The remaining assumptions are based on the measurements 

and collection of the sampling data. 

 

5. The x values are measured without error (i.e., the x 

values are fixed). 

 

This can only be known if the process of collecting the data 

is known.  For example, if tree diameters are very precisely 

measured, there will be little error.  If this assumption is not 

met, the estimated coefficients (slopes and intercept) and 

their variances will be biased, since the x values are 

varying. 
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6. The y values are randomly selected for value of the x 

variables (i.e., for each x value, a list of all possible y 

values is made, and some are randomly selected). 

 

For many biological problems, the observations will be 

gathered using simple random sampling or systematic 

sampling (grid across the land area).  This does not strictly 

meet this assumption.  Also, more complex sampling 

design such as multistage sampling (sampling large units 

and sampling smaller units within the large units), this 

assumption is not met.  If the equation is “correct”, then 

this does not cause problems.  If not, the estimated equation 

will be biased.   
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Transformations  

 
Common Transformations 

• Powers  x3, x0.5, etc. for relationships that look 

nonlinear 

• log10, loge  also for relationships that look nonlinear, 

or when the variances of y are not equal around the 

line 

• Sin-1 [arcsine] when the dependent variable is a 

proportion.   

• Rank transformation:  for non-normal data  

o Sort the y variable  

o Assign a rank to each variable from 1 to n 

o Transform the rank to normal (e.g., Blom 

Transformation) 

PROBLEM:  loose some of the information in the 

original data 

• Try to transform x first and leave yi = variable of 

interest; however, this is not always possible.   

Use graphs to help choose transformations 

 60

Outliers:  Unusual Points 

 

Check for points that are quite different from the others on: 

• Graph of y versus x 

• Residual plot 

Do not delete the point as it MAY BE VALID!  Check: 

• Is this a measurement error?  E.g., a tree height of 100 

m is very unlikely 

• Is a transcription error? E.g. for adult person, a weight 

of 20 lbs was entered rather than 200 lbs. 

• Is there something very unusual about this point?  e.g., 

a bird has a short beak, because it was damaged. 

Try to fix the observation.  If it is very different than the 

others, or you know there is a measurement error that 

cannot be fixed, then delete it and indicate this in your 

research report.   

 

On the residual plot, an outlier CAN occur if the model is 

not correct – may need a transformation of the variable(s), 

or an important variable is missing 
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Other methods, than SLR (and Multiple Linear Regression), when 

transformations do not work (some covered in FRST 530): 

 

Nonlinear least squares:  Least squares solution for nonlinear 

models; uses a search algorithm to find estimated coefficients; has 

good properties for large datasets; still assumes normality, equal 

variances, and independent observations 

 

Weighted least squares:  for unequal variances.  Estimate the 

variances and use these in weighting the least squares fit of the 

regression; assumes normality and independent observations 

 

General linear model:  used for distributions other than normal 

(e.g., binomial, Poisson, etc.), but with no correlation between 

observations; uses maximum likelihood 

 

Generalized least Squares and Mixed Models:  use maximum 

likelihood for fitting models with unequal variances, correlations 

over space, correlations over time, but normally distributed errors 

 

General linear mixed models: Allows for unequal variances, 

correlations over space and/or time, and non-normal distributions; 

uses maximum likelihood
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Measures of Goodness of Fit 

 

How well does the regression fit the sample data?   

• For simple linear regression, a graph of the original 

data with the fitted line marked on the graph indicates 

how well the line fits the data [not possible with MLR] 

• Two measures commonly used:  coefficient of 

determination (r2) and standard error of the 

estimate(SEE).   
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To calculate r2  and SEE, first, calculate the SSE (this is 

what was minimized): 
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The sum of squared differences between the measured and 

estimated y’s. 

 

Calculate the sum of squares for y: 
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The sum of squared difference between the measured y and 
the mean of y-measures.  NOTE:  In some texts, this is 
called the sum of squares total. 

 
Calculate the sum of squares regression: 
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The sum of squared differences between the mean of y-

measures and the predicted y’s from the fitted equation.  

Also, is the sum of squares for y – the sum of squared 

errors. 
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Then:  SSy
SSreg

SSy
SSE

SSy
SSESSyr =−=

−
= 12

 

• SSE, SSY are based on y’s used in the equation – 

will not be in original units if y was transformed 

• r2 = coefficient of determination; proportion of 

variance of y, accounted for by the regression using x 

• Is the square of the correlation between x and y 

• O (very poor – horizontal surface representing no 

relationship between y and x’s) to  1 (perfect fit – 

surface passes through the data) 

And:   2−
=

n
SSESEE  

• SSE is based on y’s used in the equation – will not 

be in original units if y was transformed 

• SEE - standard error of the estimate; in same units as 

y 

• Under normality of the errors:   

o ±1 SEE ≅ 68% of sample observations  

o ±2 SEE ≅ 95% of sample observations 

o Want low SEE 
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y-variable was transformed:  Can calculate estimates of 

these for the original y-variable unit, called I2 (Fit Index) 

and estimated standard error of the estimate (SEE’), in order 

to compare to r2 and SEE of other equations where the y 

was not transformed.   

I2 = 1 - SSE/SSY   

• where SSE, SSY are in original units.  NOTE must 

“back-transform” the predicted y’s to calculate the 

SSE in original units.  

• Does not have the same properties as r2, however: 

o it can be less than 0  

o it is not the square of the correlation between the 

y (in original units) and the x used in the 

equation. 

Estimated standard error of the estimate (SEE’) , when the 

dependent variable, y, has been transformed: 

2
)('

−
=

n
unitsoriginalSSESEE  

• SEE’ - standard error of the estimate ; in same units 

as original units for the dependent variable 

• want low SEE’    [Class example] 
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Estimated Variances, Confidence Intervals and Hypothesis 

Tests 

Testing Whether the Regression is Significant 

Does knowledge of x improve the estimate of the mean of y? 

Or is it a flat surface, which means we should just use the 

mean of y as an estimate of mean y for any x? 

SSE/ (n-2): 

• Called the Mean squared error, as would be the average 

of the squared error if we divided by n.   

• Instead, we divide by n-2. Why?  The degrees of freedom 

are n-2; n observations with two statistics estimated from 

these, b0 and  b1   

• Under the assumptions of SLR, is an unbiased estimated 

of the true variance of the error terms (error variance) 

SSR/1: 

• Called the Mean Square Regression 

• Degrees of Freedom=1: 1 x-variable 

• Under the assumptions of SLR, this is an estimate the 

error variance PLUS a term of variance explained by 

the regression using x. 
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H0:  Regression is not significant  

H1:  Regression is significant 

Same as: 

H0:  β1 = 0 [true slope is zero meaning no relationship with 

x] 

H1:  β1 ≠ 0 [slope is positive or negative, not zero] 

 

This can be tested using an F-test, as it is the ratio of two 

variances, or with a t-test since we are only testing one 

coefficient (more on this later)  

 

Using an F test statistic: 

MSE
MSreg

nSSE
SSregF =

−
=

)2(
1

 

• Under H0, this follows an F distribution for a 1- α/2 

percentile with 1 and n-2 degrees of freedom.   

• If the F for the fitted equation is larger than the F from 

the table, we reject H0 (not likely true).  The 

regression is significant, in that the true slope is likely 

not equal to zero.     
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Information for the F-test is often shown as an Analysis of 
Variance Table: 

 
Source df SS MS F p-value 
Regression 1 

SSreg 
MSreg= 
SSreg/1 

F= 
MSreg/MSE

Prob F>  
F(1,n-2,1- α) 

Residual n-2 SSE MSE= 
SSE/(n-2) 

  

Total n-1 SSy    
 

[Class example and explanation of the p-value] 

 



 69

Estimated Standard Errors for the Slope and Intercept 

Under the assumptions, we can obtain an unbiased 

estimated of the standard errors for the slope and for the 

intercept [measure of how these would vary among 

different sample sets], using the one set of sample data. 
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Confidence Intervals for the True Slope and Intercept 

Under the assumptions, confidence intervals can be 

calculated as: 

For βo:      02,210 bn stb ×± −−α  

For β1:       12,211 bn stb ×± −−α  

 

[class example]
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Hypothesis Tests for the True Slope and Intercept 

H0:  β1 = c [true slope is equal to the constant, c] 

H1:  β1 ≠ c [true slope differs from the constant c] 

Test statistic: 

1

1

bs
cbt −

=
 

Under H0, this is distributed as a t value of  tc = tn-2, 1-α/2.  

Reject Ho if ⎟ t⎟ > tc. 

• The procedure is similar for testing the true intercept 

for a particular value 

• It is possible to do one-sided hypotheses also, where 

the alternative is that the true parameter (slope or 

intercept) is greater than (or less than) a specified 

constant c.  MUST be careful with the tc as this is 

different.  

[class example] 
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Confidence Interval for the True Mean of y given a 

particular x value 

For the mean of all possible y-values given a particular 

value of x (μy|xh): 

hxynh stxy |ˆ21,2|ˆ ×± −− α  

where 
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Confidence Bands 

Plot of the confidence intervals for the mean of y for 

several x-values.  Will appear as: 

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

5.0 10.0 15.0 20.0 25.0 30.0 35.0
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Confidence Interval for 1 or more y-values given a 

particular x value 

For one possible new y-value given a particular value of x: 

hxnewynhnew stxy |)(ˆ21,2)( |ˆ ×± −− α  

Where 
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For the average of g new possible y-values given a 

particular value of x: 

hxnewgynhnew stxy |)(ˆ21,2)( |ˆ ×± −− α  
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[class example] 
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Selecting Among Alternative Models 

 

Process to Fit an Equation using Least Squares 

Steps: 

1. Sample data are needed, on which the dependent variable 

and all explanatory (independent) variables are 

measured. 

2. Make any transformations that are needed to meet the 

most critical assumption:  The relationship between y 

and x is linear.   

Example:  volume = β0 + β1 dbh2 may be linear  whereas 

volume versus dbh is not.  Use yi = volume  ,  xi = dbh2.   

3.  Fit the equation to minimize the sum of squared error.    

   

4.  Check Assumptions.  If not met, go back to Step 2. 

 

5.  If assumptions are met, then interpret the results. 

• Is the regression significant? 

• What is the r2?  What is the SEE? 

• Plot the fitted equation over the plot of y versus x. 
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For a number of models, select based on: 

 

1. Meeting assumptions:  If an equation does not meet the 

assumption of a linear relationship, it is not a candidate 

model 

2. Compare the fit statistics.  Select higher r2 (or I2), and 

lower SEE (or SEE’) 

3. Reject any models where the regression is not 

significant, since this model is no better than just using 

the mean of y as the predicted value. 

4. Select a model that is biologically tractable.  A simpler 

model is generally preferred, unless there are 

practical/biological reasons to select the more complex 

model 

5. Consider the cost of using the model 

 

[class example] 
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Simple Linear Regression Example 

 
Temperature 

(x) 
Weight 

(y) 
Weight 

(y) 
Weight 

(y) 
0 8 6 8 

15 12 10 14 
30 25 21 24 
45 31 33 28 
60 44 39 42 
75 48 51 44 

 
Observation temp weight

1 0 8 
2 0 6 
3 0 8 
4 15 12 
5 15 10 
6 15 14 
7 30 25 
8 30 21 

Et cetera…   
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weight versus temperature
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Obs. temp weight x-diff x-diff. sq.

1 0 8 -37.50 1406.25 
2 0 6 -37.50 1406.25 
3 0 8 -37.50 1406.25 
4 15 12 -22.50 506.25 

Et cetera     
     

mean 37.5 27.11
 
 
SSX=11,812.5 SSY=3,911.8 SPXY=6,705.0 
 

xbyb
SSx

SPxyb ×−== 101  
 
b1: 0.567619
b0: 5.825397
 
NOTE:  calculate b1 first, since this is 
needed to calculate b0.



 79

From these, the residuals (errors) for the 
equation, and the sum of squared error 
(SSE) were calculated: 
 

Obs. weight y-pred residual
residual 

sq. 
1 8 5.83 2.17 4.73 
2 6 5.83 0.17 0.03 
3 8 5.83 2.17 4.73 
4 12 14.34 -2.34 5.47 

Et cetera 
 
SSE:  105.89 
 
And SSR=SSY-SSE=3805.89 
 
ANOVA    
    
Source  df SS MS
Model  1 3805.89 3805.89
Error  18-2=16 105.89 6.62
Total 18-1=17 3911.78  
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F=575.06   with p=0.00 (very small) 
 
In excel use:  = fdist(x,df1,df2) to obtain a 
“p-value” 
 
 
r2: 0.97
Root 
MSE  
 Or 
SEE : 2.57
 
BUT:  Before interpreting the ANOVA 
table, Are assumptions met?   
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residual plot
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Linear? 
 
Equal variance? 
 
Independent observations?
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Normality plot: 
 
Obs. sorted Stand.  Rel. Prob. 

 resids resids Freq. 
z-

dist.
1 -4.40 -1.71 0.06 0.04 
2 -4.34 -1.69 0.11 0.05 
3 -3.37 -1.31 0.17 0.10 
4 -2.34 -0.91 0.22 0.18 
5 -1.85 -0.72 0.28 0.24 
6 -0.88 -0.34 0.33 0.37 
7 -0.40 -0.15 0.39 0.44 
8 -0.37 -0.14 0.44 0.44 
9 -0.34 -0.13 0.50 0.45 

Etc. 
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Probability plot
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Questions: 
 
1.  Are the assumptions of simple linear 
regression met?  Evidence? 
 
 
 
 
 
 
 
2.  If so, interpret if this is a good equation 
based on goodness of it measures. 
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3.  Is the regression significant? 
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For 95% confidence intervals for b0 and b1, 
would also need estimated standard errors: 
 

0237.0
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The t-value for 16 degrees of freedom and 
the 0.975 percentile is 2.12 (=tinv(0.05,16) 
in EXCEL)  
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For βo:      075.1120.2825.5
02,210

×±

×± −− bn stb α

 

 

For β1:       0237.0120.2568.0
12,211

×±

×± −− bn stb α

 

  Est. Coeff St. Error 
For b0: 5.825396825 1.074973559
For b1: 0.567619048 0.023670139

 
CI: b0 b1
t(0.975,16) 2.12 2.12
lower 3.54645288 0.517438353
upper 8.104340771 0.617799742
 

Question: Could the real intercept be equal 

to 0? 
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Given a temperature of 22, what is the 

estimated average weight (predicted value) 

and a 95% confidence interval for this 

estimate? 

 

( )
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 89

Given a temperature of 22, what is the 

estimated weight for any new observation, 

and a 95% confidence interval for this 

estimate? 

( )
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If assumptions were not met, we would 

have to make some transformations and 

start over again! 
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SAS code: 
* wttemp.sas-------------------------------------; 
options ls=70 ps=50;    run; 
DATA regdata;    input temp weight;   cards; 
  0   8 
  0   6  
  0   8 
 15  12 
 15  10 
 15  14 
 30  25 
 30  21 
 30  24 
 45  31 
 45  33 
 45  28 
 60  44 
 60  39 
 60  42 
 75  48 
 75  51 
 75  44 
 run; 
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DATA regdata2; 
set regdata; 
  tempsq=temp**2; 
  tempcub=temp**3; 
  logtemp=log(temp); 
run; 
Proc plot data=regdata2; 
plot weight*(temp tempsq logtemp)='*'; 
run; 
*-------------------------------------------; 
PROC REG data=regdata2 simple; 
 model weight=temp; 
 output out=out1 p=yhat1 r=resid1; 
run; 
*----------------------------------------------; 
PROC PLOT DATA=out1; 
 plot resid1*yhat1; 
run; 
*-------------------------------------------; 
PROC univariate data=out1 plot normal; 
Var resid1; 
Run; 
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SAS outputs: 
 

1) Graphs – which appears more linear? 
2) How many observations were there? 
3) What is the mean weight? 

 
 
The REG Procedure 
                  Model: MODEL1 
              Dependent Variable: weight 
 
         Number of Observations Read          18 
         Number of Observations Used          18 
 
 
                 Analysis of Variance 
 
                  Sum of      Mean  
 Source      DF   Squares     Square     F Value   
 Model        1   3805.88571  3805.88571  575.06   
 Error       16    105.89206   6.61825 
 Corr. Total 17   3911.77778 
 
                         

 Source               F Value         Pr > F 
 Model                575.06          <.0001 
 Error                  
 Corrected Total        
 

 
 Root MSE              2.57260    R-Square   0.9729 
 Dependent Mean       27.11111    Adj R-Sq   0.9712 
 Coeff Var             9.48909 
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Parameter Estimates 
                 Parameter      Standard 
Variable   DF    Estimate       Error      t Value     
 Intercept  1    5.82540        1.07497       5.42       
 temp       1    0.56762        0.02367      23.98       
 
              
 Variable     t Value    Pr > |t| 
 Intercept     5.42      <.0001 
 temp         23.98      <.0001 
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Plot of resid1*yhat1.  Legend: A = 1 obs, B = 2 obs, etc. 
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       ---------------------------------------------------- 
     5.825      14.340      22.854      31.368      39.883      48.397 
 

                Predicted Value of weight 
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                 Tests for Normality 
 
Test                --Statistic---    --p Value--- 
Shapiro-Wilk        W      0.94352  Pr<W     0.3325 
Kolmogorov-Smirnov  D      0.13523  Pr>D    >0.1500 
Cramer-von Mises    W-Sq  0.061918  Pr>W-Sq >0.2500 
Anderson-Darling    A-Sq  0.407571  Pr>A-Sq >0.2500 
 

                 The UNIVARIATE Procedure 
                 Variable:  resid1  (Residual) 
 
                    Normal Probability Plot 
 
 
  4.5+                                          +*++ 
     |                                      ++++ 
     |                              * **++++* 
  1.5+                           * *++++ 
     |                         +*+++ 
     |                    **+** 
 -1.5+                 +*++ 
     |             ++++* 
     |         ++++ * 
 -4.5+     ++*+   * 
      +----+----+----+----+----+----+----+----+----+----+ 
          -2        -1         0        +1        +2 
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Multiple Linear Regression (MLR) 

 

Population:  yi = β0 + β1 x 1i + β2 x 2i +...+βp xmi+εi 

Sample:       yi = b0 + b1 x 1i + b2 x 2i +...+bp xmi +ei 

iiimimiii yyexbxbxbby ˆˆ 22110 −=++++= K  

βo is the y intercept parameter 

β1, β2, β3, ..., βm  are slope  parameters 

x1i, x2i, x3i ... xmi independent variables  

εi -  is the error term or residual  

 - is the variation in the dependent variable (the y) 

which is not accounted for by the independent variables 

(the x’s).   

For any fitted equation (we have the estimated parameters), 

we can get the estimated average for the dependent 

variable, for any set of x’s.   This will be the “predicted” 

value for y, which is the estimated average of y, given the 

particular values for the x variables.  NOTE:  In text by 

Neter et al.  p=m+1.  This is not be confused with the p-

value indicating significance in hypothesis tests. 
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For example: 
 

Predicted log10(vol) = - 4.2 + 2.1 X log10(dbh) + 1.1 X  log10(height) 

 

where bo= -4.2; b1= 2.1  ;   b1= 1.1  estimated by finding the 

least squared error solution. 

 

Using this equation for dbh =30 cm, height=28m, 

logten(dbh) =1.48, logten(height) =1.45; logten(vol) = 

0.503.    ∴ volume (m3) = 3.184.  This represents the 

estimated average volume for trees with dbh=30 cm and 

height=28 m. 

 

Note:  This equation is originally a nonlinear equation: 

εcb htdbhavol ××=  

Which was transformed to a linear equation using 

logarithms: 

ε10log)(10log)(10log)(10log)(10log +++= htcdbhbavol
 

And this was fitted using multiple linear regression
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For the observations in the sample data used to fit the 

regression, we can also get an estimate of the error (we 

have measured volume).   

 

If the measured volume for this tree was 3.000 m3, or 0.477 

in log10 units: 

026.0503.0477.0ˆ −=−=−= ii yyerror  

For the fitted equation using log10 units.  In original units, 

the estimated error is 3.000-3.184= - 0.184   

NOTE:  This is not simply the antilog of -0.026.

 100

Finding the Set of Coefficients that Minimizes the Sum of 

Squared Errors 

• Same process as for SLR: Find the set of coefficients that 

results in the minimum SSE, just that there are more 

parameters, therefore more partial derivative equations 

and more equations 

o E.g., with 3 x-variables, there will be 4 coefficients  

(intercept plus 3 slopes) so four equations 

• For linear models, there will be one unique mathematical 

solution.   

• For nonlinear models, this is not possible and we must 

search to find a solution  

 

Using the criterion of finding the maximum likelihood 

(probability) rather than the minimum SSE, we would need to 

search for a solution, even for linear models (covered in other 

courses, e.g., FRST 530).   
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Least Squares Method for MLR: 
 
Find the set of estimated parameters (coefficients) that 
minimize sum of squared errors  
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Take partial derivatives with respect to each of the 
variables, set them equal to zero and solve.   
 
For three x-variables we obtain: 
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Where SP= indicates sum of products between two 
variables, for example for y with x1: 
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And SS indicates sums of squares for one variable, for 
example for x1: 
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Properties of a least squares regression “surface”: 

1. Always passes through ),,...,,,( 321 yxxxx m  

2. Sum of residuals is zero, i.e., Σei=0 

3. SSE the least possible (least squares) 

4. The slope for a particular x-variable is AFFECTED 

by correlation with other x-variables:  CANNOT 

interpret the slope for a particular x-variable, 

UNLESS it has zero correlation with all other x-

variables (or nearly zero if correlation is estimated 

from a sample). 

[class example] 
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Meeting Assumptions of MLR 
 

Once coefficients are obtained, we must check the 

assumptions of MLR before we can: 

• assess goodness of fit (i.e., how well the regression 

line fits the sample data) 

• test significance of the regression 

• calculate confidence intervals and test hypothesis  

 

For these test to be valid, assumptions of MLR 

concerning the observations and the errors (residuals) 

must be met. 
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Residual Plots 

 

Assumptions of: 

1. The relationship between the x’s and y is linear 

VERY IMPORTANT! 

2. The variances of  the y values must be the same for 

every combination of the x values. 

3. Each observation (i.e., xi’s and yi) must be 

independent of all other observations. 

can be visually checked by using RESIDUAL PLOTS  

 

A residual plot shows the residual (i.e., yi - iŷ ) as the y-axis 

and the predicted value ( iŷ ) as the x-axis. 

 

THIS IS THE SAME as for SLR.  Look for problems as 

with SLR.    The effects of failing to meet a particular 

assumption are the same as for SLR 

 

What is different?  Since there are many x variables, it will 

be harder to decide what to do to fix any problems.   
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 Normality Histogram or Plot 

 

A fourth assumption of the MLR is: 

4. The y values must be normally distributed for each 

combination of x values.   

 

A histogram of the errors, and/or a normality plot can be 

used to check this, as well as tests of normality as with 

SLR.  Failure to meet these assumptions will result in same 

problems as with SLR. 
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Example:  Linear relationship met, equal variance, no 

evidence of trend with observation number (independence 

may be met).  Also, normal distribution met. 
Logvol=f(dbh,logdbh) 
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Linear relationship assumption not met 
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Variances are not equal 
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Measurements and Sampling Assumptions 

 

The remaining assumptions of MLR are based on the 

measurements and collection of the sampling data, as with 

SLR 

 

5. The x values are measured without error (i.e., the x 

values are fixed). 

 

6. The y values are randomly selected for each given set of 

the x variables (i.e., for each fixed set of x values, a list of 

all possible y values is made). 

 

As with SLR, often observations will be gathered using 

simple random sampling or systematic sampling (grid 

across the land area).  This does not strictly meet this 

assumption [much more difficult to meet with many x-

variables!]  If the equation is “correct”, then this does not 

cause problems.  If not, the estimated equation will be 

biased.   
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Transformations  

 
• Same as for SLR – except that there are more x 

variables; can also add variables e.g. use dbh and dbh2 

as x1 and x2. 

• Try to transform x’s first and leave y = variable of 

interest; not always possible.  

• Use graphs to help choose transformations 

• Will result in an “iterative” process: 

1. Fit the equation 

2. Check the assumptions [and check for outliers] 

3. Make any transformations based on the residual 

plot, and plots of y versus each x 

4. Also, check any very unusual points to see if 

these are measurement/transcription errors; 

ONLY remove the observation if there is a very 

good reason to do so 

5. Fit the equation again, and check the assumptions 

6. Continue until the assumptions are met [or nearly 

met] 
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Measures of Goodness of Fit 

 

How well does the regression fit the sample data?   

• For multiple linear regression, a graph of the the 

predicted versus measured y values indicates how well 

the line fits the data  

• Two measures commonly used:  coefficient of 

multiple determination (R2) and standard error of the 

estimate(SEE), similar to SLR 

 

To calculate R2  and SEE, first, calculate the SSE (this is 

what was minimized, as with SLR): 
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The sum of squared differences between the measured and 

estimated y’s.  This is the same as for SLR, but there are 

more slopes and more x (predictor) variables. 
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Calculate the sum of squares for y: 
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The sum of squared difference between the measured y and 
the mean of y-measures. 

 
Calculate the sum of squares regression: 
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The sum of squared differences between the mean of y-

measures and the predicted y’s from the fitted equation.  

Also, is the sum of squares for y – the sum of squared 

errors. 
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Then:  SSy
SSreg

SSy
SSE

SSy
SSESSyR =−=

−
= 12

 

• SSE, SSY are based on y’s used in the equation – 

will not be in original units if y was transformed 

• R2 = coefficient of multiple determination;  

proportion of variance of y, accounted for by the 

regression using x’s 

• O (very poor – horizontal surface representing no 

relationship between y and x’s) to  1 (perfect fit – 

surface passes through the data) 

• SSE falls as m (number of independent variable) 

increases, so R2 rises as more explanatory 

(independent or predictor) variables are added. 

 

A similar measure is called the Adjusted R2 value.  A 

penalty is added as you add x-variables to the equation: 
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nRa ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

−
−=

)1(
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And:   1−−
=

mn
SSESEE  

• SSE is based on y’s used in the equation – will not 

be in original units if y was transformed 

• n-m-1 is the degrees of freedom for the error; is the 

number of observations minus the number of fitted 

coefficients 

• SEE - standard error of the estimate; in same units as 

y 

• Under normality of the errors:   

o ±1 SEE ≅ 68% of sample observations  

o ±2 SEE ≅ 95% of sample observations 

• Want low SEE 

• SEE  falls as the number of predictor variables 

increases and SSE falls, but then rises, since n-m -1 

is getting smaller 
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y-variable was transformed:  Can calculate estimates of 

these for the original y-variable unit,  I2 (Fit Index) and 

estimated standard error of the estimate (SEE’), in order to 

compare to R2 and SEE of other equations where the y was 

not transformed, similar to SLR. 

I2 = 1 - SSE/SSY   

• where SSE, SSY are in original units.  NOTE must 

“back-transform” the predicted y’s to calculate the SSE 

in original units.  

• Does not have the same properties as R2, however it can 

be less than 0 

Estimated standard error of the estimate (SEE’) , when the 

dependent variable, y, has been transformed: 

1
)('

−−
=

mn
unitsoriginalSSESEE  

• SEE’ - standard error of the estimate ; in same units as 

original units for the dependent variable 

• want low SEE’     
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Estimated Variances, Confidence Intervals and Hypothesis 

Tests 

Testing Whether the Regression is Significant 

Does knowledge of x’s improve the estimate of the mean of 

y? Or is it a flat surface, which means we should just use 

the mean of y as an estimate of mean y for any set of x 

values? 

 

SSE/ (n-m-1): 

• Mean squared error.   

o The degrees of freedom are n-m-1 (same as        

n-(m+1) 

o n observations with (m+1) statistics estimated 

from these: b0,  b1 , b2 ,… bm 

• Under the assumptions of MLR, is an unbiased 

estimated of the true variance of the error terms (error 

variance) 
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SSR/m: 

• Called the Mean Square Regression 

• Degrees of Freedom=m:       m  x-variables 

• Under the assumptions of SLR, this is an estimate the 

error variance PLUS a term of variance explained by 

the regression using x’s. 

 

H0:  Regression is not significant  

H1:  Regression is significant 

Same as: 

H0:  β1 = β2 =β3 = . . . =βm =0 [all slopes are zero meaning 

no relationship with x’s] 

H1:  not all slopes =0  [some or all slopes are not equal to 

zero] 

If  H0 is true, then the equation is: 

yi = β0 + 0 x 1i + 0 x 2i +...+0 xmi +εi 

00 ˆ βεβ =+= iii yy  

Where the x-variables have no influence over y; they do not 

help to better estimate y.
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As with SLR, we can use an F-test, as it is the ratio of two 

variances; unlike SLR we cannot use a t-test since we are 

only testing several slope coefficients.  

Using an F test statistic: 

MSE
MSreg

mnSSE
mSSregF =

−−
=

)1(  

• Under H0, this follows an F distribution for a 1- α 

percentile with 1 and n-m-1 degrees of freedom.   

• If the F for the fitted equation is larger than the F from 

the table, we reject H0 (not likely true).  The regression 

is significant, in that one or more of the the true slopes 

(the population slopes) are likely not equal to zero.     

Information for the F-test in the Analysis of Variance Table: 
 

Source df SS MS F p-value 
Regression m 

SSreg 
MSreg= 
SSreg/m 

F= 
MSreg/MSE 

Prob F>  
F(m,n-m-1,1- α) 

Error n-m-1 SSE MSE= SSE/(n
m-1) 

  

Total n-1 SSy    
 

[See example] 
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Estimated Standard Errors for the Slope and Intercept 

Under the assumptions, we can obtain an unbiased 

estimated of the standard errors for the slope and for the 

intercept [measure of how these would vary among 

different sample sets], using the one set of sample data. 

 

For multiple linear regression, these are more easily 

calculated using matrix algebra.  If there are more than 2 x-

variables, the calculations become difficult; we will rely on 

statistical packages to do these calculations. 
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Confidence Intervals for the True Slope and Intercept 

Under the assumptions, confidence intervals can be 

calculated as: 

For βo:      01,210 bmn stb ×± −−−α  

For βj:       jbmnj stb ×± −−− 1,21 α [ for any of the slopes] 

 

[See example] 
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Hypothesis Tests for one of the True Slopes or Intercept 

H0:  βj = c [the parameter (true intercept or true slope is 

equal to the constant, c, given that the other x-variables are 

in the equation] 

H1:  βj ≠ c [true intercept or slope differs from the constant 

c; given that the other x-variables are in the equation] 

 

Test statistic: 

jb

j

s
cb

t
−

=
 

Under H0, this is distributed as a t value of  tc = tn-m-1, 1-α/2.  

Reject Ho if ⎟ t⎟ > tc. 

• It is possible to do one-sided hypotheses also, where 

the alternative is that the true parameter (slope or 

intercept) is greater than (or less than) a specified 

constant c.  MUST be careful with the tc as this is 

different.  

[See example] 
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The regression is significant, but which x-variables should 

we retain? 

With MLR, we are particularly interested in which x-

variables to retain.  We then test: Is variable xj significant 

given the other x variables?  e.g. diameter, height - do we 

need both? 

 

H0: βj = 0,  given other x-variables  (i.e., variable not 

significant) 

 

H1: βj ≠ 0,  given other x-variables. 

 

A t-test for that variable can be used to test this.   
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Another test, the partial F-test can be used to test one x-

variable (as t-test) or to test a group of x-variables, given 

the other x-variables in the equation. 

• Get regression analysis results for all x-variables [full 

model] 

• Get regression analysis results for all but the x-variables 

to be tested [reduced model] 

( )

( )

)(
))variable(sdroppedtodue(

))(1(
)()(

OR
))(1(

)()(

fullMSE
/rSS

fullmnSSE
rfullSSEreducedSSEFpartial

fullmnSSE
rreducedSSregfullSSregFpartial

=

−−
−

=

−−
−

=

 

Where r is the number of x-variables that were dropped 

(also equals: (1)the regression degrees of freedom for the 

full model minus the regression degrees of freedom for the 

reduced model, OR (2) the error degrees of freedom for the 

reduced model, minus the error degrees of freedom for the 

full model) 
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• Under H0, this follows an F distribution for a 1- α/2 

percentile with r and n-m-1 (full model) degrees of 

freedom.   

• If the F for the fitted equation is larger than the F from 

the table, we reject H0 (not likely true).  The 

regression is significant, in that the variable(s) that 

were dropped are significant (account for variance of 

the y-variable), given that the other x-variables are in 

the model. 

 

[See example with the use of class variables, but can be for 

any subset of x-variables] 
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Confidence Interval for the True Mean of y given a 

particular set of x values 

For the mean of all possible y-values given a particular 

value set of x-values (μy|xh): 

hymnh sty xx |ˆ21,1|ˆ ×± −−− α  

where 

output package lstatistica from 

|ˆ

|ˆ

22110

=

++++=

hy

mhmhhh

s

xbxbxbby

x

x L

 

Confidence Bands 

Plot of the confidence intervals for the mean of y for 

several sets  x-values is not possible with MLR 
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Confidence Interval for 1 or more y-values given a 

particular set of x values 

For one possible new y-value given a particular set of x 

values: 

hnewymnhnew sty xx |)(ˆ21,1)( |ˆ ×± −−− α  

Where 

output package lstatistica from 

|ˆ

|)(ˆ

22110

=

++++=

hnewy

mhmhhh

s

xbxbxbby

x

x L

 

For the average of g new possible y-values given a 

particular value of x: 

hnewgymnhnew sty xx |)(ˆ21,1)( |ˆ ×± −−− α  

where 

output package lstatistica from 

|ˆ

|)(ˆ

22110

=

++++=

hnewgy

mhmhhh

s

xbxbxbby

x

x L

 

 

 [See example] 
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Multiple Linear Regression Example 
 

n=28 stands     y=vol/ha (m3) 

volume/ha
m3

Age
years

Site
Index

Basal 
area/ha

m2
Stems

/ha

Top 
height

m
Qdbh

cm
559.3 82 14.6 32.8 1071 22.4 22.2

559 107 9.4 44.2 3528 17 9.3
831.9 104 12.8 50.5 1764 21.5 17
365.7 62 12.5 29.6 1728 16.4 12.1
454.3 52 14.6 35.4 2712 18.9 14.1

486 58 13.9 39.1 3144 17.5 14
441.6 34 18.5 36.2 3552 17.4 13.8
375.8 35 17 33.4 4368 15.6 12.2
451.4 33 19.1 35.4 2808 16.8 14.7
419.8 23 23.4 34.4 3444 17.3 14

467 33 17.7 42 6096 16.4 12.2
288.1 33 15 30.3 5712 13.8 5.6

306 32 18.2 27.4 3816 16.7 12.5
437.1 68 13.8 33.3 2160 19.1 16.2
633.2 126 11.4 39.9 1026 21 23.2
707.2 125 13.2 40.1 552 23.3 29.2

203 117 13.7 11 252 22.1 25.8
915.6 112 13.9 48.7 1017 24.2 25
903.5 110 13.9 51.5 1416 23.2 23
883.4 106 14.7 49.4 1341 24.3 23.7
586.5 124 12.8 35.2 2680 22.6 21.5
500.1 60 18.4 27.3 528 22.7 24.4
343.5 63 14 26.9 1935 17.6 14.1
478.6 60 15.2 34 2160 19.4 9.9
652.2 62 15.9 42.5 1843 20.5 13.2
644.7 63 16.2 40.4 1431 21 16.1
390.8 57 14.8 30.4 2616 18.3 13.9
709.8 87 14.3 42.3 1116 22.6 23.9

 



 129

Objective: obtain an equation for estimating volume per ha 
from some of the easy to measure variables such as basal 
area /ha (only need dbh on each tree), qdbh (need dbh on 
each tree and stems/ha), and stems/ha 
 

volume per ha versus basal area per 
ha
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volume per ha versus stems/ha
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volume per ha versus quadratic mean 
dbh
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Then, we would need: SSY,  SSX1, SSX2, SSX3, SPX1Y, 
SPX2Y, SPX3Y, SPX1X2, SPX1X3, SPX2X3, and insert 
these into the four equations and solve: 
 

3322110 xbxbxbyb −−−=  
 

1

31
3

1

21
2

1

1
1 SSx

xSPxb
SSx

xSPxb
SSx

ySPxb −−=  

 

2

32
3

2

21
1

2

2
2 SSx

xSPxb
SSx

xSPxb
SSx

ySPxb −−=  

 

3

32
2

3

31
1

3

3
3 SSx

xSPxb
SSx

xSPxb
SSx

ySPxb −−=  

 
And then check assumptions, make any necessary 
transformations, and start over! 
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SAS code 
 
*  MLR.sas  example for 430 and 533 classes; 
 
PROC IMPORT OUT= WORK.voldata     
DATAFILE="E:\frst430\lemay\examples\MLR.XLS"  
     DBMS=EXCEL REPLACE; SHEET="data$";  
     GETNAMES=YES; MIXED=NO;  SCANTEXT=YES;  
     USEDATE=YES; SCANTIME=YES;     
RUN; 
options ls=70 ps=50; 
run; 
DATA voldata2; 
set voldata; 
  qdbhsq=qdbh**2; 
run; 
Proc plot data=voldata2; 
plot volha*(baha stemsha qdbh)='*'; 
run; 
*------------------------------------------; 
PROC REG data=voldata2 simple outsscp=sscp; 
 model volha=baha stemsha qdbh; 
 output out=out1 p=yhat1 r=resid1; 
run; 
*------------------------------------------; 
PROC PLOT DATA=out1; 
 plot resid1*yhat1; 
run; 
*-----------------------------------------; 
PROC univariate data=out1 plot normal; 
Var resid1; 
Run; 
 
PROC PRINT data=sscp; 
run;  



 133

SAS Outputs: 
 

1) plots (as per EXCEL plots) 
2) Simple statistics 
3) Regression results 
4) Residual plot 
5) Normality tests and plot 
6) SSCP (sums of squares and cross products) 

                          The REG Procedure 
 
               Number of Observations Read          28 
               Number of Observations Used          28 
 
 
                       Descriptive Statistics 
 
                                Uncorrected 
Variable         Sum       Mean     SS       Variance 
 
Intercept   28.00000    1.00000   28.00000          0 
baha      1023.60000   36.55714      39443   74.93884 
stemsha        65816 2350.57143  213051770    2160984 
qdbh       476.80000   17.02857 9084.32000   35.74434 
volha          14995  535.53929    9011680      36341 
 
                       Descriptive Statistics 
 
                                Standard 
                Variable       Deviation    Label 
 
                Intercept              0    Intercept 
                baha             8.65672    baha 
                stemsha       1470.02848    stemsha 
                qdbh             5.97866    qdbh 
                volha          190.63388    volha 
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             Analysis of Variance 
 
            Sum of   Mean 
 Source DF  Squares  Square   F Value Pr > F 
 
 Model   3  954389     318130 284.62  <.0001 
 Error  24   26826 1117.73481 
 Corr.  27  981214 
 Total 
 
Root MSE         33.43254    R-Square 0.9727 
Dependent Mean  535.53929    Adj R-Sq 0.9692 
Coeff Var         6.24278 
 
 

Parameter Estimates 
 
                          Parameter Standard 
Variable   Label      DF   Estimate    Error   
Intercept  Intercept   1 -198.17649 47.89264 
baha       baha        1   18.56615  0.75637 
stemsha    stemsha     1   -0.03124  0.00702 
qdbh       qdbh        1    7.54214  1.73965 
 

Parameter Estimates 
 
            
Variable   t Value  Pr > |t| 
 
Intercept    -4.14    0.0004 
baha         24.55    <.0001 
stemsha      -4.45    0.0002 
qdbh          4.34    0.0002 
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Plot of resid1*yhat1.   
Legend: A = 1 obs, B = 2 obs, etc. 
 
Residual 
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                  Tests for Normality 
 
Test    --Statistic---      ----p Value----- 
Shapiro-Wilk   W  0.960589  Pr < W    0.3600 
 
Kolmogorov 
-Smirnov       D  0.124393  Pr > D   >0.1500 
 
Cramer-von  
Mises        W-Sq 0.068064  Pr > W-Sq 0.2500 
 
Anderson 
-Darling     A-Sq 0.395352 Pr > A-Sq  0.2500 
 
                   Normal Probability Plot 
 
 65+                                             +++ 
   |                                      *  *+++* 
   |                                      +++ 
   |                                   +*+ 
   |                                **+* 
   |                          ****** 
  5+                         *+++ 
   |                      ++** 
   |                   +++** 
   |                +***** 
   |             +** 
   |         *++* 
-55+     *++++ 
    +----+----+----+----+----+----+----+----+----+----+ 
        -2        -1         0        +1        +2 
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                       I 
                       n 
                       t                      s 
  _    _               e                      t 
  T    N               r                      e                     v 
  Y    A               c          b           m         q           o 
O P    M               e          a           s         d           l 
b E    E               p          h           h         b           h 
s _    _               t          a           a         h           a 
 
1 SSCP Intercept    28.0    1023.60     65816.0    476.80    14995.10 
2 SSCP baha       1023.6   39443.24   2399831.7  17612.44   587310.56 
3 SSCP stemsha   65816.0 2399831.70 213051770.0 936359.90 31917995.70 
4 SSCP qdbh        476.8   17612.44    936359.9   9084.32   271764.15 
5 SSCP volha     14995.1  587310.56  31917995.7 271764.15  9011679.63 
6 N                 28.0      28.00        28.0     28.00       28.00 

 
 
                
                

                           s 
                           t 
                           e                    v 
              b            m        q           o 
              a            s        d           l 
              h            h        b           h 
              a            a        h           a 
 
baha      39443.24   2399831.7  17612.44  587310.56 
stemsh 2399831.70 213051770.0 936359.90 31917995.70 
qdbh      17612.44    936359.9   9084.32  271764.15 
volha    587310.56  31917995.7 271764.15  011679.63 
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Questions: 
 
1. Are the assumptions of MLR met? 

 
 
 
 
2. If they are met, what is the 

multiple coefficient of 
determination?  The Adjusted R 
square?  How are they different?  
What is the root MSE (SEE)? Units? 

 
3. Is the regression significant? 

 
4. If the equation is significant, are 

all of the variables needed, given 
the other variables in the equation? 

 
5. Given stems/ha=300, qdbh=20 cm, and 

ba/ha=20 m2/ha, what is the 
estimated volume per ha?  How would 
you get a CI for this estimate?  
What does it mean? 
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Selecting  and Comparing Alternative Models 
 

Process to Fit an Equation using Least Squares 

Steps (same as for SLR): 

3. Sample data are needed, on which the dependent variable 

and all explanatory (independent) variables are 

measured. 

4. Make any transformations that are needed to meet the 

most critical assumption:  The relationship between y 

and x’s is linear.   

Example:  volume = β0 + β1 dbh +β2 dbh2 may be linear 

whereas volume versus dbh is not.  Need both variables. 

3.  Fit the equation to minimize the sum of squared error.    

4.  Check Assumptions.  If not met, go back to Step 2. 

5.  If assumptions are met, then check if the regression is 

significant.  If it is not, then it is not a candidate model 

(need other x-variables).  If yes, then go through further 

steps for MLR. 
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6. Are all variables needed?  If there are x-variables that are 

not significant, given the other variables:  

• drop the least significant one (highest p-value, lowest F, 

or lowest absolute value of t)  

• refit the regression and check assumptions. 

• if assumptions are met, then repeat steps 5 and 6 

continue until all variables in the regression are significant 

given the other x-variables also in the model 
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Methods to aid in selecting predictor (x) variables 

 

Methods have been developed to help in choosing which x-

variables to include in the equation.  These include: 

1.  R2 (or Adjusted R2).   The equation is fitted for a 

number of combinations of the x-variables to predict y.  

The ones with the highest R2 are reported.  CAUTION:  

You must check the assumptions of these fitted equations 

by fitting the equation with variables given.  If assumptions 

are NOT met, these are NOT candidate models EVEN with 

a high R2.  ALSO, consider costs of measuring the x-

variables, significance of the x-variables (given the other 

varables) etc.  This only gives some ideas of models to try. 
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2. Stepwise.    

1) The most important variable is added to the model 

(highest partial F-value or absolute value of t; has lowest 

p-value).   

2) Each of the other variables are added; the next most 

important variable is added to the model 

3) Repeat Step 2) 

4) At any time, a variable already entered in, may become 

not significant.  Drop it, and continue with Step 2. 

5) Continue until all variables in the regression are 

significant, and the ones that are not in the equation are 

not significant, given the ones that are in the equation. 

NOTES: 

• This just gives candidate models.  You must check 

whether the assumptions are met and do a full 

assessment of the regression results  
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3.  Backwards Stepwise: 

1)  All x-variables are added to the model 

2)  Check to see if variables are not significant given the 

other variables in the equation (use partial F-test or t-test) 

3) If all x-variables are significant given the other variables, 

stop.  Otherwise, drop the variable with the lowest partial 

F-value (highest p-value) 

4)  Repeat step 2, until all variables in the equation are 

significant, given the other variables that are in the equation 

NOTES: 

• This again just gives candidate models.  You must 

check whether the assumptions are met and do a full 

assessment of the regression results  

• Unlike “stepwise”, once a variable is dropped, it 

cannot come back in, even if it might be significant 

with a different set of x-variables than when it was 

dropped. 
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4.  Forward Stepwise:  This is the same as Stepwise, 

EXCEPT, that once a x-variable is added to the model, it is 

not removed, even if it becomes non-significant at a 

particular step in the process. 

NOTES: 

• This again just gives candidate models.  You must 

check whether the assumptions are met and do a full 

assessment of the regression results  

[See example]
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 Steps for Forward Stepwise, for example: 
 
To fit this “by hand”, you would need to do the following 
steps: 
 

1. Fit a simple linear regression for vol/ha with each of 
the explanatory (x) variables. 

2. Of the equations that are significant (assumptions 
met?), select the one with the highest F-value. 

3. Fit a MLR with vol/ha using the selected variable, plus 
each of the explanatory variables (2 x-variables in 
each equations).  Check to see if the “new” variable is 
significant given the original variable (which may now 
be not significant, but forward stepwise does not drop 
variables).  Of the ones that are significant (given the 
original variable is also in the equation), pick the one 
with the largest partial-F (for the new variable). 

4. Repeat step 3, bringing in varables until i) there are no 
more variables or ii) the remaining variables are not 
significant given the other variables. 
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 SAS code 
*MLR_stepwise.sas  example for 430 and 
533 classes ; 
* NOTE:  Must run a full regression on 
your selected models once after using 
these tools to help you choose a few 
candidates; 
 
PROC IMPORT OUT= WORK.voldata  
     DATAFILE= 
"E:\frst430\lemay\examples\MLR.XLS"  
     DBMS=EXCEL REPLACE;    
SHEET="data$";  
     GETNAMES=YES; MIXED=NO; 
SCANTEXT=YES;  USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
options ls=70 ps=50 pageno=1; 
run; 
*------forward stepwise--------------; 
title 'forward stepwise'; 
PROC REG data=voldata simple; 
 model volha=baha stemsha qdbh age si 
topht/selection=forward; 
 output out=out1 p=yhat1 r=resid1; 
run; 
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* keep first 3 variables, then forward 
stepwise; 
title 'first 3 then forward'; 
PROC REG data=voldata; 
 forward3: model volha=baha stemsha 
qdbh age si topht/selection=forward 
include=3; 
 output out=out2 p=yhat2 r=resid2; 
run; 
*----------------------------------; 
*  backward stepwise; 
title 'backward'; 
PROC REG data=voldata; 
 model volha=baha stemsha qdbh age si 
topht/selection=backward; 
 output out=out3 p=yhat3 r=resid3; 
run; 
*------------------------------------; 
* stepwise –bring variables in or out; 
title 'stepwise – can bring variables 
in or out'; 
PROC REG data=voldata; 
 model volha=baha stemsha qdbh age si 
topht/selection=stepwise; 
 output out=out4 p=yhat4 r=resid4; 
run; 
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*-------------------------------------; 
 
*  use rsquare to get a number of 
regressions ; 
title 'rsquare'; 
PROC REG data=voldata; 
 model volha=baha stemsha qdbh age si 
topht/selection=rsquare; 
run; 
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SAS Outputs: 
 

                  forward stepwise                           
 
               The REG Procedure 
 
           Number of Observations Read          28             
           Number of Observations Used          28 
 
                   Descriptive Statistics 
                                                    
                                 Uncorrected   
Variable    Sum       Mean          SS      
Variance 
Intercept 28.00000    1.00000    28.00000         0 
baha    1023.60000   36.55714       39443  74.93884 
stemsha      65816 2350.57143   213051770   2160984 
qdbh    476.80000    17.02857  9084.32000   5.74434 
age    2028.00000    72.42857      176972   4.32804 
si      422.90000    15.10357  6594.19000   7.66258 
topht   549.60000    19.62857       11022   8.66878 
volha       14995   535.53929     9011680     36341 
 
                Descriptive Statistics 
 
               Standard 
Variable       Deviation    Label 
Intercept              0    Intercept 
baha             8.65672    baha 
stemsha       1470.02848    stemsha 
qdbh             5.97866    qdbh 
age             33.38155    age 
si               2.76814    si 
topht            2.94428    topht 
volha          190.63388    volha 
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                   The REG Procedure 
                     Model: MODEL1 
            Dependent Variable: volha volha 
 
        Number of Observations Read          28   
        Number of Observations Used          28 
 
               Forward Selection: Step 1 
 
Variable baha Entered: R-Square = 0.7713 and C(p) = 
387.3512 
 
               Analysis of Variance 
 
                 Sum of     Mean 
Source      DF  Squares    Square   F Value  Pr > F 
 
Model        1  756843      756843   87.70  <.0001 
Error       26  224372  8629.69076 
Corrected  
  Total     27  981214 
 
           Parameter Standard  Type II   F 
Variable   Estimate  Error       SS    Value  Pr>F 
Intercept -171.49367 77.51211  42243   4.90  .0359 
baha       19.34049   2.06520 756843  87.70 <.0001 
 
    Bounds on condition number: 1, 1 
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            Forward Selection: Step 2 
 
Variable topht Entered: R-Square = 0.9852 and C(p) 
= 4.5439 
 
              Analysis of Variance 
 
                 Sum of       Mean 
Source     DF   Squares     Square  F Value  Pr > F 
 
Model       2    966736     483368   834.64  <.0001 
Error      25     14478  579.13628 
Corrected  
   Total   27    981214 
 
           Parameter  Standard   Type   F 
Variable   Estimate    Error    II SS  Value Pr> F 
 
Intercept -663.29189 32.71936  238002 410.9  <.0001 
baha        15.73874  0.56747  445489 769.23 <.0001 
topht       31.76327  1.66846  209894 362.43 <.0001 
 
      Bounds on condition number: 1.1251, 4.5002 
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       Forward Selection: Step 3 
 
Variable stemsha Entered: R-Square = 0.9879 and 
C(p) = 1.6949 
 
 
               Analysis of Variance 
 
                 Sum of     Mean 
Source    DF    Squares    Square   F Value  Pr > F 
 
Model      3   969381       323127  655.35  <.0001 
Error     24    11834    493.06283 
Corrected  
   Total  27   981214 
 
 
         Parameter  Standard    Type 
Variable Estimate    Error     II SS  F Value Pr> F 
 
Intercept-537.86686 62.00085   37107   75.26 <.0001 
baha       16.37897  0.59209  377309 765.24  <.0001 
stemsha    -0.01319  0.00569 2644.90  5.36   0.0294 
topht      25.76009  3.01468   36001 73.02   <.0001 
 
    Bounds on condition number: 4.3142, 28.766 
-------------------------------------------------- 
 
No other variable met the 0.5000 significance level 
for entry into the model. 
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              Summary of Forward Selection 
 
Step     Number  Partial   Model 
        Vars In R-Square R-Square   C(p)    F Value 
1  baha    1     0.7713   0.7713   387.351    87.70 
2  topht   2     0.2139   0.9852    4.5439   362.43 
3  stemsha 3     0.0027   0.9879    1.6949     5.36 
 
                Summary of Forward Selection 
 
                    Step Pr > F 
                      1  <.0001 
                      2  <.0001 
                      3  0.0294 
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                     rsquare                               
 
                  The REG Procedure 
                    Model: MODEL1 
              Dependent Variable: volha 
              R-Square Selection Method 
 
           Number of Observations Read          28 
           Number of Observations Used          28 
 
Number in 
 Model    R-Square  Variables in Model 
   1       0.7713    baha 
   1       0.5312    topht 
   1       0.3624    age 
   1       0.2847    qdbh 
   1       0.1936    stemsha 
   1       0.0833    si 
   ------------------------------------------- 
   2       0.9852    baha topht 
   2       0.9512    baha stemsha 
   2       0.9501    baha qdbh 
   2       0.8946    baha age 

. . . 
 
   5       0.9883    baha stemsha age si topht 
   5       0.9881    baha stemsha qdbh si topht 
   5       0.9880    baha stemsha qdbh age topht 
   5       0.9854    baha qdbh age si topht 
   5       0.9764    baha stemsha qdbh age si 
   5       0.6568    stemsha qdbh age si topht 
 -------------------------------------------------- 
   6       0.9883    baha stemsha qdbh age si topht 
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 Questions: 
 

1. What was the final equation for each of the types of 
stepwise (or R square) methods?   

 
2. Which equations would you choose to fit based on 

these tools to select variables?  (full regression output 
would be needed in order examination of the residual 
plot and normality plot, R2 and SEE, significance of 
the regression, significance of the variables, 
cost/biology of the model) 
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For a number of models, select based on: 

 

1. Meeting assumptions:  If an equation does not meet 

the assumption of a linear relationship, it is not a 

candidate model 

2. Compare the fit statistics.  Select higher R2 (or I2), and 

lower SEE (or SEE’) 

3. Reject any models where the regression is not 

significant, since this model is no better than just using 

the mean of y as the predicted value. 

4. Select a model that is biologically tractable.  A simpler 

model is generally preferred, unless there are 

practical/biological reasons to select the more complex 

model 

5. Consider the cost of using the model 
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Adding class variables as predictors 
 (class variables as the dependent variable – covered in FRST 530; 
under generalized linear model—see also Chapter 14 in the 
textbook). 
 

Want to add a class variable.  Examples: 

 

1. Add species to an equation to estimate tree height. 

2. Add gender (male/female) to an equation to estimate 

weight of adult tailed frogs. 

3. Add machine type to an equation that predicts lumber 

output. 
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How is this done? 

• Use “dummy” or “indicator variables to represent 

the class variable 

e.g. have 3 species.  Set up X1 and X2 as dummy 

variables: 

Species                   X1             X2 

     Cedar                      1               0 

     Hemlock                 0               1 

     Douglas fir             0               0 

o Only need two dummy variables to 

represent the three species. 

o The two dummy variables as a group 

represent the species.   

• Add the dummy variables to the equation – this 

will alter the intercept 
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• To alter the slopes, add an interaction between 

dummy variables and continuous variable(s) 

e.g. have 3 species, and a continuous variable, 

dbh 

Species    X1   X2  X3=dbh   X4=X1 * dbh  

X5=X2*dbh 

    Cedar        1      0        10          10                         0 

    Hemlock   0      1        22           0                        22 

    Douglas  

        fir           0      0        15           0                         0 

NOTE:  There would be more than one line of data 

(sample) for each species. 

o The two dummy variables, and the 

interactions with the continuous variable as 

a group represent the species.   
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How does this work? 

{

                
nsinteractio

55414
dbh

33

ablesdummy vari

22110 i

i

iiiiii exbxbxbxbxbby ++++++=
44 344 214434421

 

For Cedar (CW): 

 

 

For Hemlock (HW): 

 

 

For Douglas fir (FD): 

 

 

 

Therefore:  fit one equation using all data, but get 

different equations for different species.  Also, can test 

for differences among species, using a partial-F test. 
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*  class_variables.sas ---------------; 
 
options ls=70 ps=50 pageno=1; 
 
PROC IMPORT OUT= WORK.trees  
DATAFILE= 
 "E:\frst430\lemay\examples\diversity_plots.xls"    
     DBMS=EXCEL REPLACE; 
     SHEET="Data$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
data trees2; 
set trees; 
 if (tree_cls eq 'D') then delete; 
 if ((species ne 'FD') and (species ne 'CW') and 
   (species ne 'HW')) then delete; 
 
* two dummies for 3 species; 
x1=0; 
x2=0; 
if species eq 'CW ' then x1=1; 
if species eq 'HW' then x2=1; 
* all dummies are zero for Douglas-fir; 
 
x3=log10(dbh); 
x4=dbh; 
y=log(ht); 
 
x5=x1*x3; 
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x6=x2*x3; 
x7=x1*x4; 
x8=x2*x4; 
run; 
proc sort data=trees2; 
by species; 
run; 
 
proc plot data=trees2; 
  plot ht*dbh=species; 
run; 
 
proc plot data=trees2; 
  plot ht*dbh=species; 
  by species; 
run; 
 
*-------------------------------------------
; 
* full model with intercept and slope 
varying by species; 
proc reg; 
  Full: model y=x1-x8;  
  output out=out1 p=yhat1 r=resid1; 
run; 
 
PROC PLOT DATA=out1; 
 plot resid1*yhat1=species; 
run; 
 
PROC univariate data=out1 plot; 
Var resid1; 
Run; 
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*-------------------------------------------
; 
* reduced model with one common equation 
regardless of species; 
proc reg; 
  Common: model y=x3 x4; 
  output out=out2 p=yhat2 r=resid2; 
run; 
 
PROC PLOT DATA=out2; 
 plot resid2*yhat2=species; 
run; 
 
PROC univariate data=out2 plot; 
Var resid2; 
Run; 
 
*-------------------------------------------
; 
* reduced model with common slopes for all 
species, but different intercepts; 
proc reg; 
  INTONLY:model y=x1-x4; 
  output out=out3 p=yhat3 r=resid3; 
  run; 
 
proc plot data=out3; 
 plot resid3*yhat3=species; 
run; 
 
PROC univariate data=out3 plot; 
Var resid3; 
Run; 
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Plot of ht*dbh.  Symbol is value of species. 
 
     ‚ 
     ‚ 
  70 ˆ 
     ‚ 
     ‚                                                              
F 
     ‚                                  F 
     ‚ 
  60 ˆ                            FF            F            F  F 
F 
     ‚ 
     ‚                          F     F             F F   F      
F 
     ‚                        F        F F      F F FF 
     ‚              HHHHHHH HH  H F F FF 
  50 ˆ          H HHHHHHHHH  HH         FF             C 
     ‚        HHHHHHHHHHH HH      H  H F 
     ‚      H   HHHHHHH  HFCH      F F 
     ‚     HH HHHHHHHCFHHFHC  FHFFCF F F  C 
     ‚     HHHH HH H HFFHCFHH FFFCFC         C         C 
  40 ˆ      HHHH HHH HHHHCFFFFFF C FC F                     C 
h    ‚    H  HHHHHHH FFFFFFFCFFFH FF       CCC   C 
t    ‚   HHHHHHHFF CFHCCFFFFCCH F HHC    C       C   C      C 
     ‚    HHHHH  FCFFFCCFFCHCCFFFCH    CCCC 
     ‚     HHHHHFCCCFCFCCFCCCCCCCCCC        C 
  30 ˆ   HHHHHHHHHCHCFCCCFCCCCF CC 
     ‚   HHHH HCHCCFCCCCCCCCCCCF       C 
     ‚  HHHHHF CCCCCCCCCC CC  CC      F 
     ‚  HHHHHFCCFCCCCCCCCCC 
     ‚   HHHCCCCCCCCCCC     C 
  20 ˆ   HCHFCCCCCFC    C 
     ‚  HHHCFCCCC C F C 
     ‚  HHFCCCCC HC FFH 
     ‚  HHFCCCCCFCF 
     ‚  HFCCCCC      C 
  10 ˆ  HFCCCC C 
     ‚  FCCC F 
     ‚ FCCCH C 
     ‚ CCF F 
     ‚ CC 
   0 ˆ 
     ‚ 
     Šˆ--------ˆ--------ˆ--------ˆ--------ˆ--------ˆ--------ˆ----
----ˆ 
     0.0     26.1     52.2     78.3     104.4    130.5    
156.6  182.7 
 
                                    dbh 
NOTE: 1284 obs hidden. 
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---------     species=CW -------------------
- 
 
Plot of ht*dbh.  Symbol is value of species. 
 
          ‚ 
       50 ˆ 
          ‚                                    C 
          ‚ 
          ‚                 C 
          ‚                     C     C 
          ‚             C   C           C      C 
          ‚               C     CCC     C 
       40 ˆ               C     C                 C 
          ‚                  C         CC 
          ‚                 C           C  C 
          ‚           C CC   C    C   C    C  C   C 
          ‚           C CC  CC  C   CCC 
          ‚          C   CCCCCCCCC     C 
          ‚           C CCCCCCCCC 
       30 ˆ          CCCCCCCCC CC 
          ‚          C CCCCCCCC 
     h    ‚         CC CCCCCCCC     C 
     t    ‚        CCCCCCCCC  C 
          ‚        CCCCCCCCC 
          ‚      CCCCCCCC C 
          ‚        CCCCCC C C 
       20 ˆ       CCCCC   C 
          ‚     C CCC   C 
          ‚      CCC C 
          ‚      CCC C 
          ‚      CCC C 
          ‚     CCC 
          ‚     CCC    C 
       10 ˆ     CCCC 
          ‚    CC 
          ‚    CCC 
          ‚   CC  C 
          ‚   C 
          ‚   C 
          ‚ 
        0 ˆ 
          Š--ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ-- 
             0          50          100         150         200 
 
                                    dbh 
 
NOTE: 411 obs hidden. 
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---------------species=FD ------------------ 
 
Plot of ht*dbh.  Symbol is value of species. 
 
          ‚ 
       70 ˆ 
          ‚ 
          ‚                                             F 
          ‚                          F 
          ‚ 
       60 ˆ                      F        F        F  FF 
          ‚ 
          ‚                    F    F        FF  F    F 
          ‚                   F     FF    F FF 
          ‚                      FFFF 
       50 ˆ                          FF 
          ‚                         F 
          ‚                F     FFF 
          ‚             F F   FF F FF 
          ‚             FFFF  FFF 
       40 ˆ                FFFFF F F 
     h    ‚            FFFFFFFFFFF 
     t    ‚         FF FFFFFF  F 
          ‚          FFFFFFF  FFF 
          ‚         F  FFFFF F 
       30 ˆ            FFFF F F 
          ‚        F FFF  F F F 
          ‚       FFFFF  F         F 
          ‚       FFFFFF 
          ‚        FFFF F 
       20 ˆ      FFFFF 
          ‚      FFFFF F 
          ‚     FFFF   F 
          ‚     FFF FF 
          ‚    FFFFF 
       10 ˆ    FF F 
          ‚   FFF F 
          ‚   FFF 
          ‚  FFFF 
          ‚  FF 
        0 ˆ 
          Š--ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ-- 
             0          50          100         150         200 
 
                                    dbh 
 
NOTE: 319 obs hidden. 
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------ species=HW -------------------------- 
 
Plot of ht*dbh.  Symbol is value of species. 
 
  60 ˆ 
     ‚ 
     ‚ 
     ‚ 
     ‚ 
     ‚                         H HHHH HHHH HHH H H H   HH 
  50 ˆ                      HHHHHHHHHH H  H H     HHH 
     ‚                HHHHHHHHHHHHHHHHH   H  HHH            H     
H 
     ‚               H   HHHHHHHH  HHHH H H 
     ‚           H   HH HH H HH  HH H H H       H     H 
     ‚         HHH   H  HHH  HHHHH           H 
     ‚         H  H HH     HH     H  H HHH    HH HH    H 
  40 ˆ          HH H  HH  HHH  H     HHH H   H   H 
     ‚        H   H H HHHH  H H    H H HH HH  H         H 
     ‚     H HH H   HHHHH  H  H HHHHHHHHHHHHHH H   H H       H 
     ‚        HH H HHHH           HHH HH    H H             HH 
     ‚        H   H H H    H  H H     H     H     H 
h    ‚         HH HHHH HH H HHH  H     H     H      H 
t 30 ˆ      H  H HH H  H HH HHHH    HH   HH 
     ‚       HHHHHH  H HHH HHHHHHHH   HH H     H 
     ‚    HH   HHHH H H HHHHHHHHHHH   HH 
     ‚    H   HHH  H  HH   H HH H    HH 
     ‚    HH H H  H HHH  HHHHHHHH 
     ‚     HHHH       H H H 
  20 ˆ     H           H HHH H 
     ‚    HHHH HH HH H H H 
     ‚   HH H   H HHH     H 
     ‚   HHHHHH H HH                H 
     ‚    HHH HHHHHHHH 
     ‚   HH HHHHH HH 
  10 ˆ   HHHHHHHH 
     ‚   H HHHH H 
     ‚  HHHHH H 
     ‚ HHHHH 
     ‚ HHH 
     ‚ HH 
   0 ˆ 
     Š-ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ-------
--ˆ-- 
       2        17        32        47        62        77        
92 
 
                                    dbh 
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                     The REG Procedure 
                        Model: Full 
                     Dependent Variable: y 
 
          Number of Observations Read        1725 
          Number of Observations Used        1725 
 
                    Analysis of Variance 
 
                      Sum of         Mean 
 Source       DF      Squares       Square  F Value  Pr > F 
 
 Model         8    688.80495     86.10062  1274.68  <.0001 
 Error      1716    115.91051      0.06755 
 Corrected  
    Total   1724    804.71546 
 
Root MSE              0.25990    R-Square     0.8560 
Dependent Mean        3.09332    Adj R-Sq     0.8553 
Coeff Var             8.40191 
 
 
                 Parameter Estimates 
 
                Parameter Standard 
Variable  DF    Estimate   Error         t Value     Pr > 
|t| 
  
Intercept  1     0.52420   0.05782         9.07      <.0001 
x1         1    -0.37609   0.09275        -4.05      <.0001 
x2         1    -0.37207     0.08463      -4.40      <.0001 
x3         1     1.80625     0.05491      32.89      <.0001 
x4         1    -0.00239  0.00070334      -3.40      0.0007 
x5         1     0.29106     0.08800       3.31      0.0010 
x6         1     0.98797     0.08989      10.99      <.0001 
x7         1    -0.00524     0.00117      -4.46      <.0001 
x8         1    -0.02160     0.00158     -13.67      <.0001 
 



 169

                    The REG Procedure 
                      Model: Common 
                   Dependent Variable: y 
 
           Number of Observations Read        1725 
           Number of Observations Used        1725 
 
                   Analysis of Variance 
 
                     Sum of       Mean 
 Source       DF    Squares     Square    F Value  Pr > F 
 
 Model         2    606.66176  303.33088  2637.34  <.0001 
 Error      1722    198.05370    0.11501 
 Corrected  
     Total  1724    804.71546 
 
 
Root MSE              0.33914    R-Square     0.7539 
Dependent Mean        3.09332    Adj R-Sq     0.7536 
Coeff Var            10.96352 
 
 
                      Parameter Estimates 
 
                Parameter   Standard 
 Variable  DF   Estimate      Error    t Value    Pr > |t| 
 
 Intercept  1   0.45235    0.04517      10.01      <.0001 
 x3         1   2.05848    0.04409      46.69      <.0001 
 x4         1  -0.00825  0.00064234    -12.84      <.0001 
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Summary: 
 
Assumptions met? 
 
Full: 
Common: 
Intercept Only: 
 
 
R Square and SEE 
 
Full: 
Common: 
Intercept Only: 
 
Df, SSR, SSE: 
 
Model df 

model 
SSR df 

error 
SSE 

Full 
 

    

Common 
 

    

Int. Only  
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Full versus Common 
 
HO:  Equations are the same for all 
species 
H1:  Equations differ 
 
 
Partial F: 
 

( )
))(1(

)()(
fullmnSSE

rreducedSSregfullSSregFpartial
−−

−
=

 
 
 
 
 
 
 
 
 
Compare to: 
 
F distribution for a 1- α percentile with r and n-m-1 (full 

model) degrees of freedom.   

 
 
 
Decision: 
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If equations differ – could we use the 
same slope, just different intercepts? 
 
Full versus Intercepts only models 
 
HO:  Slopes are the same for all 
species  
H1:  Slopes differ 
 
Partial F: 
 
 
 
 
 
 
 
 
Compare to: 
 
 
 
 
 
 
Decision: 
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Modifications: 
 
More than 3 species: 
 
 
 
 
 
 
More than 1 continuous variable: 
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Experimental Design  

Sampling versus experiments 
 
• similar to sampling and inventory design in that 

information about forest variables is gathered and 

analyzed 

• experiments presuppose intervention through applying a 

treatment (an action or absence of an action) to a unit, 

called the experimental unit.  The experimental unit is an 

item on which the treatment is applied.   

• The goal is to obtain results that indicate cause and 

effect.    
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Definitions of terms and examples  
 
• For each experimental unit, measures of the variables of 

interest (i.e., response or dependent variables) are used 

to indicate treatment impacts.    

• Treatments are randomly assigned to the experimental 

units. 

• Replication is the observation of two or more 

experimental units under identical experimental 

conditions.   

• A factor is a grouping of related treatments.   
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Examples: 

1. 1,000 seedlings in a field. Half of the seedlings get a 

“tea bag” of nutrients, others do not, randomly assigned.   

Experimental unit: the seedling.   

Treatments are: no tea bag, and tea bag.   

Factor:  only one – fertilizer (none, tea bag) 

Replications:  500 seedlings get each treatment 

2. 300 plant pots in a greenhouse:  Each plant gets either 1) 

standard genetic stock; 2) genetic stock from another 

location; 3) improved genetic stock.   

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 
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3.  The number of tailed frogs in different forest types is of 

interest.  There are six areas.  Three are cut and the other 

three are not cut. 

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 

4. Two forest types are identified, Coastal western 

hemlock and interior Douglas fir.  For each, a number of 

samples are located, and the growth of each tree in each 

sample is measured. 

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 
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5.  The effect of animal browsing on herbaceous plants is 

of interest.  In each of two forest types, 10 areas are 

established at the beginning of the year.  Five out of the 

10 are fenced off, eliminating animal browsing.  The rest 

are marked but left open to animals.  The heights and 

coverages of plants are measured at the end of the year. 

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 

Randomization? 
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What is treatments are randomly assigned to experimental 

units? 

• Haphazard vs. random allocation 

• Practical problems and implications 

Other terms: 

• The null hypothesis is that there are no differences 

among the treatment means.  For more than one factor, 

there is more than one hypothesis 

• The sum of squared differences (termed, sum of squares) 

between the average for the response variable by 

treatment versus the average over all experimental units 

represents the variation attributed to a factor.    

• The degrees of freedom, associated with a factor, are the 

number of treatment levels within the factor minus one.    
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Example: 

Factor A, fertilizer:  none, medium, heavy (3 levels) 

Factor B, species:  spruce, pine (2 levels) 

Number of possible treatments: 6  e..g, spruce, none is one 

treatment. 

Experimental Unit:  0.001 ha plots 

Replicates planned:  2 per treatment (cost constraint).  How 

many experimental units do we need? 

Variable of interest:  Average 5-year height growth for trees in 

the plot 

Null hypotheses: 

There is no different between the 6 treatments.  This can be 

broken into: 

1) There is no interaction between species and fertilizer. 

2) There is no difference between species. 

3) There is no difference between fertilizers. 
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• Experimental error is the measure of variance due to 

chance causes, among experimental units that received 

the same treatment.    

• The degrees of freedom for the experimental error relate 

to the number of experimental units and the number of 

treatment levels.    

• The impacts of treatments on the response variables will 

be detectable only if the impacts are measurably larger 

than the variance due to chance causes.   

• To reduce the variability due to causes other than those 

manipulated by the experimenter, relatively homogenous 

experimental units are carefully selected.   
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• Random allocation of a treatment to an experimental unit 

helps insure that the measured results are due to the 

treatment, and not to another cause.    

Example:  if we have applied the no fertilizer treatment to 

experimental units on north facing sites, whereas moderate 

and heavy fertilizer treatments are applied only to south 

facing sites, we would not know if differences in average 

height growth were due to the application of fertilization, 

the orientation of the sites, or both.  The results would be 

confounded and very difficult to interpret.    
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Variations in experimental design 
 

Introduction of More Than One Factor:   

• Interested in the interaction among factors, and the effect 

of each factor.   

• A treatment represents a particular combination of levels 

from each of the factors.   

• When all factor levels of one factor are given for all 

levels of each of the other factors, this is a crossed 

experiment.  Example: two species and three fertilization 

levels = six treatments using a crossed experiment.     
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Fixed, Random, or Mixed Effects: 

• Fixed factors:  the experimenter would like to know the 

change that is due to the particular treatments applied; 

only interested in the treatment levels that are in the 

experiment (e.g., difference in growth between two 

particular genetic stocks) [fixed effects] 

• Random factors: the variance due to the factor is of 

interest, not particular levels (e.g., variance due to 

different genetic stocks—randomly select different stock 

to use as the treatment) [random effects] 

• Mixture of factor types: Commonly, experiments in 

forestry include a mixture of factors, some random and 

some fixed [mixed effect]. 
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Restricted Randomization Through Blocking:  Randomized 

Block (RCB),  Latin Square, and Incomplete Blocks 

Designs: 

• Randomize treatments with blocks of experimental units 

• Reduces the variance by taking away variance due to the 

item used in blocking (e.g., high, medium and low site 

productivity 

• Results in more homogeneous experimental units within 

each block. 
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Restricted Randomization Through Splitting Experimental 

Units: 

• Called “split plot” 

• An experimental unit is split.  Another factor is randomly 

applied to the split. 

Example:  The factor fertilizer is applied to 0.001 ha plots.  

Each of the 0.001 ha plot is then split into two, and two 

different species are planted in each.  Fertilizer is applied to 

the whole plot, and species is applied to the split plot.  

Species is therefore randomly assigned to the split plot, not 

to the whole experimental unit. 
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Nesting of Factors 

• Treatment levels for one factor may be particular to the 

level of another factor, resulting in nesting of treatments.    

Example, for the first level of fertilizer, we might use 

medium and heavy thinning, whereas, for the second level 

of fertilizer, we might use no thinning and light thinning.    
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Hierarchical Designs and Sub-Sampling:  

• Commonly in forestry experiments, the experimental 

unit represents a group of items that we measure.  E.g. 

several pots in a greenhouse, each with several plants 

germinating from seeds.    

• Treatments are randomly assigned to the larger unit (e.g, 

to each plot not to each seedling). The experimental unit 

is the larger sized unit.   

• May want variance due to the experimental unit (pots in 

the example) and to units within (plants in the example).  

These are 1) nested in the treatment; 2) random effects; 

and 3) hierarchical 

• A common variation on hierarchical designs is 

measuring a sample of items, instead of measuring all 

items in an experimental unit.     
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Introduction of Covariates   

 
• The initial conditions for an experiment may not be the 

same for all experimental units, even if blocking is used 

to group the units.    

• Site measures such as soil moisture and temperature, and 

starting conditions for individuals such as starting height, 

are then measured (called covariates) along with the 

response variable 

• These covariates are used to reduce the experimental 

error.   

• Covariates are usually interval or ratio scale 

(continuous).    
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Designs in use 

• The most simple design is one fixed-effects factor, with 

random allocation of treatments to each experimental 

unit, with no 1) blocking; 2) sub-sampling; 4) splits;  or 

5) covariates 

• Most designs use combinations of the different 

variations.  For example, one fixed-effects factor, one 

mixed-effects factor, blocked into three sites, with trees 

measured within plots within experimental units (sub-

sampling/hierarchical), and measures taken at the 

beginning of the experiment are used as covariates (e.g., 

initial heights of trees.   
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Why?   

• Want to look at interactions among factors and/or is 

cheaper to use more than one factor in one experiment 

than do two experiments. 

• Experiments and measurements are expensive – use 

sampling within experimental units to reduce costs 

• Finding homogeneous units is quite difficult: blocking is 

needed 

BUT can end up with problems: 
• some elements are not measured,  
• random allocation is not possible, or  
• measures are correlated in time and/or space.   

 
 
In this course, start with the simple designs and add 
complexity.   
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Main questions in experiments 

Do the treatments affect the variable of interest? 

For fixed effects: Is there a different between the treatment 

means of the variable of interest?  Which means differ?  

What are the means by treatment and confidence intervals 

on these means? 

For random effects: Do the treatments account for some of 

the variance of the variables of interest?  How much? 
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Completely Randomized Design (CRD) 

• Homogeneous experimental units are located 

• Treatments are randomly assigned to treatment units 

• No blocking is used 

• We measure a variable of interest for each 

experimental unit 

 

CRD:  One Factor Experiment, Fixed Effects  

REF: Ch. 16, 17, 18 of Neter et al. 

Main questions of interest 
 
Are the treatment means different? 

Which means are different? 

What are the estimated means and confidence intervals for 

these estimates? 
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Notation: 
 
Population:  ijjijy ετμ ++=    OR ijjijy εμ +=  

ijy  = response variable measured on experimental unit i 
and treatment j 
 
j=1 to J treatments 
 
μ = the grand or overall mean regardless of treatment 
 

jμ = the mean of all measures possible for treatment j 
 

jτ = the difference between the overall mean of all 
measures possible from all treatments and the mean of all 
possible measures for treatment j, called the treatment 
effect 
 

ijε = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment j that 
was applied to it 

jijij y με −=  
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For the experiment:   
ijjij eyy ++= •• τ̂    OR ijjij eyy += •  

 
••y = the grand or overall mean of all measures from the 

experiment regardless of treatment; under the assumptions 
for the error terms, this will be an unbiased estimate of μ  
 

jy• = the mean of all measures for treatment j; under the 
assumptions for the error terms, this will be an unbiased 
estimate of jμ  
 

jτ̂ = the difference between the mean of experiment 
measures for treatment j and the overall mean of measures 
from all treatments; under the error term assumptions, will 
be an unbiased estimate of jτ  
 

ije = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment j that 
was applied to it 

jijij yye •−=  
nj = the number of experimental units measured in 
treatment j 
 
nT = the number of experimental units measured over all 

treatments = ∑
=

J

j
jn

1
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Example:  Fertilization Trial 
 
A forester would like to test whether different site 
preparation methods result in difference in heights.  Fifteen 
areas each 0.02 ha in size are laid our over a fairly 
homogeneous area.  Five site preparation treatments are 
randomly applied to 25 plots.  One hundred trees are 
planted (same genetic stock and same age) in each area.  At 
the end of 5 years, the heights of seedlings in each plot 
were measured, and averaged for the plot.   
 
i = a particular 0.02 ha area in treatment j, from 1 to 5. 

Response variable ijy :  5-year height growth (one average 
for each experimental unit) 
 
Number of treatments:  J=5 site preparation methods 
 
nT  = the number of experimental units measured over all 

treatments = ∑
=

5

1j
jn =25 

 
n1 = n2 =n3 =n4 =n5 =5 experimental units measured each 
treatment  
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Schematic of Layout: 
3 4 4 5 1 
1 2 3 5 2 
2 1 2 4 2 
5 4 3 1 5 
4 3 1 5 3 

 
Data Organization and Preliminary Calculations 
 
For easy calculations by hand, the data could be organized 
in a spreadsheet as: 
 

Obs: 
Treatment, j=1 to J 

 

i=1 to nj 1 2 3 … J  
1 y11 y12 y13 … y1J  
2 y21 y22 y23 … y2J   
3 y31 y32 y33 … y3J   

… … … … … …  
n yn1 yn2 yn3 … ynJ   

Sum y.1 y.2 y.3 … y.J y.. 
Averages 

1•y  2•y  3•y   
Jy• ••y

 

 

    
1 11 T

J

i

n

i
ij

j

j
j

n

i
ijj n

yyyy
n
y

yyy
jj

••
••

= =
••

•
•

=
• ==== ∑ ∑∑

NOTE:  may not be the same number of observations 
for each treatment. 
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Example: 
 
J= 5 site preparation treatments randomly applied to n=25 
plots.   
 
Response Variable:  Plot average seedling height after 5 
years  
 
Plot Average Heights (m) 
     
  Treatments Overall 
Observation 1 2 3 4 5   

1 4.6 4.9 4.0 3.4 4.3  
2 4.3 4.3 3.7 4.0 3.7  
3 3.7 4.0 3.4 3.0 3.7  
4 4.0 4.6 3.7 3.7 3.0  
5 4.0 4.3 3.0 3.4 3.4   

SUMS 20.600 22.100 17.800 17.500 18.100 96.100 
Means 4.120 4.420 3.560 3.500 3.620 3.844 
nj 5 5 5 5 5 25 

 
Example Calculations: 
 

844.325/1.96)5.178.17...1.226.20(

12.45/)3.40.47.33.46.4(
5

5

1

5

1 1

5

1
1

==++==

=++++==

∑

∑∑

∑

=

= =
••

=
•

k
j

j

n

i
ij

i
ij

n

y
y

y
y

j
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We then calculate: 

1) Sum of squared differences between the observed values 

and the overall mean (SSy): 

( ) ∑∑∑
== =

•• −=−=
J

j
j

J

j

n

i
ij ndfyySSy

j

11 1

2 1  

 
Also called, sum of squares total (same as in regression)  

2) Sum of squared differences between the treatment 

means, and the grand mean, weighted by the number of 

experimental units in each treatment (SSTR) 

( ) ( ) 1
2

11 1

2 −=−=−= ∑∑∑
=

•••
= =

••• JdfyynyySS
J

j
jj

J

j

n

i
jTR

j

 

3) Sum of squared differences between the observed values 
for each experimental unit and the treatment means (SSE) 

( )∑∑
= =

• −=−=
J

j

n

i
Tjij

j

JndfyySSE
1 1

2  

SSESSSSy TR +=  
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Alternative formulae for the sums of squares that may 
be easier to calculate are: 
 

TR

T

J

j
jjTR

T

J

j

n

i
ij

SSSSySSE
n
yynSS

n
yySSy

j

−=

−=

−=

••

=
•

••

= =

∑

∑∑

     

     

2

1

2

2

1 1

2
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For the example, differences from treatment means (m): 
 
  Treatments Overall
Obs. 1 2 3 4 5   
1 0.480 0.480 0.440 -0.100 0.680  
2 0.180 -0.120 0.140 0.500 0.080  
3 -0.420 -0.420 -0.160 -0.500 0.080  
4 -0.120 0.180 0.140 0.200 -0.620  
5 -0.120 -0.120 -0.560 -0.100 -0.220   
SUMS 0.000 0.000 0.000 0.000 0.000 0.000
Sum of 
Squares 
Error 0.468 0.468 0.572 0.560 0.908 2.976
nj 5 5 5 5 5 25
s2

j 0.117 0.117 0.143 0.140 0.227   
 
Example Calculations: 
 

( )

468.0)1.40.4()1.40.4()1.47.3()1.43.4()1.46.4(

 1for 

22222

5

1

2
11

=−+−+−+−+−=

−= ∑
=

•
j

j yy  treatmentSSE

 
 

117.0
15

468.0
1

1 for  

1

1
2 =

−
=

−
=

n
treatmentSSEs  

 

( )

2.976    0.9080.5600.5720.4680.468  
5 for  SSE  ...2 for  SSE 1 for 

 
1 1

2

=++++=
+++=

−= ∑∑
= =

•

treatmenttreatmenttreatmentSSE

yySSE
J

j

n

i
jij

j
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Differences from grand mean (m) 
    
  Treatments Overall
Obs. 1 2 3 4 5   
1 0.756 1.056 0.156 -0.444 0.456  
2 0.456 0.456 -0.144 0.156 -0.144  
3 -0.144 0.156 -0.444 -0.844 -0.144  
4 0.156 0.756 -0.144 -0.144 -0.844  
5 0.156 0.456 -0.844 -0.444 -0.444   
SUMS 1.380 2.880 -1.420 -1.720 -1.120 0.000
Sum of 
Squares 
Total 0.849 2.127 0.975 1.152 1.159 6.262
nj 5 5 5 5 5 25
 
 

( )

6.262   1.1591.1520.97502.1270.849  
5 for SSy   ...2 for SSy  1 for 

 
1 1

2

=++++=
+++=

−= ∑ ∑
= =

••

treatmenttreatmenttreatmentSSy

yySSy
J

j

n

i
ij

j
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Difference between treatment means and grand mean (m) 
 
  Treatments Overall
  1 2 3 4 5   
Mean 4.120 4.420 3.560 3.500 3.620  
Difference 0.276 0.576 -0.284 -0.344 -0.224 0.000
Sum of 
Squares 
Treatment 0.076 0.332 0.081 0.118 0.050 3.286
nj 5 5 5 5 5 25
 
Example Calculations: 

( ) ( ) ( )

( ) ( ) ( )
286.3

)844.3620.3(5)844.3500.3(5)844.3560.3(5

)844.3420.4(5)844.3120.4(5

222

22

1

2

=
−×+−×+−×+

−×+−×=−= ∑
=

•••

J

j
jjTR yynSS
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Test for differences among treatment means 
 
The first main question is:  Are the treatment means 
different? 

    H0: μ1 = μ2 = … = μJ 
H1: not all the same 

OR:   
  H0: Jτττ === L21  
H1: not all equal to 0 

OR: 
 

H0: (φTR+σ2
ε) /σ2

ε  = 1 
H1: (φTR+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φTR is the effect of the fixed treatments (see page 234 for 

more details on what this is). 

 

If the treatment does not account for any of the variance in 

the response variable, then treatment effects are likely all = 

0, and all the treatment means are likely all the same. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
Treatment J-1 SSTR MSTR= 

SSTR/(J-1) 
F= 
MSTR/MSE

Prob F>  
F(J-1),( nT -J), 

(1- α) 
Error nT -J SSE MSE= 

SSE/(nT-J) 
  

Total nT -1 SSy    
 

MSE
MS

JnSSE
JSS

nSSE

JSSF TR

T

TR
J

j
j

TR =
−
−

=
−

−
=

∑
=

)/(
)1/(

)1(/

)1/(

1

 

 
Under H0, and the assumptions of analysis of variance, this 
follows an F-distribution.  If    

 

)1,,1( α−−−> JnJ T
FF  

 
We reject H0 and conclude that there is a difference 
between the treatment means.  
 
Notice that this is a one-sided test, using 1-α 
 
This is because we are testing if the ratio of variances is > 
1. 
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For example, if we have 4 treatments, and 12 experimental 
units, and we want α=0.05: 

If the calculated F is larger than 4.07, we reject H0:  The 

treatments means are likely different, unless a 5% error has 

occurred. 

OR:  We take our calculated F value from our experiment 

and plot it on this F curve.  Then, find the area to the right 

of this value (p-value).  We reject a hypothesis if the 

probability value (p-value) for the test is less than the 

specified significance level.    

0 2.4 4.8

F(3,8; 0.95)=4.07

Rejection Region
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For the example:  
  
If assumptions of ANOVA are met then interpret the F-
value.   
 
H0:  μ1= μ2 =μ3 =μ4 =μ5 

 
H1:   not all equal 
 
Analysis of Variance (ANOVA) Table: 
     
Source df SS MS F p-value
Treatment 5-1=4 3.286 0.821 5.51 0.004
Error 25-5=20 2.976 0.149   
Total 25-1=24 6.262       
 

If assumptions of ANOVA are met then interpret the F-
value.  NOTE:  Fcritical for alpha=0.05, df treatment=4 and 
df error=20 is 2.87.  
 

Since the p-value is very smaller (smaller than alpha=0.05), 

we reject H0 and conclude that there is a difference in the 

treatment means.  BUT this is only a good test if the 

assumptions of analysis of variance have been met.  Need 

to check these first (as with regression analysis). 
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Assumptions regarding the error term 

For the estimated means for this experiment to be unbiased 

estimates of the means in the population, and the MSE to 

be an unbiased estimate of the variance within each 

experimental unit, the following assumptions must be met: 

1. Observations are independent – not related in time nor 

in space [independent data] 

2. There is normal distribution of the y-values [or the 

error terms] around each treatment mean [normally 

distributed] 

3. The variances of the y’s around each treatment mean 

[or the error terms] are the same (homogeneous) for 

all treatment means [equal variance] 
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Similar to regression: 

• a normal probability plot for the error terms can 

be used to check the assumption of normality, 

and  

• a residual plot can be used to visually check the 

assumption of equal variance.   

OR, these can be tested using (1) normality tests (as with 

regression); (2) Bartlett’s test for equal variances (for more 

than one factor or for other designs with blocking, etc. this 

becomes difficult). 
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Transformations to meet assumptions 
 
Similar to regression: 

• logarithmic transformations can be used to equalize 
variances 

• arcsine transformation can be used to transform 
proportions into normally distributed variables 

• rank transformation can be used when data are not 
normally distributed and other transformations do not 
“work” [nonparametric analysis of variance using 
ranks] 

 
Unlike regression you must transform the y-variable  
 
Process: 

• do your analysis with the measured response variable 
• if assumptions of the error term are not met, transform 

the y-variable 
• do the analysis again and check the assumptions; if not 

me, try another transformation 
• may have to switch to another method:  generalized 

linear models, etc.
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Expected values:   
 

Under the assumptions of analysis of variance, MSE is an 

unbiased estimate of σ2
ε  and MSTR is an unbiased estimate 

of φTR+σ2
ε.  Therefore, this F-test will give the correct 

probabilities under the assumptions.   

 

This is the same as saying that the expected value of MSE 

is σ2
ε , and the expected value of   MSTR is φTR+σ2

ε.   

The F-test is then a measure of how much larger the value 

is when the treatment means are accounted for. 
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For the example, before interpreting the ANOVA table, we 
must check assumptions of ANOVA: 
 
Is there equal variance across treatments?  (estimated by 
MSE as 0.149 on our ANOVA table).  Using a residual plot 
and EXCEL: 
 

Residual Plot

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

        4   3  5                                1                  2
Pred. Values (Treat. Means in m)

R
es

id
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 (E

rr
or

 in
 m

)
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Are residuals normally distributed? Again using EXCEL: 
 

Residuals vs. normal z(0,1)

0.00

0.20

0.40

0.60

0.80

1.00

-2 -1 0 1 2

z-values

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Stand. Res
z(0,1)

 
 
Where standardized residuals are calculated by: 
 

MSE
e

e i
i

0
)edstandardiz(

−
=  

 
Compare these to z-values for a standard normal distribution with a mean of 
zero and a variance of 1 (z(0,1))  
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Differences among particular treatment means 
 
If there are differences among means detected, which 
means differ? 
 
Can use: 

• Orthogonal contrasts – see textbook 
• Multiple comparisons 

 
Multiple comparisons (or contrasts): 
 

• Many different types, e.g. 
o T-test for every pair of means; must adjust the 

alpha level used by dividing by the number of 
pairs. 

o Scheffe’s multiple comparisons 
o Bonferonni’s adjustments 

 
• Try to “preserve” the alpha level used to test all the 

means together (the F-test) 
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For the example, given that there is a difference among 
treatment means, which pairs of means differ? 
 
t-test for pairs of means: 

• determine the number of pairs possible   
 

means of  pairs   possible  10
!2!3

!5
2
5

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Comparing Treatments 2 (largest estimated mean) versus 4 
(smallest estimated mean):  

686.3

5
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5
1149.0
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Under H0:  This follows: 
 

Jn T
t −− ,2/1 α  
 
Using alpha=0.005 (0.05/10=0.005), for 5 treatments and 
25 observations, the t-value is 3.153.  Result?  
 
Another way to assess this is to obtain the p-value for 
t=3.686, with 20 degrees of freedom (25-5).   
 
This is 0.001464.  Since this is less than 0.005, we reject H0 
and conclude that these two means differ.    
 
Can test 

• the other pairs of means.   
• could test for any size of difference between two 

means, for example: 
 

⎟⎟
⎠

⎞
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Scheffe’s multiple comparison test – conservative 
 
Can test 

• any pair of means 
• or other comparisons.   

 
Testing whether the means for Treatments 2 and 4 differ: 
 

4242

54321

:H0                        0
2
1

2
1:H0

00
2
10

2
10:H0

μμμμ

μμμμμ

==−

=+−++

 

 
 
The test statistic is: 
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The sum of the cj values must add up to zero.   
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For this example: 
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Under H0, this follows: 
 

JnJ T
FJ −−−− ,1,1)1( α  

 
For J=5, alpha=0.05, and nT=25 observations: 
 

38.387.2)15( =−   
 
Calculated S > 3.38, so we reject H0, the treatment means 
differ.  (NOTE:  The means would have to be at least 0.826 
apart to reject) 



 219

Scheffe’s can be used for many comparisons.   
 
For example: Test if treatments 3, 4 and 5 differ from 
treatments 1 and 2: 
 

                0
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NOTE:  c’s add up to 0. 
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Result:  Greater than the critical value of 3.38;  
do reject H0. 
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Confidence limits for treatment means 
 
Under the assumptions, confidence intervals for each 
treatment mean can be obtained by: 
 

j
Jnj n

MSEty
T 21),( α−−• ±  

Since MSE estimates the variance that is assumed to be 

equal, and the observations are normally distribution and 

independent. 

For the example:  

09.2

173.0
5
149.0equalallareassametheAll

6.35.36.34.41.4
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For treatment 1: 
 

)46.4,74.3(
36.01.4173.009.21.4 ±×±

 



 221

Using SAS: 
 
For entry into statistical programs like SAS, the data should 
be organized as: 
 

Treatment Obs: Response
j=1 to J i=1 to nj  
1 1 y11 
1 2 y21 
1 3 y31 
… … … 
1 n1 y(n1) 1 
2 1 y12 
2 2 y22 
2 3 y32 
… … … 
2 n2 Y(n2) 2 
… … … 
J 1 y1J 
J 2 y2J 
J 3 y3J 
… … … 
J n J y(nJ) 3 
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For the example, we can put the data into an EXCEL 
file: 
 
Treatment Observation AveHt

1 1 4.6
1 2 4.3
1 3 3.7
1 4 4.0
1 5 4.0
2 1 4.9
2 2 4.3
2 3 4.0
2 4 4.6
2 5 4.3
3 1 4.0
3 2 3.7
3 3 3.4
3 4 3.7
3 5 3.0
4 1 3.4
4 2 4.0
4 3 3.0
4 4 3.7
4 5 3.4
5 1 4.3
5 2 3.7
5 3 3.7
5 4 3.0
5 5 3.4
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*  CRD.sas  example for 430 and 533 classes 
; 
PROC IMPORT OUT= WORK.htdata  
    DATAFILE= "E:\frst430\lemay\examples\ 
CRD_one_factor_no_sampling.XLS"  
    DBMS=EXCEL REPLACE; 
     SHEET="rawdata$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 pageno=1; 
run; 
 
PROC GLM data=htdata; 
CLASS Treatment; 
MODEL aveht=treatment; 
MEANS treatment/scheffe hovtest=bartlett; 
estimate '1 VS others' treatment 4 -1 -1 -1 
-1/divisor=4; 
OUTPUT OUT=GLMOUT PREDICTED=PREDICT 
RESIDUAL=RESID; 
RUN; 
 
PROC PLOT DATA=GLMOUT; 
PLOT RESID*PREDICT='*'; 
RUN; 
 
PROC UNIVARIATE DATA=GLMOUT PLOT NORMAL; 
VAR RESID; 
RUN; 
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                  The GLM Procedure 
 
             Class Level Information 
 
           Class          Levels    Values 
           Treatment           5    1 2 3 4 5 
 
         Number of Observations Read          25 
         Number of Observations Used          25 
 
                   The GLM Procedure 
 
Dependent Variable: AveHt   AveHt 
 
                    Sum of     Mean 
Source      DF      Squares    Square       F Value 
 
Model        4     3.28560000  0.82140000    5.52 
Error       20     2.97600000  0.14880000 
Corrected  
    Total   24     6.26160000 
 
            Source                 Pr > F 
             Model                  0.0037 
             Error 
             Corrected Total 
 
R-Square   Coeff Var   Root MSE    AveHt Mean 
 
0.524722   10.03502    0.385746    3.844000 
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Source     DF    Type I SS   Mean         F Value 
                             Square   
Treatment   4    3.28560000  0.82140000  5.52 
 
            Source                 Pr > F 
            Treatment              0.0037 
 
 
Source     DF   Type III SS   Mean Square   F Value 
 
Treatment   4    3.28560000   0.82140000      5.52 
 
               Source                 Pr > F 
               Treatment              0.0037 
 
 
              The GLM Procedure 
 
Bartlett's Test for Homogeneity of AveHt Variance 
 
Source      DF    Chi-Square    Pr > ChiSq 
 
Treatment    4        0.5790        0.9654 
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              The GLM Procedure 
 
             Scheffe's Test for AveHt 
 
NOTE: This test controls the Type I experimentwise 
error rate. 
 
 
Alpha                              0.05 
Error Degrees of Freedom             20 
Error Mean Square                0.1488 
Critical Value of F             2.86608 
Minimum Significant Difference    0.826 
 
Means with the same letter are not significantly 
different. 
 
 
Scheffe  
Grouping          Mean       N    Treatment 
 
   A             4.4200      5       2 
   A 
 B    A          4.1200      5       1 
 B    A 
 B    A          3.6200      5       5 
   B 
   B             3.5600      5       3 
   B 
   B             3.5000      5       4 
 
                The GLM Procedure 
 
Dependent Variable: AveHt   AveHt 
 
                         Standard 
Parameter     Estimate   Error      t Value  Pr > 
|t| 
 
1 VS others  0.34500000 0.19287302   1.79    0.0888 
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             Plot of RESID*PREDICT.  Symbol used is '*'. 
 
RESID ‚ 
      ‚ 
  0.8 ˆ 
      ‚ 
      ‚            * 
      ‚ 
  0.6 ˆ 
      ‚ 
      ‚      *                              *              * 
      ‚         * 
  0.4 ˆ 
      ‚ 
      ‚ 
      ‚ 
  0.2 ˆ      *                              *              * 
      ‚         * 
      ‚            * 
      ‚ 
  0.0 ˆ 
      ‚ 
      ‚      *                              *              * 
      ‚         * 
 -0.2 ˆ            * 
      ‚ 
      ‚ 
      ‚ 
 -0.4 ˆ                                     *              * 
      ‚ 
      ‚      * 
      ‚         * 
 -0.6 ˆ            * 
      ‚ 
      ‚ 
      ‚ 
 -0.8 ˆ 
      ‚ 
      Š-ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       3.4       3.6       3.8       4.0       4.2       4.4       4.6 
 
                                   PREDICT 

 
NOTE: 5 obs hidden. 
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                  The SAS System                            
 
            The UNIVARIATE Procedure 
               Variable:  RESID 
 
                    Moments 
 
N                     25  Sum Weights            25 
Mean                   0  Sum Observations        0 
Std Deviation 0.35213634  Variance            0.124 
Skewness       0.0634775  Kurtosis       -0.6323427 
Uncorrected SS     2.976  Corrected SS        2.976 
Coeff Variation        .  Std Error Mean 0.07042727 
 
 
            Basic Statistical Measures 
 
    Location                    Variability 
 
Mean      0.00000     Std Deviation         0.35214 
Median   -0.10000     Variance              0.12400 
Mode     -0.12000     Range                 1.30000 
Interquartile Range      0.34000 
 
 
               Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M      -0.5    Pr >= |M|   1.0000 
Signed Rank    S         2    Pr >= |S|   0.9584 
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           Tests for Normality 
 
Test               --Statistic---   --p Value---- 
 
Shapiro-Wilk       W     0.962795  Pr < W  0.4729 
Kolmogorov-Smirnov D     0.131787  Pr > D >0.1500 
Cramer-von Mises   W-Sq  0.059919  Pr > W-Sq>0.2500 
Anderson-Darling   A-Sq  0.370893  Pr > A-Sq  
>0.2500 
 
 
             The UNIVARIATE Procedure 
             Variable:  RESID 
 
           Quantiles (Definition 5) 
 
            Quantile      Estimate 
            100% Max          0.68 
             99%               0.68 
             95%               0.50 
             90%               0.48 
             75% Q3            0.18 
             50% Median       -0.10 
             25% Q1           -0.16 
             10%              -0.50 
              5%               -0.56 
              1%               -0.62 
              0% Min           -0.62 
 
             Extreme Observations 
 
      ----Lowest----        ----Highest--- 
 
   Value      Obs        Value      Obs 
   -0.62       24         0.44       11 
   -0.56       15         0.48        1 
   -0.50       18         0.48        6 
   -0.42        8         0.50       17 
   -0.42        3         0.68       21 
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Stem Leaf                     #             Boxplot 
 6 8                        1                | 
 4 4880                     4                | 
 2 0                        1                | 
 0 884488                   6             +--+--+ 
-0 6222200                  7             *-----* 
-2 2                        1                | 
-4 6022                     4                | 
-6 2                        1                | 
                ----+----+----+----+ 
            Multiply Stem.Leaf by 10**-1 
 
 
             The UNIVARIATE Procedure 
                Variable:  RESID 
 
            Normal Probability Plot 
  0.7+                                         ++*++ 
     |                                  * *+++*++ 
     |                               ++*+++ 
     |                         +***+** 
     |                   **+*+* 
     |              +++*++ 
     |        ++*+*+* 
 -0.7+   ++*++ 
     +----+----+----+----+----+----+----+----+----+----+ 
     -2        -1         0        +1        +2 
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Power of the Test: 

A Type I error rate (α, significance level), the chance of 

rejecting a null hypothesis when it is true (you reject when 

the means are actually the same) must be selected.  Given: 

• a particular number of experimental units 

• sizes of the differences between true population 

means, and  

• variation within the experimental units 

this will set the Type II error rate (β), the chance of 

accepting a null hypothesis when it is false (you fail to 

reject when the means are actually different) 

The power of the test is 1- β, the probability you will 

reject the null hypothesis and conclude that there is a 

difference in means, when there IS a difference 

between population means. 
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If the difference between population means (real treatment 

means) is very large, than a small number of experimental 

units will result in rejection of the null hypothesis. 

 

If the number of experimental units is very large, then even 

a small difference between population means will be 

detected. 

 

If the variation within experimental units is very small, then 

the difference will be detected, even with a small difference 

between population means, and even with only a few 

treatment units. 
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Statistical Significance is not the same as differences of 

Practical importance!  UNLESS you: 

• have some idea of within experimental unit variation 

from a previous study with the same conditions (e.g., 

MSE from a previous study) 

• know the size of the difference that you wish to detect 

• have selected the α level 

Then: 

You can calculate the number of experimental units per 

treatment that will result in rejection of H0: when the 

differences are that large or greater. 

Alternatively: 

You can calculate the power of the test for an experiment 

you have already completed.   
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Power of the test for the example:  
 
Have: 
 
J=5 treatments, and df treatment is 5-1=4 
n=5 observations in each treatment, and df error  is 25-
5=20 
MSTR=0.821 
MSE=0.149  as an estimate of  2

εσ  
Fcritical is F(0.95,4,20)=2.87 
 
Also, E[MSTR ]=φTR+

2
εσ     and E[MSTR ]= 

2
εσ . 
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Power is then Prob(F>Fcritical | Noncentral)  where 
Noncentral is the noncentrality parameter, and for when H1 
is true. 
 

04.18
149.0

538.05ˆ

2
1

2

=
×

==

==
∑

=

noncentral

n
noncentral

J

j
j

δ

σ

τ
δ

ε
 

 
Then use SAS: 
 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df Error, 
Noncentral); 
Power=1-probf(2.87,4,20,18.04); 
Run; 
 
The temporary file will have the result in it, which is 0.87.  
Often try to get power between 0.80 and 0.95. 
 

 236

Can do power analysis for a planned experiment using: 

1. A estimate of the of the variance of the error.  This 

could be from a previous, similar experiment. 

2. The differences between treatment means that are the 

minimum required to be of practical importance.   

Can then test for how many observations are needed so that 

statistical differences also mean differences of practical 

importance  [See SAS code called  

One_way_anova_power_using_min_differences.sas] 
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Methods based on maximum likelihood rather than least 

squares 

ML methods can be used when: 

• Treatments are random rather than fixed (more on this 

later) 

• Transformations do not result in assumptions being 

met 

• Your dependent variable is a count, or it is a binary 

variable (e.g., yes or no; dead or alive; present or 

absent) 

[See text for a little on this, also FRST 530] 
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CRD:  Two Factor Factorial Experiment, Fixed Effects 

REF: Neter et al., Ch 19 and 20 

Introduction  

• Treatments can be combinations of more than one factor 

• For 2-factor experiment, have several levels of Factor A 

and of Factor B 

• All levels of Factor A occur for Factor B and vice versa 

(called a Factorial Experiment, or crossed treatments) 

Example:   

• Factor A, (three levels of fertilization: A1, A2, and A3) 

• Factor B (four species: B1, B2, B3 and B4) 

• Crossed: 12 treatments 

• Four replications per treatment for a total of 48 

experimental units 

• Measured Responses:  height growth in mm 
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Schematic and Measured Response for the Example: 

A1B1=10 A3B2=25 A3B4=35 A2B2=23 A1B2=14 A2B3=24

A1B4=24 A2B2=22 A1B2=15 A2B4=28 A3B3=32 A3B2=25

A3B2=27 A1B4=23 A3B3=29 A3B2=26 A1B3=17 A1B1=11

A3B4=35 A1B2=13 A1B4=22 A1B1=11 A2B3=24 A3B3=30

A1B3=19 A2B1=18 A2B4=30 A3B3=31 A2B3=23 A1B4=22

A3B1=22 A2B4=29 A3B1=23 A2B1=18 A1B2=15 A3B1=23

A2B2=25 A3B4=37 A1B1=9 A3B1=24 A3B4=36 A2B4=28

A1B3=17 A2B1=18 A2B2=20 A2B1=18 A2B3=26 A1B3=18

 

A1B1=10 indicates that the response variable was 10 for 

this experimental unit that received Factor A, level 1 and 

Factor B, level 1.  Treatments randomly assigned to the 48 

experimental units. 
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Organization of data for analysis using a statistics 
package: 

A B result
1 1 10
1 1 11
1 1 9
1 1 11
1 2 15
1 2 15
1 2 13
1 2 14
1 3 17
1 3 18
1 3 17
1 3 19
1 4 22
1 4 23
1 4 24
1 4 22
2 1 18
2 1 18
2 1 18
2 1 18
2 2 20

. . .
3 3 32
3 4 35
3 4 36
3 4 37
3 4 35
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Main questions 

1. Is there an interaction between Factor A and Factor B 

(fertilizer and species in the example)?  Or do the 

means by Factor A remain the same regardless of 

Factor B and vice versa? 

2. If there is no interaction, is there a difference  

a. Between Factor A means? 

b. Between Factor B means? 

3. If there are differences:  

a. If there is an interactions, which treatment means 

differ? 

b. If there is no interaction, then which  levels of 

Factor A means differ?  Factor B means? 
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Notation, Assumptions, and Transformations 
 
Models  
 

Population:  ijkjkABBkjAijky ετττμ ++++=     

ijky  = response variable measured on experimental unit i 
and factor A level j, factor B level k 
 
j=1 to J levels for Factor A; k=1 to K levels for Factor B 
 
μ = the grand or overall mean regardless of treatment 
 

Ajτ = the treatment effect for Factor A, level j 
 

Bkτ = the treatment effect for Factor B, level k 
 

ABjkτ = the interaction for Factor A, level j and Factor B, 
level k 
 

ijkε = the difference between a particular measure for an 
experimental unit i, and the mean for a treatment: 

)( ijABBkjAijkijk y τττμε +++−=  
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For the experiment:   
ijkjkABBkjAijk eyy ++++= ••• τττ ˆˆˆ  

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions 
for the error terms, this will be an unbiased estimate of μ  

jky• = the mean of all measures from the experiment for a 
particular treatment jk  

•• jy = the mean of all measures from the experiment for a 
particular level j of Factor A (includes all data for all levels 
of Factor B) 

ky •• = the mean of all measures from the experiment for a 
particular level k of Factor B (includes all data for all levels 
of Factor A) 
 

ABjkBkAj τττ ˆ,ˆ,ˆ = under the error term assumptions, will be 
unbiased estimates of corresponding treatment effects for 
the population 
 

ijke = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment jk that 
was applied to it 

jkijkijk yye •−=  
njk = the number of experimental units measured in 
treatment jk 
nT = the number of experimental units measured over all 

treatments = ∑∑
− =

K

k

J

j
jkn

1 1
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Means for the example: 

Factor A:  16 observations per level 

A1=16.25, A2=23.38, A3=28.75 

 

Factor B:  12 observations per level 

B1=17.08, B2=20.83, B3=24.17, B4=29.08   

 

Treatments (A X B):  4 observations per treatment 
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Sums of Squares:    

SSESSSSy TR += as with CRD: One Factor.  BUT 

TRSS is now divided into: 

SSABSSBSSASSTR                                    ++=  

SSy:  The sum of squared differences between the 

observations and the grand mean: 

( ) 1 
1 1 1

2 −=−= ∑∑∑
= = =

••• T

K

k

J

j

n

i
ijk ndfyySSy

jk

 

SSA:  Sum of squared differences between the level means 

for factor A and the grand mean, weighted by the number 

of experimental units for each treatment: 

( ) 1
1 1

2 −=−= ∑∑
= =

••••• JdfyynSSA
K

k

J

j
jjk  
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SSB:  Sum of squared differences between the level means 

for factor B and the grand mean, weighted by the number 

of experimental units for each treatment: 

( ) 1
2

1 1
−=−= ∑∑

= =
••••• KdfyynSSB

K

k

J

j
kjk  

SSAB:  Sum of squared differences between treatment 

means for jk and the grand mean, minus the factor level 

differences, all weighted by the number of experimental 

units for each treatment: 

∑ ∑
= =

•••••••••••••• −−−−−=
K

k

J

j
jkjkjk yyyyyyn

SSAB

1 1

2))()()((

Since some of the estimated grand means cancel out we 

obtain: 

  )(
1 1

2∑ ∑
= =

•••••••• +−−=
K

k

J

j
jkjkjk yyyynSSAB  
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SSE: Sum of squared differences between the observed 

values for each experimental unit and the treatment means: 

( )∑∑∑
= = =

• −=−=
K

k

J

j
T

n

i
jkijk JKndfyySSE

jk

1 1 1

2 
 

 

Alternative computational formulae: 

TRTR

T

K

k

J

j
kjk

T

K

k

J

j
jkjkTR

T

K

k

J

j
jjk

T

K

k

J

j

n

i
ijk

SSSSySSESSBSSASSSSAB
n

yynSSB
n

yynSS

n
yynSSA

n
yySSy

jk

−=−−=

−=−=

−=−=

•••

= =
••

•••

= =
•

•••

= =
••

•••

= = =

∑ ∑∑ ∑

∑ ∑∑ ∑ ∑
2

1 1

2
2

1 1

2

2

1 1

2
2

1 1 1

2

     

      

 

[See Excel Spreadsheet for the Example]
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Assumptions and Transformations: 

Assumptions regarding the error term 

• Must meet assumptions to obtain unbiased estimates of 

population means, and an unbiased estimate of the 

variance of the error term (same as CRD: One Factor) 

o independent observations (not time or space related) 

o normality of the errors,  

o equal variance for each treatment.   

• Use residual plot and a plot of the standardized errors 

against the expected errors for a normal distribution to 

check these assumptions.  

Transformations: 
 
As with CRD: One Factor, you must transform the y-
variable  
 
Process: 

• do your analysis with the measured response variable 
• if assumptions of the error term are not met, transform 

the y-variable 
• do the analysis again and check the assumptions; if not 

me, try another transformation 
• may have to switch to another method:  generalized 

linear models, etc. 
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Test for Interactions and Main Effects 

 
The first main question is:  Is there an interaction between 

the two factors?   

       H0: No interaction 
H1: Interaction 

OR:   
 

H0: (φAB+σ2
ε) /σ2

ε  = 1 
H1: (φAB+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φAB is the interaction effect of the fixed treatments. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
 A J-1 SSA MSA= 

SSA/(J-1) 
F= 
MSA/MSE 

Prob F>  
F(J-1),(dfE), 1- α  

B K-1 SSB MSB= 
SSB/(K-1)

F= 
MSB/MSE 

Prob F>  
F(K-1),(dfE),1- α 

A X B (J-1)(K-1) SSAB MSAB= 
SSAB/ 
(J-1)(K-1)

F= 
MSAB/MSE

Prob F>  
F dfAB,dfE,,1- α 

Error nT -JK SSE MSE= 
SSE/(nT -J)

  

Total nT -1 SSy    
 

 

Source df MS  E[MS] 
A J-1 MSA 

Aφσ ε +
2

 

B K-1 MSB 
Bφσ ε +

2

 

A X B (J-1)(K-1) MSB 
ABφσ ε +

2

 

Error nT -JK MSE 2

εσ  

Total nT -1   
 
See Neter et al., page 826, Table 19.8 for details on expected mean squares; 
φ  is used here to represent fixed effects. 
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For the interactions: 
 

MSE
MSAB

JKnSSE
KJSSABF

T

=
−

−−
=

)/(
)1)(1/(

 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1)(K-1), and df2 is from the denominator 

(nT-JK) 

• If the F calculated is greater than the tabular F, or if the 

p-value for F calculated is less than α , reject H0. 

o The means of Factor A are influenced by the levels 

of Factor B and the two factors cannot be 

interpreted separately. 

o Graph the means of all treatments 

o Conduct multiple comparisons all treatments (rather 

then on means of each Factor, separately 

o Not as much power (reject H0 when it is false), if 

this occurs. 
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If there are no interactions between the factors, we can 

look at each factor separately – fewer means, less 

complicated. 

Factor A: 

       H0: μ1 = μ2 = … = μJ 
 

OR:   
 

H0: (φA+σ2
ε))/σ2

ε  = 1 
H1: (φA+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φA is fixed effect for Factor A. 
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From the ANOVA table: 
 

MSE
MSA

JKnSSE
JSSAF

T

=
−
−

=
)/(

)1/(
 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1) and df2 is from the denominator (nT-JK) 

• If the F calculated is greater than the tabular F, or if the 

p-value for F calculated is less than α , reject H0. 

o The means of Factor A in the population are likely 

not all the same 

o Graph the means of Factor A levels 

o Conduct multiple comparisons between means for 

the J levels of Factor A, separately 

 

The analysis and conclusions would follow the same 

pattern for Factor B. 
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Analysis of Variance Table Results for the Example 

Source Degrees 

of 

Freedom

Sum  

of 

Squares 

Mean 

Squares

F p 

A 2 1258.17 629.08 514.70 <0.0001

B 3 934.75 311.58 254.93 <0.0001

A X B 6 17.00 2.836 2.32 0.0539

Error 36 44.00 1.22

Total 47 2253.92

 

If assumptions met, (residuals are independent, are normally 

distributed, and have equal variances among treatments), we can 

interpret the results.  
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Interpretation using α =0.05: 

• No significant interaction (p=0.0539); we can examine 

species and fertilizer effects separately.   

• Are significant differences between the three fertilizer 

levels of Factor A (p<0.0001), and between the four 

species of Factor B (p<0.0001).   

• The mean values based on these data are:   

A1=16.25, A2=23.38, A3=28.75 

B1=17.08, B2=20.83, B3=24.17, B4=29.08   

Did not have to calculate these for each of the 12 

treatments since there is no interaction. 
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Further analyses, for each Factor separately:   

• Scheffé’s test for multiple comparisons, could then be 

used to compare and contrast Factor level means.  

o The number of observations in each factor level are:  

16 for Factor A, and 12 for Factor B 

o Use the MSE for both Factor A and for Factor B 

(denominator of their F-tests) 

• t-tests for each pair of means could be used instead. 

o Again, use MSE, and 16 observations for Factor A 

versus 12 for Factor B 

o Must split alpha level used in the F-tests by the 

number of pairs 
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Factor A: t-tests for pairs of means 
 
Determine the number of pairs possible   
 

means of  pairs   possible  3
!2!1

!3
2
3

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Use a significance level of 0.05/3 pairs=0.017 for each t-
test 
 
Comparing Factor Levels 1 and 2: A1 vs. A2 
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Critical t value from a probability table for:  
 
• df(error) = 36 based on ( nT – JK), and 0.017 significance 

level (For α =0.05 use 0.05/3 pairs for each t-test), 2-
sided test 

• Using an EXCEL function:  =tinv(0.017,36), returns the 
value of 2.50 (this assumes a 2-sided test).  

• Since the absolute value of the calculated t is greater than 
2.50 we reject H0. 

OR  
• enter your t-value, df (error), and 2 (for 2-sided) into the 

EXCEL function  =tdist(18.258,36,2) 
• Returns a p-value of <0.000. (NOTE that you must enter 

the positive value, and the p-value is for the two “ends” 
(area greater than 18.258 plus area less than -18.258) 

• Since p<0.017, we reject H0 
 
The mean of treatment A1 differs from the mean of A2. 
 

For Factor B 

• Recalculate the number of possible pairs for 4 factor 

levels (will be 6 pairs; divide alpha by this for each test ) 

• The observations per factor level is 12, rather than 16 

• Df(error) and MSE are the same as for Factor A. 
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A Different Interpretation using α =0.10: 

• There is a significant interaction (p=0.0539) using α 

=0.10; cannot interpret main effects (A and B) 

separately. 

• The mean values based on these data are:  [Excel] 

A1B1=10.25  A1B2=14.25  A1B3= 17.75  A1B4= 22.75    
A2B1=18.00  A2B2=22.50  A2B3= 24.25  A2B4=28.75     
A3B1= 23.00 A3B2=25.75  A3B3=30.50   A3B4=35.75   

 

12 mean values as there is a significant interaction 
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Further analyses: 

• Scheffé’s test for multiple comparisons (or others), could 

then be used to compare and contrast treatment means 

(pairs or other groupings of means).  The number of 

observations in each treatment are 4 [lower power than if 

there was no interaction], and use the MSE. 

 

• Using t-tests for pairs of means, the number of 

observations are 4 for each jk treatment, use the MSE, 

and recalculate the number of possible pairs out of 12 

treatments (will be 66 pairs!  Retaining α =0.10, we 

would use 0.10/66 = 0.0015 for each t-test )
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Confidence limits for factor level and treatment means 

 
Treatment means: 

jk
JKnjk n

MSEty 21),( α−−• ±
 

Factor A means: 

∑
=

−−•• ± K

k
jk

JKnj

n

MSEty

1

21),( α
 

Factor B means: 

∑
=

−−•• ± J

j
jk

JKnk

n

MSEty

1

21),( α
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SAS code and Results: 

PROC IMPORT OUT= WORK.twofactor  
     DATAFILE=“E:\frst430\lemay\examples\encyl_examples.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="crd$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
options ls=70 ps=50 pageno=1; 
 
data twofactor; 
set twofactor; 
*set up a label for each treatment, with factor a and factor b, for 
example, treatment of 11 is factor A of 1,and factor b of 1; 
treatment=(a*10)+b; 
run; 
 
proc print data=twofactor; 
run; 
 
proc shewhart data=twofactor;  
      boxchart result*treatment;  
run; 
 
proc sort data=twofactor; 
by a b; 
run; 
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Proc means data=twofactor; 
var result; 
by a b; 
run; 
 
PROC GLM  data=twofactor; 
class a b; 
model result=a b a*b; 
output out=glmout r=resid p=predict; 
lsmeans a b a*b/pdiff tdiff; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
PROC univariate data=glmout plot normal; 
Var resid; 
Run; 
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The SAS System                           1 

 
            Obs  A    B    result    treatment 
            1    1    1      10          11 
            2    1    1      11          11 
            3    1    1       9          11 
            4    1    1      11          11 
            5    1    2      15          12 
 

. . . 
 
--------------------- A=1 B=1 ----------------------------- 
                         The MEANS Procedure 
 
                   Analysis Variable : result result 
 
N        Mean         Std Dev     Minimum         Maximum 

ャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャ 
4      10.2500000    0.9574271    9.0000000      11.0000000 

  ャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャ 
 
---------------------------- A=1 B=2 ---------------------- 
                   Analysis Variable : result result 
N        Mean         Std Dev     Minimum         Maximum 

  ャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャ 
4      14.2500000    0.9574271   13.0000000      15.0000000 

  ャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャャ 
 

. . . 
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                 The GLM Procedure 
 
              Class Level Information 
                Class         Levels    Values 
                 A                  3    1 2 3 
                 B                  4    1 2 3 4 
 
            Number of Observations Read          48 
            Number of Observations Used          48 
 
             The GLM Procedure 
 
Dependent Variable: result   result 
 
                                          Sum of 
Source      DF        Squares    Mean Square   F Value 
Model       11    2209.916667     200.901515    164.37 
Error       36      44.000000       1.222222 
Corrected  

Total   47    2253.916667 
 
                    Source                 Pr > F 
                    Model                  <.0001 
                    Error 
                    Corrected Total 
 
R-Square     Coeff Var      Root MSE    result Mean 
0.980478      4.850640      1.105542       22.79167 
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Source   DF      Type I SS    Mean Square   F Value 
A         2    1258.166667     629.083333    514.70 
B         3     934.750000     311.583333    254.93 
A*B       6      17.000000       2.833333      2.32 
 
                    Source                 Pr > F 
                    A                      <.0001 
                    B                      <.0001 
                    A*B                    0.0539 
 
 
Source      DF    Type III SS    Mean Square   F Value 
A            2    1258.166667     629.083333    514.70 
B            3     934.750000     311.583333    254.93 
A*B          6      17.000000       2.833333      2.32 
 
Dependent Variable: result   result 
 
                    Source                 Pr > F 
                    A                      <.0001 
                    B                      <.0001 
                    A*B                    0.0539 
        
                     The GLM Procedure 
                    Least Squares Means 
 
                          result      LSMEAN 
               A          LSMEAN      Number 
               1      16.2500000           1 
               2      23.3750000           2 
               3      28.7500000           3 
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                   Least Squares Means for Effect A 
               t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                      Dependent Variable: result 
 
            i/j              1                2             3 
 
               1                       -18.2287      -31.9801 
                                          <.0001        <.0001 
               2      18.22866                      -13.7514 
                        <.0001                          <.0001 
               3      31.98011    13.75145 
                        <.0001       <.0001 
 
 
NOTE: To ensure overall protection level, only probabilities 
      associated with pre-planned comparisons should be used. 
 
        
                     result      LSMEAN 
                    B          LSMEAN      Number 
                    1      17.0833333           1 
                    2      20.8333333           2 
                    3      24.1666667           3 
                    4      29.0833333           4 
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                   Least Squares Means for Effect B 
               t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                      Dependent Variable: result 
 
     i/j              1                  2                 3                 4 
 
        1                 -8.30868      -15.6942      -26.5878 
                           <.0001         <.0001        <.0001 
        2      8.308676                 -7.38549      -18.2791 
                 <.0001                  <.0001         <.0001 
        3      15.69417      7.385489                      -10.8936 
                 <.0001         <.0001                           <.0001 
        4      26.58776     18.27909       10.8936 
                 <.0001        <.0001          <.0001 
 
 
NOTE: To ensure overall protection level, only probabilities 
      associated with pre-planned comparisons should be used. 
 
                                  result      LSMEAN 
                  A    B          LSMEAN      Number 
                  1    1      10.2500000           1 
                  1    2      14.2500000           2 
                  1    3      17.7500000           3 
                  1    4      22.7500000           4 
                  2    1      18.0000000           5 
                  2    2      22.5000000           6 
                  2    3      24.2500000           7 
                  2    4      28.7500000           8 
                  3    1      23.0000000           9 
                  3    2      25.7500000          10 
                  3    3      30.5000000          11 
                  3    4      35.7500000          12 
 

 270

             Least Squares Means for Effect A*B 
               t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                      Dependent Variable: result 
 
i/j           1          2          3          4          5          6 
 
   1              -5.11682   -9.59403   -15.9901   -9.91383   -15.6703 
                    <.0001     <.0001     <.0001     <.0001     <.0001 
   2   5.116817              -4.47722   -10.8732   -4.79702   -10.5534 
         <.0001                <.0001     <.0001     <.0001     <.0001 
   3   9.594032   4.477215              -6.39602    -0.3198   -6.07622 
         <.0001     <.0001                <.0001     0.7510     <.0001 
   4   15.99005   10.87324   6.396021               6.07622   0.319801 
         <.0001     <.0001     <.0001                <.0001     0.7510 
   5   9.913833   4.797016   0.319801   -6.07622              -5.75642 
         <.0001     <.0001     0.7510     <.0001                <.0001 
   6   15.67025   10.55344    6.07622    -0.3198   5.756419 
         <.0001     <.0001     <.0001     0.7510     <.0001 
   7   17.90886   12.79204   8.314828   1.918806   7.995027   2.238608 
         <.0001     <.0001     <.0001     0.0630     <.0001     0.0315 
   8   23.66528   18.54846   14.07125   7.675226   13.75145   7.995027 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
   9   16.30985   11.19304   6.715823   0.319801   6.396021   0.639602 
         <.0001     <.0001     <.0001     0.7510     <.0001     0.5265 
  10   19.82767   14.71085   10.23363   3.837613   9.913833   4.157414 
         <.0001     <.0001     <.0001     0.0005     <.0001     0.0002 
  11   25.90389   20.78707   16.30985   9.913833   15.99005   10.23363 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
  12   32.61971   27.50289   23.02568   16.62966   22.70588   16.94946 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
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                Least Squares Means for Effect A*B 
               t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                      Dependent Variable: result 
 
i/j           7          8          9         10         11         12 
 
   1   -17.9089   -23.6653   -16.3099   -19.8277   -25.9039   -32.6197 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
   2    -12.792   -18.5485    -11.193   -14.7108   -20.7871   -27.5029 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
   3   -8.31483   -14.0712   -6.71582   -10.2336   -16.3099   -23.0257 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
   4   -1.91881   -7.67523    -0.3198   -3.83761   -9.91383   -16.6297 
         0.0630     <.0001     0.7510     0.0005     <.0001     <.0001 
   5   -7.99503   -13.7514   -6.39602   -9.91383   -15.9901   -22.7059 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
   6   -2.23861   -7.99503    -0.6396   -4.15741   -10.2336   -16.9495 
         0.0315     <.0001     0.5265     0.0002     <.0001     <.0001 
   7              -5.75642   1.599005   -1.91881   -7.99503   -14.7108 
                    <.0001     0.1186     0.0630     <.0001     <.0001 
   8   5.756419              7.355425   3.837613   -2.23861   -8.95443 
         <.0001                <.0001     0.0005     0.0315     <.0001 
   9   -1.59901   -7.35542              -3.51781   -9.59403   -16.3099 
         0.1186     <.0001                0.0012     <.0001     <.0001 
  10   1.918806   -3.83761   3.517812              -6.07622    -12.792 
         0.0630     0.0005     0.0012                <.0001     <.0001 
  11   7.995027   2.238608   9.594032    6.07622              -6.71582 
         <.0001     0.0315     <.0001     <.0001                <.0001 
  12   14.71085    8.95443   16.30985   12.79204   6.715823 
         <.0001     <.0001     <.0001     <.0001     <.0001 
 
 
NOTE: To ensure overall protection level, only probabilities 
      associated with pre-planned comparisons should be used. 
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                           The SAS System                          13 
 
             Plot of resid*predict.  Symbol used is '*'. 
 

resid ・ 

      ・ 

 2.50 ・                         * 

 2.25 ・ 

 2.00 ・ 

 1.75 ・                             * 

 1.50 ・                                         * 

 1.25 ・                *         *     *     *             * 

 1.00 ・                          * 

 0.75 ・ *       * 

 0.50 ・                         *               * 

 0.25 ・                *         *     *     *             * 

 0.00 ・                *         * 

-0.25 ・ *       *                   * 

-0.50 ・                         *               * 

-0.75 ・                *         *     *     *             * 

-1.00 ・                          * 

-1.25 ・ *       *                   * 

-1.50 ・                                         * 

-1.75 ・ 

-2.00 ・ 

-2.25 ・ 

-2.50 ・                         * 

      ・ 

      -・--------・--------・--------・--------・--------・--------・ 
      10        15        20        25        30        35        40 
 
                                   predict 
 
NOTE: 12 obs hidden. 
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                       The UNIVARIATE Procedure 
                           Variable:  resid 
 
                               Moments 
 
N                          48    Sum Weights                 48 
Mean                        0    Sum Observations             0 
Std Deviation      0.96755889    Variance            0.93617021 
Skewness           0.16544631    Kurtosis            0.21553629 
Uncorrected SS             44    Corrected SS                44 
Coeff Variation             .    Std Error Mean       0.1396551 
 

. . . 
 
                         Tests for Normality 
 
      Test                  --Statistic---    -----p Value------ 
 
      Shapiro-Wilk          W     0.977162    Pr < W      0.4666 
      Kolmogorov-Smirnov    D     0.114207    Pr > D      0.1169 
      Cramer-von Mises      W-Sq  0.082279    Pr > W-Sq   0.1963 
      Anderson-Darling      A-Sq  0.513709    Pr > A-Sq   0.1926 
 
                            Normal Probability Plot 
         2.75+                                               * 
             |                                              +++++ 
             |                                         *+*++ 
             |                                  ***+**+ 
             |                              **+*++ 
             |                        *****+* 
             |                    +***+ 
             |             **+**+** 
             |       * *++*++ 
             |     +++++ 
             |+++*+ 
        -2.75+ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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CRD:  Random and Mixed Effects  

REF: Neter et al., Ch 24 (in newer edition with white cover, 

Chapter 25) 

Factors in experiments can be: 

• Fixed:  all levels of interest are included in the 

experiment; we are mostly interested in testing 

differences and estimating means for factor levels 

• Random: levels are randomly selected; not all levels of 

interest are included; we are mostly interested in the 

variance of the response variable that is DUE TO the 

factor 

• Mixed:  When there is more than one factor, there may 

be a mixture, with some factors that are fixed-effects and 

others that are mixed-effects 

• Often, it is difficult to make the distinction! 
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Examples: 

We are interested in height growth for different families 

(genetic stock).  We select 4 families from all possible 

families, and include these in the experiment.  Then, we get 

an estimate of the variance in the height growth due to 

changes in genetics.  [One random-effect factor – family] 

 

We are interested in seedling success depending on species 

and soil moisture.  We select 3 species out of 12 possible 

species, and include moisture levels of low, medium, and 

high.  The species are considered random-effects (we are 

interested estimating the variance in seedling success due to 

species).  The moisture levels are fixed-effects (we are only 

interested in these specific levels that we might apply in a 

greenhouse to generate seedlings). 

 

 276

• This will effect  

o the expected values of the Mean squares, and then, 

the F-tests that are used 

o Tests that are done following the overall F-test 

o The conclusions that are made 

 

For J levels of Factor A and K levels of Factor B, we have 

the following model: 

ijkjkABBkjAijk eyy ++++= ••• τττ ˆˆˆ  

Possibilities: 

• Both are fixed (covered already) 

• Both are random 

• One is fixed and one is random
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Expected Mean Square Values Comparison:   

Mean 

Square 

Model I 

Both A and 

B are Fixed 

Model II 

Both A and B are 

Random 

Model III 

A is Fixed 

B is Random 

A   

(MSA) 
Aφσ ε +

2
* 

222

ABA nnK σσσ ε ++ 22

ABA nσφσ ε ++

B  

(MSB) 
Bφσ ε +

2

 
222

ABB nnJ σσσε ++  
22

BnJσσε +  

A X B 

(MSAB) 
ABφσ ε +

2

 
22

ABnσσε +  
22

ABnσσε +  

Error 

(MSE) 

2

εσ  
2

εσ  
2

εσ  

* Aφσ ε +
2

= 1
12

−
+

∑
=

J
nK

J

j
jAτ

σε  when the number of observations (n) 

are all equal. 
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F-tests 

• Sums of squares, means squares, etc are calculated the 

same for all three types of models 

• Assumptions:  Same are for fixed-effects models 

• Change the F-test, so that the numerator differs from the 

denominator ONLY in the item that you are testing 

• For means tests, use the same denominator as used for 

the F-test (e.g., instead of MSE for Model III, use MSAB 

when testing for differences in Factor A means) 

• Not really relevant to test for differences among means 

of a Random-effects factor as we are interested in the 

variance due to that factor 
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Example Using SAS: 

Example  from before for two Factors:   

• Factor A, (three levels of fertilization: A1, A2, and A3) 

• Factor B (four species: B1, B2, B3 and B4) 

• Crossed: 12 treatments 

• Four replications per treatment for a total of 48 

experimental units 

• Measured Responses:  height growth in mm 

• We assumed both Factors were fixed – wanted to 

compare mean height growth between species and 

between fertilizers. 

Now, we will assume that species is random -- these are a 

few of the species that we are interested in and we wish to 

look at the variance in height growth that is due to species. 
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SAS CODE: 

 
PROC IMPORT OUT= WORK.twofactor  
     DATAFILE= 
"E:\frst430\lemay\examples\encyl_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="crd$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 pageno=1; 
 
*  Using the same data as for fixed two-factor 
experiment, but  
assuming that factor b, species, is random; 
 
PROC GLM  data=twofactor; 
class a b; 
model result=a b a*b; 
random b/test; 
test h=a e=a*b; 
lsmeans a /e=a*b pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
proc univariate data=glmout normal plot; 
var resid; 
run; 
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Maximum Likelihood as an Alternative for Random-

Effects and Mixed-Effects Models 

• For mixed models, maximum likelihood may be a better 

approach than least squares methods.  

• Why? Better estimates of the variances than least squares 

methods. 

Details:  See text – a bit on this.   

Example:  Using SAS, use PROC MIXED instead of GLM 

for the same example.  [added to the SAS code for 

comparison] 
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PROC IMPORT OUT= WORK.twofactor  
     DATAFILE= 
"E:\frst430\lemay\examples\encyl_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="crd$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 pageno=1; 
 
*  Using the same data as for fixed two-factor 
experiment, but  
assuming that factor b is random; 
PROC GLM  data=twofactor; 
class a b; 
model result=a b a*b; 
random b/test; 
test h=a e=a*b; 
lsmeans a /e=a*b pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
proc univariate data=glmout normal plot; 
var resid; 
run; 
 
PROC MIXED data=twofactor; 
class a b; 
model result=a; 
lsmeans a/pdiff; 
random b a*b; 
run; 
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                 The SAS System                   1 
 
                The GLM Procedure 
 
            Class Level Information 
 
         Class         Levels    Values 
 
         A                  3    1 2 3 
         B                  4    1 2 3 4 
 
      Number of Observations Read          48 
      Number of Observations Used          48 
  
                The SAS System                    2 
 
              The GLM Procedure 
 
Dependent Variable: result   result 
 
                    Sum of 
Source      DF      Squares     Mean Square F Value 
 
Model       11    2209.916667   200.901515  164.37 
Error       36      44.000000     1.222222 
Corrected  
   Total    47    2253.916667 
 
           Source                 Pr > F 
 
           Model                  <.0001 
           Error 
           Corrected Total 
 
R-Square  Coeff Var   Root MSE    result Mean 
 
0.980478  4.850640     1.105542     22.79167 
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Source   DF      Type I SS    Mean Square   F Value 
 
A         2    1258.166667     629.083333    514.70 
B         3     934.750000     311.583333    254.93 
A*B       6      17.000000       2.833333      2.32 
 
             Source                 Pr > F 
 
             A                      <.0001 
             B                      <.0001 
             A*B                    0.0539 
 
 
Source   DF    Type III SS    Mean Square   F Value 
 
A         2    1258.166667     629.083333    514.70 
B         3     934.750000     311.583333    254.93 
A*B       6      17.000000       2.833333      2.32 
 
                 The SAS System                   3 
 
                The GLM Procedure 
 
Dependent Variable: result   result 
 
              Source                 Pr > F 
 
              A                      <.0001 
              B                      <.0001 
              A*B                    0.0539 
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                 The SAS System                  4 
 
                The GLM Procedure 
 
Source         Type III Expected Mean Square 
 
A              Var(Error) + Q(A,A*B) 
B              Var(Error) + 12 Var(B) + Q(A*B) 
A*B            Var(Error) + Q(A*B) 
 
                The SAS System                   5 
 
              The GLM Procedure 
 
Tests of Hypotheses for Mixed Model Analysis of 
Variance 
 
Dependent Variable: result   result 
 
Source     DF   Type III SS   Mean Square  F Value 
 
 *  A      2   1258.166667    629.083333   514.70 
    B      3    934.750000    311.583333   254.93 
    A*B    6     17.000000      2.833333     2.32 
 
Error:  
MS(Error) 36     44.000000      1.222222 
  
* This test assumes one or more other fixed effects 
are zero. 
 
          Source                Pr > F 
 
          *  A                     <.0001 
             B                     <.0001 
             A*B                   0.0539 
 
Error: MS(Error) 
* This test assumes one or more other fixed effects 
are zero. 
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                    The SAS System               6 
 
 
                 Least Squares Means  
Standard Errors and Probabilities Calculated Using 
the Type III MS for A*B as an Error Term 
 
                        result      LSMEAN 
             A          LSMEAN      Number 
             1      16.2500000           1 
             2      23.3750000           2 
             3      28.7500000           3 
 
 
         Least Squares Means for Effect A 
       t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
             Dependent Variable: result 
 
i/j         1            2           3 
 
1                 -11.9724      -21.0042 
                    <.0001        <.0001 
2      11.97239                 -9.03181 
         <.0001                   0.0001 
3       21.0042   9.031807 
         <.0001     0.0001 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
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                  The SAS System                  7 
 
Dependent Variable: result   result 
 
Tests of Hypotheses Using the Type III MS for A*B 
as an Error Term 
 
Source   DF    Type III SS    Mean Square   F Value 
A        2    1258.166667     629.083333    222.03 
 
Tests of Hypotheses Using the Type III MS for A*B 
as an Error Term 
 
              Source                 Pr > F 
                A                    <.0001 
 
                The SAS System                    8 
 
       Plot of resid*predict.  Symbol used is '*'. 
 
resid ‚ 
      ‚ 
 2.50 ˆ                          * 
 2.25 ˆ 
 2.00 ˆ 
 1.75 ˆ                              * 
 1.50 ˆ                                          * 
 1.25 ˆ                 *         *     *     *             * 
 1.00 ˆ                           * 
 0.75 ˆ  *       * 
 0.50 ˆ                          *               * 
 0.25 ˆ                 *         *     *     *             * 
 0.00 ˆ                 *         * 
-0.25 ˆ  *       *                   * 
-0.50 ˆ                          *               * 
-0.75 ˆ                 *         *     *     *             * 
-1.00 ˆ                           * 
-1.25 ˆ  *       *                   * 
-1.50 ˆ                                          * 
-1.75 ˆ 
-2.00 ˆ 
-2.25 ˆ 
-2.50 ˆ                          * 
      ‚ 
      Š-ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       10        15        20        25        30        35        40 
 
                                   predict 

NOTE: 12 obs hidden. 
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                    The SAS System               9 
 
               The UNIVARIATE Procedure 
                   Variable:  resid 
 
                   Moments 
 
N                     48   Sum Weights           48 
Mean                   0   Sum Observations       0 
Std Deviation 0.96755889   Variance      0.93617021 
Skewness      0.16544631   Kurtosis      0.21553629 
Uncorrected                Corrected 
         SS           44   SS                    44 
Coeff Variation       .    Std Error Mean 0.1396551 
 
 
          Basic Statistical Measures 
 
Location           Variability 
 
Mean      0.00000      Std Deviation       0.96756 
Median   -0.00000      Variance            0.93617 
Mode     -0.75000      Range               5.00000 
                   
              Interquartile Range      1.50000 
 
            Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M        -4    Pr >= |M|   0.3123 
Signed Rank    S       -32    Pr >= |S|   0.7463 
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                  Tests for Normality 
 
Test                --Statistic--   --p Value---- 
 
Shapiro-Wilk       W     0.977162 Pr < W   0.4666 
Kolmogorov-Smirnov D     0.114207 Pr > D   0.1169 
Cramer-von Mises   W-Sq  0.082279 Pr >W-Sq 0.1963 
Anderson-Darling   A-Sq  0.513709 Pr >A-Sq 0.1926 
 
 
                The SAS System                   10 
 
              The UNIVARIATE Procedure 
                 Variable:  resid 
 
          Quantiles (Definition 5) 
 
          Quantile      Estimate 
 
          100% Max          2.50 
           99%               2.50 
           95%               1.50 
           90%               1.25 
           75% Q3            0.75 
           50% Median       -0.00 
           25% Q1           -0.75 
           10%              -1.25 
            5%               -1.25 
            1%               -2.50 
            0% Min           -2.50 
 
 
  

 290

                  Extreme Observations 
 
           ----Lowest----        ----Highest--- 
 
          Value      Obs        Value      Obs 
 
          -2.50       21         1.25       40 
          -1.50       41         1.25       47 
          -1.25        7         1.50       44 
          -1.25        3         1.75       27 
          -1.25       25         2.50       23 
 
               The SAS System                 11 
 
              The UNIVARIATE Procedure 
                  Variable:  resid 
 
Stem Leaf                     #             Boxplot 
   2 5                        1                | 
   2                                           | 
   1 58                       2                | 
   1 022222                   6                | 
   0 558888                   6             +-----+ 
   0 00000022222             11             *--+--* 
  -0 2222                     4             |     | 
  -0 888888888855            12             +-----+ 
  -1 2220                     4                | 
  -1 5                        1                | 
  -2                                           | 
  -2 5                        1                | 
   ----+----+----+----+ 
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            Normal Probability Plot 
         2.75+                                               * 
             |                                              +++++ 
             |                                         *+*++ 
             |                                  ***+**+ 
             |                              **+*++ 
             |                        *****+* 
             |                    +***+ 
             |             **+**+** 
             |       * *++*++ 
             |     +++++ 
             |+++*+ 
        -2.75+ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 

 
 
                The SAS System                   12 
 
              The Mixed Procedure 
 
                Model Information 
 
   Data Set                     WORK.TWOFACTOR 
   Dependent Variable           result           
   Covariance Structure         Variance Components 
   Estimation Method            REML 
   Residual Variance Method     Profile 
   Fixed Effects SE Method      Model-Based 
   Degrees of Freedom Method    Containment 
 
 
            Class Level Information 
 
          Class    Levels    Values 
 
          A             3    1 2 3 
          B             4    1 2 3 4 
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                   Dimensions 
 
         Covariance Parameters             3 
         Columns in X                      4 
         Columns in Z                     16 
         Subjects                          1 
         Max Obs Per Subject              48 
 
 
             Number of Observations 
 
        Number of Observations Read              48 
        Number of Observations Used              48 
        Number of Observations Not Used           0 
 
 
                 Iteration History 
 
Iteration  Evaluations  -2 Res Log Like   Criterion 
 
  0             1       275.37975211 
  1             1       166.72010292     0.00000000 
 
                    The SAS System               13 
 
                  The Mixed Procedure 
 
               Convergence criteria met. 
 
 
                Covariance Parameter 
                     Estimates 
 
              Cov Parm     Estimate 
 
               B             25.7292 
               A*B            0.4028 
               Residual       1.2222 
 
 



 293

                   Fit Statistics 
 
        -2 Res Log Likelihood           166.7 
        AIC (smaller is better)         172.7 
        AICC (smaller is better)        173.3 
        BIC (smaller is better)         170.9 
 
 
         Type 3 Tests of Fixed Effects 
 
                          Num     Den 
 Effect         DF      DF    F Value    Pr > F 
 
 A               2       6     222.03    <.0001 
 
 
              Least Squares Means 
 
                         Standard 
Effect   A   Estimate  Error   DF  t Value  Pr>|t| 
A        1   16.2500   2.5709   6    6.32   0.0007 
A        2   23.3750   2.5709   6    9.09   <.0001 
A        3   28.7500   2.5709   6   11.18   <.0001 
 
 
                 The SAS System                  14 
 
               The Mixed Procedure 
 
         Differences of Least Squares Means 
 
                        Standard 
Effect  A  A  Estimate  Error    DF  t Value   Pr > 
|t| 
 
A       1  2  -7.1250   0.5951    6  -11.97 <.0001 
A       1  3 -12.5000   0.5951    6  -21.00 <.0001 
A       2  3  -5.3750   0.5951    6   -9.03 0.0001 
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Randomized Complete Block (RCB)  

With One Fixed-Effects Factor 

REF: Neter et al., Ch 19, 20; Freese Handbook, page 34. 

Introduction and Example  

• In RCB, treatments are assigned randomly, but only 

within blocks of treatments 

• Restricting randomization of treatments to within blocks 

(often called sites or trials) is used when the 

experimental units can be grouped by another variable 

that may impact the results  

• In field experiments with large experimental units, 

blocking is often very useful in reducing error variance 

with only a small reduction in error degrees of freedom 

• Blocks are most often random effects (we are interested 

in the variance due to blocks) 

• The interest with RCB is with the factor, not with the 

blocks; the blocks are simply used to reduce the 

variability among experimental units 
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Example: Randomized Block Design (RCB), with Factor A 

(six levels of fertilization: A1 to A6), and two sites.  

Randomization of Factor A is restricted to within sites. 

Site 1   Site 2  

 

A1 = 9 

 

A6=21 

  

A4=25 

 

A3=19 

 

A3=15 

 

A2=12 

  

A1=12 

 

A5=27 

 

A5=20 

 

A4=17 

  

A2=16 

 

A6=29 

 

Response variable: biomass of grasses and herbs (kg) 

2 observations per treatment – 1 in each site 
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Organization of data for analysis using a statistics 

package: 

Site Treatment yjk
1 A1 9
1 A2 12
1 A3 15
1 A4 17
1 A5 20
1 A6 21
2 A1 12
2 A2 16
2 A3 19
2 A4 25
2 A5 27
2 A6 29
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Main questions of interest: 

• Are the treatment means different? 

• Which means are different? 

• What are the estimated means and confidence 

intervals for these estimates? 

As for CRD with one factor 

The organization of the data is the same for CRD with two 

factors as with RCB, BUT the interpretation differs: 

•  It is assumed that there is no interaction between the 

blocks and the treatments. Not really appropriate to 

check this since the randomization of treatments is 

restricted to within blocks 

• Blocks are usually considered random-effects; want to 

remove the effects of blocks from the analysis 
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Notation 

Population:  jkkABjjky εττμ ++++=     

jky  = response variable measured on block j and treatment 
k 
 
j=1 to J blocks; k=1 to K treatments 
 
μ = the grand or overall mean regardless of treatment or 
block 
 

Akτ = the treatment effect for k 
 

Bjτ = the block effect for block j 
 

jkε = is actually an interaction term between block and 
treatment, defined as: 

)( BjkAjkjk y ττμε ++−=  
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For the experiment:   
jkkABjjk eyy +++= •• ττ ˆˆ  

••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions 
for the error terms, this will be an unbiased estimate of μ  

•jy = the mean of all measures from the experiment for a 
particular block j  (includes all data for all levels of the 
treatment) 

ky• = the mean of all measures from the experiment for a 
particular treatment k over all blocks 
 

BjAk ττ ˆ,ˆ = under the error term assumptions, will be 
unbiased estimates of corresponding treatment effects for 
the population 
 

jke = is defined as: 

••••

••••••••

+−−=

−−−−−=

yyyy

yyyyyye

kjjk

kjjkjk )()()(
 

J= number of blocks and also the number of measures 
(experimental units) for treatment k 
KJ = total number of experimental units on which the 
response was measured 
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 Sums of Squares:    

SSESSSSSSy TRBLK ++=  

SSy:  The sum of squared differences between the 

observations and the grand mean: 

( ) 1 
1 1

2 −=−= ∑∑
= =

•• JKdfyySSy
K

k

J

j
jk  

SSTR : Sum of squared differences between the treatment 

means, and the grand mean, weighted by the number of 

blocks (experimental units in each treatment) 

( ) 1
2

1
−=−= ∑

=
••• KdfyyJSS

K

k
kTR  

SSBLK : Sum of squared differences between the block 

means, and the grand mean, weighted by the number of 

treatments (experimental units in each block) 

( ) 1
1

2 −=−= ∑
=

••• JdfyyKSS
J

j
jBLK  
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SSE: sum of squared differences between the observation 

and the grand mean plus the treatment and block effects. 

)1)(1( −−=−−= KJdfSSSSSSySSE BLKTR  

 

Alternative computational formulae: 

BLKTR

J

j
jBLK

K

k
kTR

K

k

J

j
jk

SSSSSSySSE
JK
yyKSS

JK
yyJSS

JK
yySSy

−−=

−=−=

−=

••

=
•

••

=
•

••

= =

∑∑

∑ ∑
2

1

2
2

1

2

2

1 1

2
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 Assumptions and Transformations: 

• Must meet assumptions for the error term to obtain 

unbiased estimates of population means, and an unbiased 

estimate of the variance of the error term  

o independent observations (not time or space related) 

o normality of the errors,  

o equal variance for each treatment.   

• Use residual plot and a plot of the standardized errors 

against the expected errors for a normal distribution to 

check these assumptions.  

• To meet assumptions you might have to transform the y-

variable, as with other designs 
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Differences among treatment means 

 
The main question is:  Is there a difference between 

treatment means: 

       H0: μ1 = μ2 = … = μK 
 

OR:   
 

H0: (φTR+σ2
ε) /σ2

ε  = 1 
H1: (φTR+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φTR is fixed effect for the treatments. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
Block J-1 SSBLK MSA= 

SSBLK /(J-1) 
   

Treat. K-1 SSTR MSTR= 
SSTR /(K-1) 

F= 
MSTR/MSE

Prob F>  
F(K-1),(dfE),1- α

Error (J-1)(K-1) SSE MSE= 
SSE/ 
(J-1)(K-1) 

  

Total JK -1 SSy    
 

 

Source df MS  E[MS] 
Block J-1 MSBLK  22

BLKKσσ ε +

Treat. K-1 MSTR 
TRφσ ε +

2

 

Error (J-1)(K-
1) 

MSE 2

εσ  

Total nT -1   
 
NOTE: Neter et al., assume blocks are fixed rather than random 

φ  is used here to represent fixed effects and  
2

σ is used to represent 

random effects. 
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From the ANOVA table: 
 

MSE
MS

KJSSE
KSSF TRTR =

−−
−

=
)1)(1/(

)1/(
 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (K-1) and df2 is from the denominator (J-1) 

(K-1) 

• If the F calculated is greater than the tabular F, or if the 

p-value for F calculated is less than α , reject H0, the 

means of treatments in the population are likely not all 

the same 
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Further analyses: 

Can conduct multiple comparisons between means for the 

K treatments: 

• using MSE and using J (number of blocks) as the 

number of observations per treatment.   

Can use t-tests of pairs of means -- must divide alpha by the 

number of possible pairs 

  
Confidence limits for treatment means 
 
Treatment means: 

J
MSEty dfEk 21),( α−• ±  

As each block has a measure for each treatment. 

 



 307

SAS code and Results for the Example 

PROC IMPORT OUT= WORK.biomass  
     DATAFILE= 
"E:\frst430\lemay\examples\RCB_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="'no reps$'";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 pageno=1 nodate; 
 
data biomass2; 
 set biomass; 
 lnbiomass=log(yjk); 
run; 
 
PROC GLM  data=biomass2; 
class site treatment; 
model lnbiomass=site treatment; 
random site; 
lsmeans treatment/pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
proc univariate data=glmout normal plot; 
var resid; 
run; 
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                   The SAS System                 1 
 
                The GLM Procedure 
 
             Class Level Information 
 
         Class          Levels    Values 
 
         Site                2    1 2 
 
         Treatment           6    A1 A2 A3 A4 A5 A6 
 
 
          Number of Observations Read          12 
          Number of Observations Used          12 
        
             



 309

                 The SAS System                   2 
 
                The GLM Procedure 
 
Dependent Variable: lnbiomass 
 
                 Sum of 
Source      DF   Squares      Mean Square   F Value 
 
Model        6   1.38167231   0.23027872    189.72 
 
Error        5   0.00606896   0.00121379 
 
Corrected  
   Total    11   1.38774127 
 
                Source                 Pr > F 
 
                Model                  <.0001 
 
                Error 
 
                Corrected Total 
 
 
R-Square   Coeff Var    Root MSE    lnbiomass Mean 
 
0.995627   1.217186      0.034840     2.862299 
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Source       DF    Type I SS   Mean Square  F Value 
 
Site          1    0.27612234  0.27612234    227.49 
Treatment     5    1.10554998  0.22111000    182.16 
 
                Source            Pr > F 
 
                Site              <.0001 
                Treatment         <.0001 
 
 
Source     DF   Type III SS    Mean Square  F Value 
 
Site        1   0.27612234     0.27612234   227.49 
Treatment   5   1.10554998     0.22111000    182.16 
 
              Source                 Pr > F 
 
              Site                   <.0001 
              Treatment              <.0001 
   
                   The SAS System                 3 
 
                  The GLM Procedure 
 
Source       Type III Expected Mean Square 
 
Site         Var(Error) + 6 Var(Site) 
 
Treatment    Var(Error) + Q(Treatment) 
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               The SAS System                    4 
 
              The GLM Procedure 
            Least Squares Means 
 
                lnbiomass      LSMEAN 
          Treatment          LSMEAN      Number 
 
            A1             2.34106561           1 
            A2             2.62874769           2 
            A3             2.82624459           3 
            A4             3.02604458           4 
            A5             3.14578457           5 
            A6             3.20590913           6 
 
 
           Least Squares Means for Effect Treatment 
           t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
          Dependent Variable: lnbiomass 
 
i/j    1       2        3       4        5          6 
 
1          -8.25735 -13.9261  -19.661 -23.0979 -24.8236 
             0.0004   <.0001   <.0001   <.0001   <.0001 
2  8.257352         -5.66876 -11.4036 -14.8405 -16.5663 
     0.0004           0.0024   <.0001   <.0001   <.0001 
3 13.92612 5.668763          -5.73487 -9.17177 -10.8975 
    <.0001   0.0024            0.0023   0.0003   0.0001 
4 19.66098 11.40363 5.734869           -3.4369 -5.16266 
    <.0001   <.0001   0.0023            0.0185   0.0036 
5 23.09789 14.84053 9.171771 3.436902          -1.72576 
    <.0001   <.0001   0.0003   0.0185            0.1450 
6 24.82364 16.56629 10.89753 5.162661 1.725758          
    <.0001   <.0001   0.0001   0.0036   0.1450 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
                    

 312

                   The SAS System                 5 
 
        Plot of resid*predict.  Symbol used is '*'. 
 
 resid ‚ 
       ‚ 
  0.06 ˆ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
  0.04 ˆ                                                 * 
       ‚ 
       ‚                             * 
       ‚ 
       ‚ 
       ‚ 
  0.02 ˆ 
       ‚ 
       ‚ 
       ‚                                                        * 
       ‚          *          * 
       ‚ 
  0.00 ˆ                                          *           * 
       ‚ 
       ‚                      *          * 
       ‚                                            * 
       ‚ 
       ‚ 
 -0.02 ˆ 
       ‚ 
       ‚ 
       ‚ 
       ‚                                         * 
       ‚ 
 -0.04 ˆ                                     * 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
 -0.06 ˆ 
       ‚ 
       Š--ˆ-------ˆ-------ˆ-------ˆ-------ˆ-------ˆ-------ˆ-------ˆ-- 
         2.0     2.2     2.4     2.6     2.8     3.0     3.2     3.4 
 
                                   predict 
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                   The SAS System                 6 
 
               The UNIVARIATE Procedure 
                  Variable:  resid 
 
                   Moments 
 
N                      12    Sum Weights        12 
Mean                    0    Sum Observations    0 
Std Deviation  0.02348879    Variance   0.00055172 
Skewness                0    Kurtosis   0.25289374 
Uncorrected                  Corrected 
     SS        0.00606896        SS     0.00606896 
Coeff Variation         .    Std Error  
                                Mean    0.00678063 
 
 
          Basic Statistical Measures 
 
Location                    Variability 
 
Mean      0.00000     Std Deviation         0.02349 
Median    0.00000     Variance            0.0005517 
Mode     -0.00785     Range                 0.08228 
Interquartile Range      0.01755 
 
 
             Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M         0    Pr >= |M|   1.0000 
Signed Rank    S         2    Pr >= |S|   0.8979 
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                Tests for Normality 
 
Test               --Statistic---   --p Value------ 
 
Shapiro-Wilk       W     0.949629  Pr<W      0.6316 
Kolmogorov-Smirnov D     0.173219  Pr>D     >0.1500 
Cramer-von Mises   W-Sq  0.058634  Pr>W-Sq  >0.2500 
Anderson-Darling   A-Sq  0.344788  Pr>A-Sq  >0.2500 
 
 
            Quantiles (Definition 5) 
 
            Quantile         Estimate 
 
            100% Max       0.04114012 
             99%            0.04114012 
 
                 The SAS System                   7 
 
             The UNIVARIATE Procedure 
                Variable:  resid 
 
             Quantiles (Definition 5) 
 
             Quantile         Estimate 
 
               95%            0.04114012 
               90%            0.03349673 
               75% Q3         0.00877283 
               50% Median     0.00000000 
               25% Q1        -0.00877283 
               10%           -0.03349673 
                5%            -0.04114012 
                1%            -0.04114012 
                0% Min        -0.04114012 
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            Extreme Observations 
 
-------Lowest-------        -------Highest------ 
 
Value            Obs              Value      Obs 
 
-0.04114012        4         0.00785008        1 
-0.03349673        9         0.00785008        2 
-0.00969558        6         0.00969558       12 
-0.00785008        8         0.03349673        3 
-0.00785008        7         0.04114012       10 
 
 
         Stem Leaf                     #             Boxplot 
              4 1                        1                0 
              3 3                        1                | 
              2                                           | 
              1 0                        1                | 
              0 288                      3             +--+--+ 
             -0 882                      3             +-----+ 
             -1 0                        1                | 
             -2                                           | 
             -3 3                        1                | 
             -4 1                        1                0 
                ----+----+----+----+ 
            Multiply Stem.Leaf by 10**-2 
 
 
               The SAS System                    8 
 
           The UNIVARIATE Procedure 
                Variable:  resid 
                   Normal Probability Plot 
        0.045+                                         * ++++ 
             |                                    * +++++ 
             |                                  ++++ 
        0.015+                              ++++ 
             |                         +*+*+*  * 
             |                 *  *+++* 
       -0.015+                 ++++ 
             |             ++++ 
             |        +++++ * 
       -0.045+    ++++ * 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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NOTE:  Could use PROC MIXED instead of GLM (for 
interest only) 
* note:  could use PROC MIXED instead of GLM for 
this; 
PROC IMPORT OUT= WORK.biomass  
     DATAFILE= 
"E:\frst430\lemay\examples\RCB_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="'no reps$'";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 pageno=1 nodate; 
 
data biomass2; 
 set biomass; 
 lnbiomass=log(yjk); 
run; 
 
PROC MIXED data=biomass2; 
class site treatment; 
model lnbiomass=treatment; 
lsmeans treatment/pdiff; 
random site; 
run;
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                 The SAS System                 9 
 
             The Mixed Procedure 
 
             Model Information 
 
   Data Set                     WORK.BIOMASS2 
   Dependent Variable           lnbiomass 
   Covariance Structure         Variance Components 
   Estimation Method            REML 
   Residual Variance Method     Profile 
   Fixed Effects SE Method      Model-Based 
   Degrees of Freedom Method    Containment 
 
              Class Level Information 
 
        Class        Levels    Values 
 
        Site              2    1 2 
        Treatment         6    A1 A2 A3 A4 A5 A6 
 
                Dimensions 
               Covariance Parameters             2 
               Columns in X                      7 
               Columns in Z                      2 
               Subjects                          1 
               Max Obs Per Subject              12 
 
 
              Number of Observations 
        Number of Observations Read              12 
        Number of Observations Used              12 
        Number of Observations Not Used           0 
 
                 Iteration History 
Iteration  Evaluations  -2 Res Log Like  Criterion 
 0              1         2.84456806 
 1              1       -13.67079866     0.00000000 
               Convergence criteria met. 
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              The SAS System                    10 
 
              The Mixed Procedure 
 
              Covariance Parameter 
                  Estimates 
 
              Cov Parm     Estimate 
 
              Site          0.04582 
              Residual     0.001214 
 
 
                 Fit Statistics 
 
-2 Res Log Likelihood           -13.7 
AIC (smaller is better)          -9.7 
AICC (smaller is better)         -5.7 
BIC (smaller is better)         -12.3 
 
 
            Type 3 Tests of Fixed Effects 
 
                          Num     Den 
Effect         DF      DF    F Value    Pr > F 
 
Treatment       5       5     182.16    <.0001 
 
                   Least Squares Means 
 
                        Standard 
Effect   Treat Estimate  Error    DF t Value Pr>|t| 
 
Treatment  A1  2.3411    0.1533    5  15.27  <.0001 
Treatment  A2  2.6287    0.1533    5  17.14  <.0001 
Treatment  A3  2.8262    0.1533    5  18.43  <.0001 
Treatment  A4  3.0260    0.1533    5  19.73  <.0001 
Treatment  A5  3.1458    0.1533    5  20.51  <.0001 
Treatment  A6  3.2059    0.1533    5  20.91  <.0001 
 



 319

 
         Differences of Least Squares Means 
 
                                                              
                            Standard 
Effect    Treat Treat  Estimate  Error    DF  t 
Value 
 
Treatment  A1     A2   -0.2877   0.03484     5    -8.26 
Treatment  A1     A3   -0.4852   0.03484     5   -13.93 
Treatment  A1     A4   -0.6850   0.03484     5   -19.66 
Treatment  A1     A5   -0.8047   0.03484     5   -23.10 
Treatment  A1     A6   -0.8648   0.03484     5   -24.82 
Treatment  A2     A3   -0.1975   0.03484     5    -5.67 
Treatment  A2     A4   -0.3973   0.03484     5   -11.40 
Treatment  A2     A5   -0.5170   0.03484     5   -14.84 
Treatment  A2     A6   -0.5772   0.03484     5   -16.57 
Treatment  A3     A4   -0.1998   0.03484     5    -5.73 
Treatment  A3     A5   -0.3195   0.03484     5    -9.17 
Treatment  A3     A6   -0.3797   0.03484     5   -10.90 
Treatment  A4     A5   -0.1197   0.03484     5    -3.44 
Treatment  A4     A6   -0.1799   0.03484     5    -5.16 
Treatment  A5     A6  -0.06012   0.03484     5    -1.73 
 
          Differences of Least Squares Means 
 
Effect    Treatment  Treatment  Pr > |t| 
Treatment  A1         A2           0.0004 
Treatment  A1         A3           <.0001 
Treatment  A1         A4           <.0001 
Treatment  A1         A5           <.0001 
Treatment  A1         A6           <.0001 
Treatment  A2         A3           0.0024 
Treatment  A2         A4           <.0001 
Treatment  A2         A5           <.0001 
Treatment  A2         A6           <.0001 
Treatment  A3         A4           0.0023 
Treatment  A3         A5           0.0003 
Treatment  A3         A6           0.0001 
Treatment  A4         A5           0.0185 
Treatment  A4         A6           0.0036 
Treatment  A5         A6           0.1450 
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Randomized Block Design with other experiments 

RCB with Two Fixed Factors 

• Within each block. treatments are randomly located to 

each experimental unit, but each treatment is a 

combination of two factors 

Example: Randomized Block Design (RCB), with three 

types of food (Factor A: A1 to A3), two species of fish 

(Factor B) and two labs (blocks).    Randomization of 

treatments (e.g., A1, B2) is restricted to within labs. 

Lab 1   Lab 2  

 

A1B1 = 6 

 

A1B2=5 

  

A3B1=11

 

A3B2=12

 

A3B1=10 

 

A2B2=8 

  

A1B1=4 

 

A2B2=9 

 

A2B1=7 

 

A3B2=12

  

A2B1=8 

 

A1B2=5 

Response variable: weight gain of fish (kg) 
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Experimental unit:  one tank of fish; 6 tanks in each lab 

Organization of data for analysis using a statistics 

package: 

Site 
A 

Food 
B 

Species yijk
1 A1 B1 6
1 A1 B2 5
1 A2 B1 8
1 A2 B2 7
1 A3 B1 10
1 A3 B2 12
2 A1 B1 4
2 A1 B2 5
2 A2 B1 9
2 A2 B2 8
2 A3 B1 11
2 A3 B2 12

Main questions of interest—same as for RCB: 

• Is there an interaction between factors? If not, is there 

a difference between means for Factor A?  Factor B? 

Which means are different? What are the estimated 

means and confidence intervals for these estimates? 
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• We are not really interested in the blocks – just used to 

reduce the amount of variation 

Models  
The model is a mixture between a single factor RCB and a 
2-factor CRD; interpretation is more difficult 

o Blocks are usually random not fixed factors 
o Blocks are used to reduce variability within 

treatments; not of interest on their own 
 

Population:  jklBklABlkAjBLKjkly εττττμ +++++=     

jkly  = response variable measured on block j and 
treatment kl 
 
j=1 to J blocks; k=1 to K levels for Factor A; l=1 to L levels 
for Factor B 
 
Definition of terms follows other designs 
 



 323

Test for Interactions and Main Effects 

       H0: No interaction between Factor A and 
Factor B 

H1: Interaction 
OR:   

 

H0: (φA XB+σ2
ε)/σ2

ε  = 1 
H1: (φA X B+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

σ2
A X B is the interaction between Factor A and Factor B 

fixed-effect treatments
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ANOVA: Blocks Random, Factor A and Factor B are Fixed 
Source df SS MS F  ??? correct? 
 BLK. J-1 SSBLK MSBLK= 

SSBLK/(J-1) 
F= MSBLK/MSE 

Factor 
A 

K-1 SSA MSA= 
SSA/(K-1) 

F= MSA/MSBXT 

Factor 
B 

L-1 SSB MSB= 
SSB/(L-1) 

F= MSB/MSBXT 

A X B (K-1)(L-1) SSAXB MSAXB=SSAXB / 
(K-1)(L-1) 

F= MSAB/MSE 

Error (J-1)(KL-1) SSE MSE= SSE/ 
(J-1)(KL-1)  

 

Total nT -1 SSy   
 

Source df MS  p-value E[MS] 
 BLK. J-1  MSBLK Prob F>  

F(J-1),(dfE), 1- α  
22

BLKKLσσ ε +  

A K-1  MSA Prob F>  
F(K-1),(dfBXT),1- α 

Aφσ ε +
2

 

B L-1  MSB Prob F>  
F(L-1),(dfBXT),1- α 

Bφσ ε +
2

 

AXB (J-1)(L-1)  MSAXB Prob F>  
F dfAXB,dfE,,1- α 

BA×+φσ ε

2

 

Error (J-1)(KL-1)  MSE  2

εσ  

Total nT -1     
 
φ  is used here to represent fixed effects.   
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SAS code for example and output:  Food and Species Fixed 
effects; Site is a Random Effect. 
 
PROC IMPORT OUT= WORK.blocktwo 
    DATAFILE= 
"E:\frst430\lemay\examples\RCB_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="'2-factors$'";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
options ls=70 ps=50 pageno=1 nodate; 
data blocktwo2; 
 set blocktwo; 
lnfishwt=log(yijk); 
run; 
 
PROC GLM  data=blocktwo2; 
class site food species; 
model lnfishwt=site food species food*species; 
random site; 
lsmeans food/pdiff tdiff; 
lsmeans species/pdiff tdiff; 
lsmeans food*species/pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
proc univariate data=glmout normal plot; 
var resid; 
run; 
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                    The SAS System               1 
 
                  The GLM Procedure 
 
               Class Level Information 
 
              Class         Levels    Values 
 
              Site               2    1 2 
              Food               3    A1 A2 A3 
              Species            2    B1 B2 
 
           Number of Observations Read          12 
           Number of Observations Used          12 
           
                 The SAS System                   2 
               The GLM Procedure 
 
Dependent Variable: lnfishwt 
 
                    Sum of 
Source       DF    Squares     Mean Square   F 
Value 
 
Model         6    1.38600089  0.23100015   11.29 
Error         5    0.10230621  0.02046124 
Corrected  
   Total     11    1.48830710 
 
              Source                 Pr > F 
 
              Model                  0.0088 
              Error 
              Corrected Total 
 
R-Square   Coeff Var  Root MSE  lnfishwt Mean 
 
0.931260   7.043771   0.143043   2.030770 
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Source         DF     Type I SS  Mean Square FValue 
Site            1     0.00028852  0.00028852   0.01 
Food            2     1.35137097  0.67568548  33.02 
Species         1     0.00028852  0.00028852   0.01 
Food*Species    2     0.03405288  0.01702644   0.83 
 
               Source                 Pr > F 
               Site                   0.9101 
               Food                   0.0013 
               Species                0.9101 
               Food*Species           0.4876 
 
 
Source      DF     Type III SS  Mean Square F Value 
Site         1     0.00028852   0.00028852     0.01 
Food         2     1.35137097   0.67568548    33.02 
Species      1     0.00028852   0.00028852     0.01 
Food*Species 2     0.03405288   0.01702644     0.83 
                            
           Source                 Pr > F 
           Site                   0.9101 
           Food                   0.0013 
           Species                0.9101 
           Food*Species           0.4876 
 
                  The SAS System                4 
 
               The GLM Procedure 
 
Source     Type III Expected Mean Square 
Site          Var(Error) + 6 Var(Site) 
Food          Var(Error) + Q(Food,Food*Species) 
Species       Var(Error) + Q(Species,Food*Species) 
Food*Species  Var(Error) + Q(Food*Species) 
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              The SAS System                     5 
 
             The GLM Procedure 
            Least Squares Means 
 
                  lnfishwt        LSMEAN 
     Food          LSMEAN         Number 
       A1        1.59923241           1 
       A2        2.07550445           2 
       A3        2.41757342           3 
 
     Least Squares Means for Effect Food 
     t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
        Dependent Variable: lnfishwt 
 
i/j           1          2          3 
 1                 -4.70873      -8.09065 
                     0.0053        0.0005 
  
 2      4.708733                 -3.38191 
          0.0053                   0.0196 
  
 3      8.090648   3.381915 
          0.0005     0.0196 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
      
                      The SAS System             6 
 
                The GLM Procedure 
                 Least Squares Means 
                      lnfishwt     
H0:LSMean1=LSMean2 
Species          LSMEAN    t Value    Pr > |t| 
 
 B1           2.02586672     -0.12      0.9101 
 B2           2.03567347 
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                  The SAS System                 7 
 
                The GLM Procedure 
               Least Squares Means 
 
                     lnfishwt      LSMEAN 
Food    Species       LSMEAN       Number 
 
 A1      B1         1.58902692          1 
 A1      B2         1.60943791          2 
 A2      B1         2.13833306          3 
 A2      B2         2.01267585          4 
 A3      B1         2.35024018          5 
 A3      B2         2.48490665          6 
 
Least Squares Means for Effect Food*Species 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
          Dependent Variable: lnfishwt 
 
i/j   1        2        3        4         5        6 
 
1           -0.14269 -3.84015 -2.96169 -5.32158 -6.26302 
              0.8921   0.0121   0.0315   0.0031   0.0015 
 
2 0.142692          -3.69746   -2.819 -5.17889  -6.12033 
    0.8921            0.0140   0.0372   0.0035    0.0017 
 
3 3.840152 3.697461          0.878459 -1.48142  -2.42287 
    0.0121   0.0140            0.4199   0.1986    0.0599 
 
4 2.961693 2.819002 -0.87846          -2.35988  -3.30133 
    0.0315   0.0372   0.4199            0.0648    0.0214 
 
5 5.321577 5.178885 1.481425 2.359883           -0.94144 
    0.0031   0.0035   0.1986   0.0648             0.3897 
 
6 6.263019 6.120327 2.422866 3.301325 0.941442 
    0.0015   0.0017   0.0599   0.0214   0.3897 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
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              The SAS System                      8 
 
       Plot of resid*predict.  Symbol used is '*'. 
 
resid ‚ 
      ‚ 
  0.2 ˆ           * 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
  0.1 ˆ 
      ‚ 
      ‚                               * 
      ‚                                      *         * 
      ‚ 
      ‚ 
      ‚ 
  0.0 ˆ           **                                          * 
      ‚ 
      ‚ 
      ‚ 
      ‚                                      *          * 
      ‚                                * 
      ‚ 
 -0.1 ˆ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
 -0.2 ˆ          * 
      ‚ 
      Š-ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       1.4       1.6       1.8       2.0       2.2       2.4       2.6 
 
                                   predict 

 
NOTE: 1 obs hidden. 
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                  The SAS System                 9 
 
             The UNIVARIATE Procedure 
                 Variable:  resid 
 
                               Moments 
 
N                     12    Sum Weights          12 
Mean                   0    Sum Observations      0 
Std Deviation   0.096439    Variance     0.00930056 
Skewness                 0  Kurtosis     1.73130021 
Uncorrected SS  0.10230621  Corrected SS 0.10230621 
Coeff Variation          .  Std Error  
                               Mean      0.02783967 
 
(some outputs on basic stats for residuals trimmed 
off) 
               Tests for Normality 
 
Test           --Statistic---      -----p Value--- 
 
Shapiro-Wilk       W     0.95208    Pr < W   0.6676       
Kolmogorov-Smirnov D     0.146392   Pr > D  >0.1500 
Cramer-von Mises   W-Sq  0.056429   Pr>W-Sq >0.2500 
Anderson-Darling   A-Sq  0.357776   Pr>A-Sq >0.2500 
 
 
             Quantiles (Definition 5) 
             Quantile        Estimate 
             100% Max       0.1978292 
              99%            0.1978292 
              95%            0.1978292 
              90%            0.0716691 
              75% Q3         0.0581767 
              50% Median     0.0000000 
              25% Q1        -0.0581767 
              10%           -0.0716691 
               5%            -0.1978292 
               1%            -0.1978292 
               0% Min        -0.1978292 
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               Extreme Observations 
 
------Lowest-------        -------Highest------ 
 
Value      Obs              Value      Obs 
 
-0.19782918        7         0.00490338       12 
-0.07166907        4         0.05255846       11 
-0.06379489        3         0.06379489        9 
-0.05255846        5         0.07166907       10 
-0.00490338        6         0.19782918        1 
 
 Stem Leaf                    #             Boxplot 
   2 0                        1                | 
   1                                           | 
   1                                           | 
   0 567                      3             +-----+ 
   0 00                       2             *--+--* 
  -0 00                       2             |     | 
  -0 765                      3             +-----+ 
  -1                                           | 
  -1                                           | 
  -2 0                        1                | 
                ----+----+----+----+ 
            Multiply Stem.Leaf by 10**-1 
 
 
                The UNIVARIATE Procedure 
                    Variable:  resid 
 
                            Normal Probability Plot 
        0.225+                                              +++++ 
             |                                         *++++ 
             |                                    +++++ 
        0.075+                              *++*++* 
             |                         +*+*++ 
             |                    ++*+* 
       -0.075+              *++*++* 
             |          +++++ 
             |     ++++* 
       -0.225++++++ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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 RCB with One fixed, one random factor 
• Within each block treatments are randomly located to 

each experimental unit, but each treatment is a 

combination of two factors 

• For one factor, we are interested in comparing treatment 

means 

• For the other factor, we are interested in obtaining an 

estimate of the variance of the response variable that is 

due to that factor 

 

Example: Randomized Block Design (RCB), with three 

types of fertilizer (Factor A: A1 to A3), two genetic 

families of pine trees (Factor B) and two sites (blocks).     

• Randomization of treatments (e.g., A1, B2) is 

restricted to within sites. 

• Blocks are random; factor B is random (random 

selection of possible families) 
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• Interpretation will differ from RCB with two factors; 

F-tests will vary also, as Expected Mean Squares will 

be different 

• If there is no interaction among the two factors, we 

can interpret the factors separately 

• For Factor A:  use multiple comparisons to compare 

factor level means 

• For Factor B:  obtain an estimate of the variance due 

to this factor.   

• NOTE:  we could use least squares analysis of 

variance for this analysis.  HOWEVER:  using 

MIXED models with Maximum Likelihood is 

considered a better approach for mixed-effects (one 

random, one fixed effects factor) 
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Incomplete Block Design 

• Like RCB, BUT there are not enough experimental 
units in each block to have every treatment in each 
block – incomplete 

• For example: 
 
We have 2 sites.  There are 4 experimental units in each 
site.  However, we have 5 treatments!  There are not 
enough experimental units in site 1 to have all 5 treatments, 
nor is there enough experimental units in site 2 to have all 
5. (REF:  Chapter 28 of textbook)
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RCB with replicates in each block 
• Within each block there are several replicates of each 

treatment  

• Sometimes called “Generalized RCB” 

Example: Randomized Block Design (RCB), with Factor A 

(three types of food: A1 to A3), and two labs (blocks).    

Randomization of Factor A is restricted to within labs. 

Lab 1   Lab 2  

 

A1 = 6 

 

A1=5 

  

A3=11 

 

A3=12 

 

A3=10 

 

A2=8 

  

A1=4 

 

A2=9 

 

A2=7 

 

A3=12 

  

A2=8 

 

A1=5 

Response variable: weight gain of fish (kg) 

Experimental unit:  one tank of fish; 6 tanks in each lab 
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Organization of data for analysis using a statistics 

package: 

Site Treatment  Replicate yijk
1 A1 1 6
1 A1 2 5
1 A2 1 8
1 A2 2 7
1 A3 1 10
1 A3 2 12
2 A1 1 4
2 A1 2 5
2 A2 1 9
2 A2 2 8
2 A3 1 11
2 A3 2 12

 

Main questions of interest—same as for RCB: 

• Are the treatment means different? Which means are 

different? What are the estimated means and 

confidence intervals for these estimates? 
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 Models  
 

Population:  ijkjkTRBLKkTRjBLKijky ετττμ ++++= ×     

ijky  = response variable measured on experimental unit I 
in block j and treatment k 
 
j=1 to J blocks; k=1 to K treatments; i=1 to n replicates 
 
μ = the grand or overall mean regardless of treatment or 
block 
 

jBLKτ = the block effect for j 
 

TRkτ = the treatment effect for block k 
 

jkTRBLK ×τ = the interaction effect between block j and 
treatment  k 
 

ijkε = is error term, specific to observation i 
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For the experiment:   
ijkjkTRBLKkTRjBLKijk eyy ++++= ×••• τττ ˆˆˆ  

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment or block; under the 
assumptions for the error terms, this will be an unbiased 
estimate of μ  

jky• = the mean of all measures from the experiment for a 
particular block j and experiment k  

•• jy = the mean of all measures from the experiment for a 
particular block j  (includes all data for all levels of the 
treatments) 

ky •• = the mean of all measures from the experiment for a 
particular level k of the Factor A (includes all data for all 
blocks) 
 

jkTRBLKkTRjBLK ×τττ ˆ,ˆ,ˆ = under the error term assumptions, 
will be unbiased estimates of corresponding treatment, 
block, and block by treatment for the population 

ijke = the difference between a particular measure for an 
experimental unit i, and the mean for the block j and 
treatment k that was applied to it 

jkijkijk yye •−=  
njk = the number of experimental units measured in the 
block j and treatment k 
nT = the number of experimental units measured over all 

blocks and treatments = ∑∑
− =

K

k

J

j
jkn

1 1
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Sums of Squares:    

SSESSSSSSSSy BLKTRTRBLK +++= ×  

SSy:  The sum of squared differences between the 

observations and the grand mean: 

( ) 1 
1 1 1

2 −=−= ∑∑∑
= = =

••• T

K

k

J

j

n

i
ijk ndfyySSy

jk

 

SSBLK:  Sum of squared differences between the block 

means and the grand mean, weighted by the number of 

experimental units for each block: 

( ) 1
1 1

2 −=−= ∑∑
= =

••••• JdfyynSS
K

k

J

j
jjkBLK  

SSTR:  Sum of squared differences between the level means 

for factor A and the grand mean, weighted by the number 

of experimental units for each treatment: 

( ) 1
1 1

2 −=−= ∑∑
= =

••••• KdfyynSS
K

k

J

j
kjkTR  
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SSBLK X TR:  Sum of squared differences between means for 

block j and treatment k and the grand mean, minus the 

block and treatment level differences, all weighted by the 

number of experimental units for each block and treatment: 

∑ ∑
= =

••••••••••••••

×

−−−−−=
K

k

J

j
jkjkjk

TRBLK

yyyyyyn

SS

1 1

2))()()((

 

Since some of the terms cancel out we obtain: 

  )(
1 1

2∑ ∑
= =

••••••••× +−−=
K

k

J

j
jkjkjkTRBLK yyyynSS  

SSE: Sum of squared differences between the observed 

values for each experimental unit and the treatment means: 

( )∑∑∑
= = =

• −=−=
K

k

J

j
T

n

i
jkijk JKndfyySSE

jk

1 1 1

2 
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Assumptions regarding the error term 

• Must meet assumptions to obtain unbiased estimates of 

population means, and an unbiased estimate of the 

variance of the error term as with other designs 

Process: 
• do your analysis with the measured response variable 
• Check the residual plot and normal plot to see if 

assumptions are met 
• if assumptions of the error term are not met, transform 

the y-variable 
• do the analysis again and check the assumptions; if not 

me, try another transformation 
• may have to switch to another method:  generalized 

linear models, etc. 
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Test for Interactions and Main Effects 

 
Although an interaction between treatments and 
blocks would result in a difficult interpretation 
of results, this can be tested first. 
 

       H0: No interaction 
H1: Interaction 

OR:   
 

H0: (σ2
B X T+σ2

ε)/σ2
ε  = 1 

H1: (σ2
B X T+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

σ2
BXT  is the interaction between blocks and fixed 

treatments; since blocks are random, the interaction 

between blocks and treatments is also random. 
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Using an analysis of variance table: Blocks Random, 

Treatments Fixed 

Source df SS MS F 
 BLK. J-1 SSBLK MSBLK= 

SSBLK/(J-1) 
F= MSBLK/MSE 

TR. K-1 SSTR MSTR= 
SSTR/(K-1) 

F= MSTR/MSBXT 

BLK 
X TR 

(J-1)(K-1) SSBXT MSBXT= 
SSBXT / 

(J-1)(K-1) 

F= MSBT/MSE 

Error nT -JK SSE MSE= SSE/ 
(nT -JK) 

 

Total nT -1 SSy   
 

 

Source df MS  p-value E[MS] 
 BLK. J-1 MSBLK Prob F>  

F(J-1),(dfE), 1- α  
22

BLKKnσσ ε +  

TR. K-1 MSTR Prob F>  
F(K-1),(dfBXT),1- α 

TRTBn φσσ ε ++ ×
22

BLK 
X TR 

(J-1)(K-1) MSBXT Prob F>  
F dfBXT,dfE,,1- α 

TBn ×+ 22

σσ ε  

Error nT -JK MSE  2

εσ  

Total nT -1    
φ  is used here to represent fixed effects. 
Assuming all n are equal (same number of replicates in each block and 
treatment combination) 
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For the interactions: 
 

MSE
MS

JKnSSE
KJSSF TB

T

TB ×× =
−

−−
=

)/(
)1)(1/(

 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1)(K-1), and df2 is from the denominator 

(nT-JK) 

• If the F calculated is greater than the tabular F, or if the 

p-value for F calculated is less than α , reject H0. 

o The means of Factor A are influenced by the levels 

of the blocks; the design should have been a 

completely randomized design for ease of 

interpretation 

o Graph the means of all treatments by block and try 

to interpret results 

 346

If there are no interactions (hopefully the case) we can 

look at the impact of the treatments 

Factor A: 

       H0: μ1 = μ2 = … = μJ 
 

OR:   
 

H0: (φA+nσ2
B X T +σ2

ε) /(nσ2
B X T +σ2

ε  ) = 1 
H1: (φA+n σ2

B X T +σ2
ε) /(nσ2

B X T +σ2
 ε ) > 1 

 

Where σ2
ε  is the variance of the error terms; σ2

 B X T  is 

the variance for the interaction between blocks and 

treatments; φA is fixed effect for Factor A.  
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From the ANOVA table: 
 

TB

TR

TB

TR

MS
MS

KJSS
KSSF

××

=
−−

−
=

)1)(1/(
)1/(

 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (K-1) and df2 is from the denominator          

(J-1)(K-1) 

• If the F calculated is greater than the tabular F, or if the 

p-value for F calculated is less than α , reject H0. 

o The true means of the treatment in the population 

are likely not all the same 

o Graph the means of treatment levels 

o Conduct multiple comparisons between means for 

the K levels of the treatment 
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SAS code and Results for example: 

PROC IMPORT OUT= WORK.fishweight  
DATAFILE= 
     "E:\frst430\lemay\examples\RCB_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="'reps$'";   GETNAMES=YES; 
     MIXED=NO;    SCANTEXT=YES; 
     USEDATE=YES;  SCANTIME=YES; 
RUN; 
options ls=70 ps=50 pageno=1 nodate; 
data fishweight2; 
 set fishweight; 
lnfishwt=log(yijk); 
run; 
 
PROC GLM  data=fishweight2; 
class site treatment; 
model lnfishwt=site treatment site*treatment; 
random site site*treatment; 
test h=treatment e=site*treatment; 
lsmeans treatment/e=site*treatment pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
proc univariate data=glmout normal plot; 
var resid; 
run; 
 
* note:  could use PROC MIXED instead of GLM for 
this – for interest only; 
PROC MIXED data=fishweight2; 
class site treatment; 
model lnfishwt=treatment; 
lsmeans treatment/pdiff; 
random site site*treatment; 
run; 
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                    The SAS System                1 
                 The GLM Procedure 
 
                Class Level Information 
 
          Class          Levels    Values 
 
          Site                2    1 2 
          Treatment           3    A1 A2 A3 
 
 
        Number of Observations Read          12 
        Number of Observations Used          12 
 
                    The SAS System                2 
                   The GLM Procedure 
 
Dependent Variable: lnfishwt 
 
                   Sum of 
Source    DF    Squares     Mean Square   F Value  
 
Model      5   1.41053220   0.28210644    21.76 
 
Error      6   0.07777490   0.01296248 
 
Corrected  
   Total  11   1.48830710 
 
            Source                 Pr > F 
 
            Model                  0.0009 
 
            Error 
 
                    Corrected Total 
 
R-Square   Coeff Var   Root MSE    lnfishwt Mean 
0.947743   5.606391    0.113853      2.030770 
 

 350

 
Source        DF   Type I SS  Mean Square   F Value 
 
Site           1   0.00028852 0.00028852      0.02 
Treatment      2   1.35137097 0.67568548     52.13 
Site*Treatment 2   0.05887271 0.02943636      2.27 
 
                Source                 Pr > F 
 
                Site                   0.8863 
                Treatment              0.0002 
                Site*Treatment         0.1844 
 
 
Source        DF  Type III SS  Mean Square  F Value 
 
Site           1  0.00028852   0.00028852    0.02 
Treatment      2  1.35137097   0.67568548   52.13 
Site*Treatment 2  0.05887271   0.02943636    2.27 
 
                Source             Pr > F 
 
                Site               0.8863 
                Treatment          0.0002 
                Site*Treatment     0.1844 
                             
              The SAS System                      4 
 
              The GLM Procedure 
 
Source     Type III Expected Mean Square 
 
Site       Var(Error) + 2 Var(Site*Treatment)  
           + 6 Var(Site) 
 
Treatment  Var(Error) + 2 Var(Site*Treatment) 
           +Q(Treatment) 
 
Site*Treatment  Var(Error) + 2 Var(Site*Treatment) 
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                      The SAS System             5 
 
                   The GLM Procedure 
                  Least Squares Means 
Standard Errors and Probabilities Calculated Using 
the Type III MS for Site*Treatment as an Error Term 
 
              lnfishwt      LSMEANS 
 
Treatment          LSMEAN      Number 
 
A1             1.59923241           1 
A2             2.07550445           2 
A3             2.41757342           3 
 
    Least Squares Means for Effect Treatment 
  t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
         Dependent Variable: lnfishwt 
 
 i/j         1        2        3 
 
  1                -3.9258  -6.74539 
                    0.0592   0.0213 
   
  2      3.925799           -2.81959 
         0.0592              0.1061 
   
  3      6.745393   2.819594 
         0.0213     0.1061 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
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                 The SAS System                 6 
                The GLM Procedure 
 
         Dependent Variable: lnfishwt 

Tests of Hypotheses Using the Type III 
MS for Site*Treatment as an Error Term 

 
Source      DF    Type III SS  Mean Square  F Value 
Treatment    2    1.35137097   0.67568548     22.95 
 
           Source                 Pr > F 
           Treatment              0.0417 
  
                  The SAS System                7 
      Plot of resid*predict.  Symbol used is '*'. 
resid ‚ 
      ‚ 
 0.15 ˆ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
      ‚      * 
 0.10 ˆ 
      ‚                *                                  * 
      ‚ 
      ‚ 
      ‚                                * 
      ‚                                      * 
 0.05 ˆ 
      ‚                                                     * 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
 0.00 ˆ 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
      ‚                                                     * 
-0.05 ˆ 
      ‚                                      * 
      ‚                                * 
      ‚ 
      ‚ 
      ‚                *                                  * 
-0.10 ˆ 
      ‚      * 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
-0.15 ˆ 
      ‚ 
      Š-ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       1.4       1.6       1.8       2.0       2.2       2.4       2.6 
 
                                   predict 
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                  The SAS System                 8 
 
              The UNIVARIATE Procedure 
                Variable:  resid 
 
                   Moments 
 
N                     12  Sum Weights            12 
Mean                   0  Sum Observations        0 
Std Deviation 0.08408594  Variance       0.00707045 
Skewness               0  Kurtosis      -1.9620284 
Uncorrected  
         SS   0.0777749   Corrected SS   0.0777749 
Coeff Variation       .   Std Error Mean 0.02427352 
 
 
              Basic Statistical Measures 
 
     Location               Variability 
 
Mean               0  Std Deviation     0.08409 
Median   2.22E-16     Variance          0.00707 
Mode            .     Range             0.22314 
Interquartile Range      0.15793 
 
 
          Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M         0    Pr >= |M|   1.0000 
Signed Rank    S         0    Pr >= |S|   1.0000 
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Tests for Normality 
Test               --Statistic---    ---p Value---- 
 
Shapiro-Wilk       W     0.871142  Pr<W      0.0676 
Kolmogorov-Smirnov D      0.19756  Pr>D     >0.1500 
Cramer-von Mises   W-Sq  0.1182    Pr>W-Sq   0.0563 
Anderson-Darling   A-Sq  0.672686  Pr>A-Sq   0.0611 
 
 
            Quantiles (Definition 5) 
 
            Quantile        Estimate 
            100% Max       0.1115718 
            99%            0.1115718 
 
                 The SAS System                   9 
 
              The UNIVARIATE Procedure 
              Variable:  resid 
 
              Quantiles (Definition 5) 
 
              Quantile        Estimate 
 
              95%            0.1115718 
              90%            0.0911608 
              75% Q3         0.0789632 
              50% Median     0.0000000 
              25% Q1        -0.0789632 
              10%           -0.0911608 
               5%            -0.1115718 
               1%            -0.1115718 
               0% Min        -0.1115718 
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               Extreme Observations 
 
     -------Lowest------        ------Highest------ 
 
     Value      Obs             Value      Obs 
 
     -0.1115718        7         0.0588915        9 
     -0.0911608        2         0.0667657        3 
     -0.0911608        5         0.0911608        1 
     -0.0667657        4         0.0911608        6 
     -0.0588915       10         0.1115718        8 
 
     Stem Leaf                     #             Boxplot 
    1 1                        1                | 
    0 6799                     4             +-----+ 
    0 4                        1             *--+--* 
   -0 4                        1             |     | 
   -0 9976                     4             +-----+ 
   -1 1                        1                | 
                ----+----+----+----+ 
            Multiply Stem.Leaf by 10**-1 
 
 
                 The SAS System                10 
 
             The UNIVARIATE Procedure 
                Variable:  resid 
 
                            Normal Probability Plot 
        0.125+                                     ++++*+ 
             |                            * *++*++* 
             |                         +*++++ 
             |                    ++++* 
             |              *++*++* * 
       -0.125+        +*++++ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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OPTIONAL – FOR INTEREST ONLY 
             The SAS System                     11 
 
            The Mixed Procedure 
 
           Model Information 
 
Data Set                     WORK.FISHWEIGHT2 
Dependent Variable           lnfishwt 
Covariance Structure         Variance Components 
Estimation Method            REML 
Residual Variance Method     Profile 
Fixed Effects SE Method      Model-Based 
Degrees of Freedom Method    Containment 
 
 
              Class Level Information 
 
        Class        Levels    Values 
 
        Site              2    1 2 
        Treatment         3    A1 A2 A3 
 
 
                   Dimensions 
 
                Covariance Parameters             3 
                Columns in X                      4 
                Columns in Z                      8 
                Subjects                          1 
                Max Obs Per Subject              12 
 
                Number of Observations 
 
        Number of Observations Read              12 
        Number of Observations Used              12 
        Number of Observations Not Used           0 
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             Iteration History 
 
Iteration    Evaluations    -2Res LogLike Criterion 
 
   0              1        -7.96941039 
   1              3        -8.14751521      
0.00045738 
   2              2        -8.15260197      
0.00000806 
   3              1        -8.15270255      
0.00000000 
    
                  The SAS System                 12 
 
                The Mixed Procedure 
 
                Convergence criteria met. 
 
 
               Covariance Parameter 
                     Estimates 
           Cov Parm           Estimate 
 
           Site                      0 
           Site*Treatment     0.003378 
           Residual            0.01296 
 
 
              Fit Statistics 
 
         -2 Res Log Likelihood            -8.2 
         AIC (smaller is better)          -4.2 
         AICC (smaller is better)         -2.2 
         BIC (smaller is better)          -6.8 
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          Type 3 Tests of Fixed Effects 
 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
 
Treatment       2       2      34.27    0.0284 
 
 
               Least Squares Means 
 
                     Standard 
Treatment   Estimate  Error    DF  t Value Pr > |t| 
 
Treatment A1  1.5992   0.07021   2    22.78   0.0019 
Treatment A2  2.0755   0.07021   2  29.56    0.0011 
Treatment A3  2.4176   0.07021   2  34.43    0.0008 
 
 
        Differences of Least Squares Means 
 
                             Standard 
Effect   Treatments  Estimate  Error    DF  t Value 
 
Treatment  A1  A2   -0.4763   0.09929    2    -4.80 
Treatment  A1  A3   -0.8183   0.09929    2    -8.24 
Treatment  A2  A3   -0.3421   0.09929    2    -3.45 
 
          Differences of Least Squares Means 
 
Effect     Treatments             Pr > |t| 
 
Treatment  A1         A2           0.0408 
Treatment  A1         A3           0.0144 
Treatment  A2         A3           0.0749 
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Latin Square (LS) With One Fixed-Effects Factor 

REF: Neter et al., Chapter 26 (White-newest edition) or 

Chapter 28 (Blue – older edition in the library) 

Introduction and Example  

• In RCB, treatments are assigned randomly, but only 

within blocks of treatments; blocking is in “one” 

direction 

• The Latin Square Design extends grouping of 

experimental units to two variables.   For example, 

two sites may represent north versus south facing 

stands, and there might be a moisture gradient within 

sites 

• Treatments are randomly assigned in two directions; 

treatment appears once in every row and every column 
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Example:  
 
Response variable:  average 5-year height growth in each 

experimental unit (plot) in cm 

Treatments:  four different species, A1 to A4 

Nutrient Gradient from East to West; Moisture Gradient 

from North to South 

     Means 

   A2=40 A1=35 A4=53 A3=47 43.75 
 A4=48 A3=46 A2=39 A1=34 41.75 
 A1=27 A4=53 A3=45 A2=41 41.50 
 A3=44 A2=39 A1=31 A4=52 41.50 

Means 39.75 43.25 42.00 43.50 42.125 
 

Treatment Means:   

A1:  31.75      A2: 39.75    A3: 45.50   A4: 51.50 

16 experimental units 
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Comparison of Degrees of Freedom for CRD, 
RCB, LS for 16 experimental units, 4 treatments, 
J=K=L=4 blocks (rows/columns) 
 
Source CRD  Source RCB  Source LS 
Treatment 3  Treatment 3  Treatment 3 
   Block 3  Row 3 
      Column 3 
Error 12  Error 9  Error 6 
Total 15  Total 15  Total 15 

• Lose degrees of freedom for the error with blocking, 

and even more with latin square 

• Therefore, only block (one or two directions), if this 

will reduce the variance of the error term 

• Analysis is similar to a 3-factor experiment, for the 

Main Effects, only – no interactions 

• Rows and Columns are considered “nuisance 

variables” to reduce variation in the response variable 

– not really of interest. 
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Notation, Assumptions, and Transformations 

Models  
 
Population:  jklClRjkAjkly ετττμ ++++=     

jkly  = response variable measured on Row j , Column l 
and treatment k 
 
k=1 to K treatments; j=1 to J rows; l=1 to L columns;  
J=K=L 
 
μ = the grand or overall mean regardless of treatment or 
blocking 
 

Akτ = the treatment effect for k 
 

Rjτ = the row effect for row j 
 

Clτ = the column effect for column l 
 

jklε = is defined as: 
)( ClRjkAjkljkl y τττμε +++−=  

Same as for a 3-factor crossed experiment, BUT all 
interactions are assumed to be zero.
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For the experiment:   
jklClRjkAjkl eyy ++++= ••• τττ ˆˆˆ  

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions 
for the error terms, this will be an unbiased estimate of μ  

••ky = the mean of all measures for a particular treatment k 
••jy = the mean of all measures from the experiment for a 

particular row j   
ly •• = the mean of all measures from the experiment for a 

particular column l   
 

ClRjAk τττ ˆ,ˆ,ˆ = under the error term assumptions, will be 
unbiased estimates of corresponding treatment effect or 
row and column effects for the population 
 

jkle = is defined as: 

•••••••••

•••••

•••••••••••••

+−−−=
−−

−−−−−=

yyyyy
yy

yyyyyye

lkjjkl

l

kjjkljkl
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)()()(

 

 
JLKnT == 2
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 Partition the total variation in y: 
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Analysis of Variance Table:  Assuming that all are fixed-
effects. 
 

Source Df SS MS F 
Treatment K-1 SSTR MSTR MSTR/MSE
Row J-1 SSR MSR MSR/MSE 
Column L-1 SSC MSC MSC/MSE 
Error (K-1)(J-2) SSE MSE  
Total JK-1 SSy   
 
NOTE:  May be more reasonable to consider Rows and 
Columns as random-effects, and Treatment as fixed-effects.   
For Latin Square, we assume that all interactions are 0.  
Therefore, the F-tests would be the same as for all fixed-
effects.  
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Hypotheses and Tests: 

Treatment: H0:  •••••••• === Kμμμμ L321  
(all treatment means are the same and all  
treatment effects equal zero) 

H1: treatment means are not all  
equal 

Test:  FK-1, df(error) = MSTR/MSE 
 

Can test Row effects and Column effects, but these are 

really not of interest. 

If there are differences among treatment means: 
• you might wish to test which means differ using t-

tests for pairs of treatments (must divide α by the no. 
of pairs) or a multiple comparison test (like Scheffé’s 
test).   

• Use the MSE from the ANOVA table for each of 
these. 

 
Confidence intervals for treatment means (also use the 
MSE from the ANOVA): 
 

J
MSEty errordfk )(,2/1 α−•• ±  
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Example, SAS code, and Results 

Data Organization for Analysis within SAS: 

Row Column Treatment Response
1 1 2 40
1 2 1 35
1 3 4 53
1 4 3 47
2 1 4 48
2 2 3 46
2 3 2 39
2 4 1 34
3 1 1 27
3 2 4 53
3 3 3 45
3 4 2 41
4 1 3 44
4 2 2 39
4 3 1 31
4 4 4 52
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SAS Code: 

PROC IMPORT OUT= WORK.htgrowth  
     DATAFILE= 
"E:\frst430\lemay\examples\latin_square.xls"  
     DBMS=EXCEL REPLACE;   SHEET="'data$'";  
     GETNAMES=YES;       MIXED=NO; 
     SCANTEXT=YES;       USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
options ls=70 ps=50 pageno=1 nodate; 
 
* can get simple means by sorting and then using 
proc means; 
proc sort data=htgrowth; 
by row; 
run; 
 
proc means data=htgrowth mean; 
var response; 
by row; 
run; 
 
proc sort data=htgrowth; 
by column; 
run; 
 
proc means data=htgrowth mean; 
var response; 
by column; 
run; 
 
proc sort data=htgrowth; 
by treatment; 
run; 
 
proc means data=htgrowth mean; 
var response; 
by treatment; 
run; 
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* note using ht growth results in some unequal 
variance.  Using logarithm of height  
growth to fix this.  Need to calculate it; 
 
data htgrowth2; 
 set htgrowth; 
lnhtgrowth=log(response); 
run; 
 
PROC GLM  data=htgrowth2; 
class row column treatment; 
model lnhtgrowth=row column treatment; 
random row column; 
lsmeans treatment/pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
proc univariate data=glmout normal plot; 
var resid; 
run; 
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                The SAS System               13 
 
-------------------- Row=1 -------------------- 
               The MEANS Procedure 
           Analysis Variable : Response Response 
 
                      Mean 
                   ------------ 
                    43.7500000 
                  ------------ 
 
-------------------- Row=2 -------------------- 
 
        Analysis Variable : Response Response 
 
                      Mean 
                  ------------ 
                   41.7500000 
                  ------------ 
 
------------------- Row=3 ------------------------ 
 
         Analysis Variable : Response Response 
 
                     Mean 
                 ------------ 
                  41.5000000 
                 ------------ 
 
-------------------- Row=4 ------------------------ 
 
        Analysis Variable : Response Response 
 
                     Mean 
                 ------------ 
                   41.5000000 
                ------------ 
                The SAS System                   14 
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---------------------- Column=1 ------------------- 
 
                 The MEANS Procedure 
 
             Analysis Variable : Response Response 
 
                       Mean 
                    ------------ 
                     39.7500000 
                   ------------ 
 
--------------------- Column=2 ------------------- 
 
             Analysis Variable : Response Response 
 
                        Mean 
                    ------------ 
                     43.2500000 
                   ------------ 
 
-------------------- Column=3 --------------------- 
 
             Analysis Variable : Response Response 
 
                       Mean 
                   ------------ 
                    42.0000000 
                   ------------ 
 
---------------------- Column=4 ------------------- 
 
         Analysis Variable : Response Response 
 
                      Mean 
                  ------------ 
                   43.5000000 
                  ------------ 
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                   The SAS System                15 
 
------------------- Treatment=1 ------------------- 
 
                The MEANS Procedure 
 
             Analysis Variable : Response Response 
 
                       Mean 
                   ------------ 
                    31.7500000 
                   ------------ 
 
------------------ Treatment=2 ------------------- 
 
            Analysis Variable : Response Response 
 
                       Mean 
                    ------------ 
                     39.7500000 
                    ------------ 
 
------------------ Treatment=3 -------------------- 
 
            Analysis Variable : Response Response 
 
                       Mean 
                    ------------ 
                     45.5000000 
                   ------------ 
 
------------------- Treatment=4 ------------------- 
 
           Analysis Variable : Response Response 
 
                        Mean 
                    ------------ 
                     51.5000000 
                    ------------ 
                The SAS System                    1 
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                  The SAS System                  4 
                The GLM Procedure 
 
               Class Level Information 
 
               Class          Levels    Values 
 
               Row                 4    1 2 3 4 
               Column              4    1 2 3 4 
               Treatment           4    1 2 3 4 
 
 
           Number of Observations Read          16 
           Number of Observations Used          16 
           
                The SAS System                    5 
                The GLM Procedure 
 
Dependent Variable: lnhtgrowth  NOTE:  logarithm of 
height growth was used. 
 
                    Sum of 
Source     DF      Squares    Mean Square   F Value 
 
Model       9   0.56035540     0.06226171     24.63 
Error       6   0.01516796     0.00252799 
Corrected  
   Total   15   0.57552336 
 
              Source                 Pr > F 
 
               Model                  0.0005 
               Error 
               Corrected Total 
 
R-Square   Coeff Var    Root MSE  lnhtgrowth Mean 
 
0.973645   1.350370     0.050279       3.723361 
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Source     DF    Type I SS    Mean Square   F Value 
 
Row        3     0.01111319   0.00370440      1.47 
Column     3     0.02547050   0.00849017      3.36 
Treatment  3     0.52377171   0.17459057     69.06 
 
           Source                 Pr > F 
 
           Row                    0.3152 
           Column                 0.0964 
           Treatment              <.0001 
 
 
Source    DF    Type III SS  Mean Square   F Value 
 
Row        3     0.01111319  0.00370440      1.47 
Column     3     0.02547050  0.00849017      3.36 
Treatment  3     0.52377171  0.17459057     69.06 
 
 
       Source                 Pr > F 
       Row                    0.3152 
       Column                 0.0964 
       Treatment              <.0001 
                       
                    The SAS System               7 
 
                  The GLM Procedure 
 
Source                Type III Expected Mean Square 
 
Row                   Var(Error) + 4 Var(Row) 
Column                Var(Error) + 4 Var(Column) 
Treatment             Var(Error) + Q(Treatment) 
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                    The SAS System              8 
 
                   The GLM Procedure 
                   Least Squares Means 
 
                 lnhtgrowth    LSMEAN 
Treatment          LSMEAN      Number 
 
  1              3.45288316        1 
  2              3.68239370        2 
  3              3.81741028        3 
  4              3.94075714        4 
 
 
          Least Squares Means for Effect Treatment 
        t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
          Dependent Variable: lnhtgrowth 
 
i/j        1          2          3           4 
 
 1                 -6.4555    -10.2531     -13.7225 
                    0.0007      <.0001       <.0001 
  
 2      6.455497              -3.79764     -7.26705 
          0.0007                0.0090       0.0003 
 
 3      10.25314  3.797643                 -3.46941 
          <.0001    0.0090                   0.0133 
 
 4      13.72255  7.267049    3.469406 
          <.0001    0.0003      0.0133 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
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                The SAS System                   9 
 
       Plot of resid*predict.  Symbol used is '*'. 
 
     resid ‚ 
           ‚ 
      0.06 ˆ 
           ‚ 
           ‚ 
           ‚ 
           ‚                                  * 
      0.04 ˆ 
           ‚                   * 
           ‚ 
           ‚                      *       * 
           ‚                                               * 
      0.02 ˆ                                *    * 
           ‚ 
           ‚ 
           ‚ 
           ‚ 
      0.00 ˆ                * 
           ‚                                           * 
           ‚                                                 * 
           ‚                               *                * 
           ‚ 
     -0.02 ˆ                                         * 
           ‚ 
           ‚ 
           ‚ 
           ‚                                * 
     -0.04 ˆ 
           ‚ 
           ‚                                            * 
           ‚ 
           ‚ 
     -0.06 ˆ 
           ‚ 
           ‚            * 
           ‚ 
           ‚ 
     -0.08 ˆ 
           ‚ 
           Š--ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ-- 
             3.2         3.4         3.6         3.8         4.0 

 
                     predict 
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                    The SAS System               10 
            The UNIVARIATE Procedure 
               Variable:  resid 
 
Moments 
 
N                   16    Sum Weights            16 
Mean                 0    Sum Observations        0 
Std Deviation  0.03179933 Variance        0.0010112 
Skewness       -0.5578556 Kurtosis       -0.3222064 
Uncorrected SS 0.01516796 Corrected SS   0.01516796 
Coeff Variation         . Std Error Mean 0.00794983 
 
 
NOTE: some outputs on basic statistics for 
residuals was removed. 
 
               Tests for Normality 
 
Test              --Statistic---    -----p Value--- 
 
Shapiro-Wilk       W    0.950408  Pr < W     0.4962 
Kolmogorov-Smirnov D    0.180548  Pr > D    >0.1500 
Cramer-von Mises   W-Sq 0.053763  Pr > W-Sq >0.2500 
Anderson-Darling   A-Sq  0.33663  Pr > A-Sq >0.2500 
 
                Quantiles (Definition 5) 
 
              Quantile         Estimate 
              100% Max       0.04522920 
               99%            0.04522920 
               95%            0.04522920 
               90%            0.03742738 
               75% Q3         0.02610986 
               50% Median    -0.00217353 
               25% Q1        -0.01606276 
               10%           -0.04703827 
                5%            -0.06694173 
                1%            -0.06694173 
                0% Min        -0.06694173 
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               Extreme Observations 
 
-------Lowest------        ------Highest------ 
 
Value           Obs         Value          Obs 
 
-0.0669417        1         0.0252053       14 
-0.0470383       12         0.0270144        5 
-0.0348162        6         0.0285595        2 
-0.0189486       10         0.0374274        4 
-0.0131769        7         0.0452292        9 
 
 
Stem Leaf                   #             Boxplot 
 4 5                        1                | 
 2 115797                   6             +-----+ 
 0 1                        1             |  +  | 
-0 93195                    5             *-----* 
-2 5                        1                | 
-4 7                        1                | 
-6 7                        1                | 
 ----+----+----+----+ 
            Multiply Stem.Leaf by 10**-2 
 
                  The SAS System                 12 
                The UNIVARIATE Procedure 
                    Variable:  resid 
 
                   Normal Probability Plot 
   0.05+                                      +++++* 
       |                           * * *+*+*++* 
       |                         +*+++++ 
  -0.01+                 * *+*+** 
       |             ++*+++ 
       |       +++++* 
  -0.07++++++++* 
        +----+----+----+----+----+----+----+----+----+----+ 
            -2        -1         0        +1        +2 
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Split-Plot Experiments 

REF: Neter et al., Ch 27.6 (white book, newest edition); or 
Chapter 29.6 (blue book); Freese pp. 45 to 50. 
Introduction  

• As with factorial experiments, treatments can be 

combinations of more than one factor 

• In a split-plot experiment, the experimental unit (called 

the “whole-plot” for one factor is subdivided, and the 

second factor is applied to the subdivided experimental 

unit (called the “split” plot).  

• Can be a CRD or RCB  

• Split-split plot experiment: one Factor is applied to the 

whole experimental unit, the second Factor is applied to 

a sub-divided experimental unit (split-plot), and for the 

third factor, the split-plot is divided once more.  For 

more on this, see “Fundamental concepts in the design of 

experiments” by Charles R. Hicks. 
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Example from Freese: Randomized Block Design, with 

two factors, but using a split-plot for the second factor 

Four plantation areas of each 12 acres (imperial units) each 

were selected (blocks; I, II, III and IV).  Each was divided 

into two areas (whole plot of 6 acres each), and a burning 

treatment (A or B) was randomly assigned to the 2 areas in 

each block.  Each experimental unit was then sub-divided 

into six areas (split-plot, 1 acre each), and planting date 

(a,b,c,d,e,f) was randomly assigned to each split-plot  In 

each split-plot, 1 pound of seeds were sown.  At the end of 

the first growing season, the number of seeds were counted.  

(see schematic on page 45 of the Freese book).  
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 Main questions: 

4. Is there an interaction between Factors? 

5. If there is an interaction, look at treatment means for 

differences. 

6. If there is no interaction: 

a. Are there differences between levels for Factor 

A? 

b. Are there differences between levels for Factor 

B? 
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Model for a 2-factor RCB, split-plot 
The model is a like a 2-factor RCB except that we will 
divide the effects into whole plot versus split plot. 
 
Population:  

jklBklABljkABLKkAjBLKjkly ετττττμ ++++++= ×•••     

jkly  = response variable measured on block j and subunit 
kl 
 
j=1 to J blocks; k=1 to K levels for Factor A (whole plot); 
l=1 to L levels for Factor B (split-plot) 
 
Definition of terms follows other designs, except that: 
 

jkABLK×τ  is considered “Error 1”, the whole plot error; 
and 

jklε  is considered “Error 2”, the subunit (i.e., split-plot) 
error. 

 382

Partition SSy: 
 

444 3444 21444 3444 21
plot-subor split 

2

plot whole

1         EAXBBEABLKy SSSSSSSSSSSSSS +++++=

 
 
 
 
 
Two error terms for Factors A and B both fixed: 

• whole plot error (Error 1) to test Factor A, and  

• split-plot error (Error 2) to test interaction between A 
and B and to test B. 
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[There are also “working formulae” for easier hand 
calculations in many textbooks]

Block x 
main plot 
interaction 

Block x subunit 
interaction 
(nested in main 
plot)
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Degrees of Freedom: 
 

1
freedom of degrees

 )1( have together plotsSplit   :NOTE

plotsplit   
)1)(1(

)1)(1(
)1(

freedom of degrees
 1 have together plots  Whole:NOTE

plot   whole
)1)(1(
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1
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 Analysis of Variance Table (for Split-Plot RCB) 
 

Source df SS MS 
Block J-1 SSBLK MSBLK 
Factor A  K-1 SSA MSA 
Exp. Err. #1 (J-1)(K-1) SSE1 MSE1 
Factor B L-1 SSB MSB 
A x B (K-1)(L-1) SSAXB MSAXB 
Exp. Err. #2 K(J-1)(L-1) SSE2 MSE2 
Total JKL-1   
 
 
What are the appropriate F-tests?   

• Depends upon which are fixed and which are random-

effects.   

• Then, need the expected means squares in order to 

decide this. 
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Expected Mean Square Values for Model for a 2-factor 
RCB, split-plot:   
 
Mean 
Square 

Both A and B are 
Fixed; Blocks are 
Random 

Both A and B are Random; 
Blocks are Random 

Blocks  
(MSBLK) 

2
BLKKLσ  2

1
2

2

2

BLKKLL σσσ εε ++  

A   
(MSA) AL φσε +

2

1
* 

222
12

2

BAA JJLL ×+++ σσσσ εε

Error 
1(MSE1) 

2

1εσL  
2

12

2

εε σσ L+  

B  
(MSB) Bφσ ε +

2

2  
22

2

2

BAB JJK ×++ σσσε  

A X B 
(MSAB) BA×+φσ ε

2

2  
2

2

2

BAJ ×+ σσε  

Error 2 
(MSEE2) 

2

2εσ  
2

2εσ  

* Aφσ ε +
2

= 1
1

2

−
+

∑
=

K
JL

K

k
jAτ

σ ε  when the number of observations (n) 

are all equal.  Similar values for other fixed effects. 

 386

Organization of Example Data for Analysis using a 
Statistics Package: 
 

Block Burn_Type Date yjkl
I A a 900
I A b 880
I A c 1530
I A d 1970
I A e 1960
I A f 830
I B a 880
I B b 1050
I B c 1140
I B d 1360
I B e 1270
I B f 150
II A a 810
II A b 1170
II A c 1160
II A d 1890
II A e 1670
II A f 420
II B a 1100
II B b 1240
II B c 1270
II B d 1510
II B e 1380
II B f 380
III A a 760
III A b 1060
III A c 1390
III A d 1820
III A e 1310
III A f 570
III B a 960
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III B b 1110
III B c 1320
III B d 1490
III B e 1500
III B f 420
IV A a 1040
IV A b 910
IV A c 1540
IV A d 2140
IV A e 1480
IV A f 760
IV B a 1040
IV B b 1120
IV B c 1080
IV B d 1270
IV B e 1450
IV B f 270
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SAS code for Freese example: 
 
 

PROC IMPORT OUT= WORK.seedlings 
     DATAFILE= "E:\frst430\lemay\examples\split-plot.XLS"  
     DBMS=EXCEL REPLACE; 
     SHEET="data$";       GETNAMES=YES; 
     MIXED=NO;       SCANTEXT=YES; 
     USEDATE=YES;       SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 nodate pageno=1; 
run; 
 
PROC GLM data=seedlings; 
TITLE 'split plot, blocks random, treatments fixed'; 
CLASS block burn_type date; 
MODEL yjkl=block burn_type block*burn_type date 
date*burn_type; 
Test h=burn_type e=block*burn_type; 
LSMEANS burn_type/e=block*burn_type tdiff pdiff; 
LSMEANS date burn_type*date/tdiff pdiff; 
OUTPUT OUT=GLMOUT PREDICTED=PREDICT 
RESIDUAL=RESID; 
RUN; 
 
PROC PLOT DATA=GLMOUT; 
PLOT RESID*PREDICT='*'; 
RUN; 
 
PROC UNIVARIATE DATA=GLMOUT PLOT NORMAL; 
VAR RESID; 
RUN; 
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SAS output for Freese Example: 
             
        split plot, blocks random, treatments fixed             
 
                   The GLM Procedure 
 
                Class Level Information 
 
          Class          Levels    Values 
 
          Block               4    I II III IV 
          Burn_Type           2    A B 
          Date                6    a b c d e f 
 
 
        Number of Observations Read          48 
        Number of Observations Used          48 
         
     split plot, blocks random, treatments fixed             
 
                  The GLM Procedure 
 
Dependent Variable: yjkl   yjkl 
 
                       Sum of 
Source      DF        Squares    Mean Square   F Value 
 
Model       17    8833968.750     519645.221     30.83 
Error       30     505679.167      16855.972 
 
Corrected  
   Total    47    9339647.917 
 
                    Source                 Pr > F 
 
                    Model                  <.0001 
                    Error 
 
                    Corrected Total 
 
 R-Square     Coeff Var      Root MSE     yjkl Mean 
 0.945857      11.18225      129.8306      1161.042 
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Source         DF   Type I SS    Mean Square   F Value 
 
Block           3    6856.250       2285.417      0.14 
Burn_Type       1  369252.083     369252.083     21.91 
Block*Burn_Type 3  271389.583      90463.194      5.37 
Date            5 7500085.417    1500017.083     88.99 
Burn_Type*Date  5  686385.417     137277.083      8.14 
 
                    Source                 Pr > F 
 
                    Block                  0.9380 
                    Burn_Type              <.0001 
                    Block*Burn_Type        0.0044 
                    Date                   <.0001 
                    Burn_Type*Date         <.0001 
 
   split plot, blocks random, treatments fixed             
 
                   The GLM Procedure 
 
Dependent Variable: yjkl   yjkl 
 
Source         DF    Type III SS  Mean Square   F Value 
 
Block           3       6856.250     2285.417      0.14 
Burn_Type       1     369252.083   369252.083     21.91 
Block*Burn_Type 3     271389.583    90463.194      5.37 
Date            5    7500085.417  1500017.083     88.99 
Burn_Type*Date  5     686385.417   137277.083      8.14 
 
                    Source                 Pr > F 
 
                    Block                  0.9380 
                    Burn_Type              <.0001 
                    Block*Burn_Type        0.0044 
                    Date                   <.0001 
                    Burn_Type*Date         <.0001 
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        Tests of Hypotheses Using the Type III 
        MS for Block*Burn_Type as an Error Term 
 
Source     DF    Type III SS    Mean Square   F Value 
 
Burn_Type    1    369252.0833    369252.0833      4.08 
 
Tests of Hypotheses Using the Type III MS for                  
Block*Burn_Type as an Error Term 
 
                    Source                 Pr > F 
 
                    Burn_Type              0.1366 
              
          split plot, blocks random, treatments fixed             
 
                  The GLM Procedure 
                  Least Squares Means 
 Standard Errors and Probabilities Calculated Using the 
Type III MS for Block*Burn_Type as an Error Term 

H0:LSMean1=LSMean2 
 

Burn_Type     yjkl LSMEAN    t Value    Pr > |t| 
 
A              1248.75000       2.02      0.1366 
B              1073.33333 
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                   The GLM Procedure 
                 Least Squares Means 
 
                                        LSMEAN 
              Date     yjkl LSMEAN      Number 
 
              a          936.25000           1 
              b         1067.50000           2 
              c         1303.75000           3 
              d         1681.25000           4 
              e         1502.50000           5 
              f          475.00000           6 
 
 
           Least Squares Means for Effect Date 
           t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                 Dependent Variable: yjkl 
 
i/j      1         2          3          4          5          
6 
 
1            -2.02187  -5.66123  -11.4765 -8.72291  .105415 
               0.0522    <.0001    <.0001   <.0001   <.0001 
 
2   2.021866           -3.63936  -9.45463 -6.70104 9.127282 
      0.0522             0.0010    <.0001   <.0001   <.0001 
 
3   5.661225 3.639359            -5.81527 -3.06168 12.76664 
      <.0001   0.0010              <.0001   0.0046   <.0001 
 
4    11.4765 9.454631  5.815272           2.753589 18.58191       
      <.0001   <.0001    <.0001             0.0099   <.0001 
 
5   8.722908 6.701042 3.061683   -2.75359          15.82832 
      <.0001   <.0001   0.0046     0.0099            <.0001 
 
6   -7.10542 -9.12728 -12.7666   -18.5819 -15.8283 
     <.0001   <.0001  <.0001    <.0001  <.0001 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned comparisons 
should be used. 
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                                       LSMEAN 
Burn_Type    Date     yjkl LSMEAN      Number 
 
A            a          877.50000           1 
A            b         1005.00000           2 
A            c         1405.00000           3 
A            d         1955.00000           4 
A            e         1605.00000           5 
A            f          645.00000           6 
B            a          995.00000           7 
B            b         1130.00000           8 
B            c         1202.50000           9 
B            d         1407.50000          10 
B            e         1400.00000          11 
B            f          305.00000          12 
 
      Least Squares Means for Effect Burn_Type*Date 
        t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
               Dependent Variable: yjkl 
 
i/j           1          2          3          4          5          6 
 
   1              -1.38883   -5.74593    -11.737   -7.92449   2.532568 
                    0.1751     <.0001     <.0001     <.0001     0.0168 
   2   1.388827              -4.35711   -10.3481   -6.53566   3.921395 
         0.1751                0.0001     <.0001     <.0001     0.0005 
   3   5.745933   4.357106              -5.99102   -2.17855   8.278501 
         <.0001     0.0001                <.0001     0.0374     <.0001 
   4   11.73695   10.34813    5.99102              3.812467   14.26952 
         <.0001     <.0001     <.0001                0.0006     <.0001 
   5   7.924486   6.535658   2.178553   -3.81247              10.45705 
         <.0001     <.0001     0.0374     0.0006                <.0001 
   6   -2.53257    -3.9214    -8.2785   -14.2695   -10.4571 
         0.0168     0.0005     <.0001     <.0001     <.0001 
   7     1.2799   -0.10893   -4.46603   -10.4571   -6.64459   3.812467 
         0.2104     0.9140     0.0001     <.0001     <.0001     0.0006 
   8   2.750423   1.361595   -2.99551   -8.98653   -5.17406   5.282991 
         0.0100     0.1835     0.0055     <.0001     <.0001     <.0001 
   9   3.540148   2.151321   -2.20578    -8.1968   -4.38434   6.072716 
         0.0013     0.0396     0.0352     <.0001     0.0001     <.0001 
  10   5.773165   4.384338   0.027232   -5.96379   -2.15132   8.305733 
         <.0001     0.0001     0.9785     <.0001     0.0396     <.0001 
  11   5.691469   4.302642   -0.05446   -6.04548   -2.23302   8.224037 
         <.0001     0.0002     0.9569     <.0001     0.0332     <.0001 
  12   -6.23611   -7.62493    -11.982   -17.9731   -14.1606   -3.70354 
         <.0001     <.0001     <.0001     <.0001     <.0001     0.0009 
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                  The GLM Procedure 
                  Least Squares Means 
 
      Least Squares Means for Effect Burn_Type*Date 
          t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
                  Dependent Variable: yjkl 
 
i/j           7          8          9         10         11         12 
 
   1    -1.2799   -2.75042   -3.54015   -5.77316   -5.69147   6.236107 
         0.2104     0.0100     0.0013     <.0001     <.0001     <.0001 
   2   0.108928    -1.3616   -2.15132   -4.38434   -4.30264   7.624935 
         0.9140     0.1835     0.0396     0.0001     0.0002     <.0001 
   3   4.466033    2.99551   2.205785   -0.02723   0.054464   11.98204 
         0.0001     0.0055     0.0352     0.9785     0.9569     <.0001 
   4   10.45705    8.98653   8.196805   5.963788   6.045484   17.97306 
         <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 
   5   6.644586   5.174063   4.384338   2.151321   2.233017   14.16059 
         <.0001     <.0001     0.0001     0.0396     0.0332     <.0001 
   6   -3.81247   -5.28299   -6.07272   -8.30573   -8.22404    3.70354 
         0.0006     <.0001     <.0001     <.0001     <.0001     0.0009 
   7              -1.47052   -2.26025   -4.49327   -4.41157   7.516007 
                    0.1518     0.0312     <.0001     0.0001     <.0001 
   8   1.470523              -0.78973   -3.02274   -2.94105    8.98653 
         0.1518                0.4359     0.0051     0.0062     <.0001 
   9   2.260249   0.789725              -2.23302   -2.15132   9.776256 
         0.0312     0.4359                0.0332     0.0396     <.0001 
  10   4.493265   3.022742   2.233017              0.081696   12.00927 
         <.0001     0.0051     0.0332                0.9354     <.0001 
  11   4.411569   2.941046   2.151321    -0.0817              11.92758 
         0.0001     0.0062     0.0396     0.9354                <.0001 
  12   -7.51601   -8.98653   -9.77626   -12.0093   -11.9276 
         <.0001     <.0001     <.0001     <.0001     <.0001 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned comparisons 
should be used. 
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           split plot, blocks random, treatments fixed            
 
         Plot of RESID*PREDICT.  Symbol used is '*'. 
 
RESID ‚ 
  300 ˆ 
      ‚ 
      ‚                                          * 
      ‚ 
      ‚                        * 
      ‚ 
  200 ˆ 
      ‚ 
      ‚ 
      ‚                       * 
      ‚                                      * 
      ‚                                                 * 
  100 ˆ                        * 
      ‚                   *    *       * * 
      ‚                                    * 
      ‚          *       *            ** 
      ‚                           ** *     ** 
      ‚              *           *         * 
    0 ˆ       *  *          *          *             * 
      ‚                    *  * 
      ‚                                *             * 
      ‚      * 
      ‚                        * 
      ‚                             **                   * 
 -100 ˆ                          *       * * 
      ‚ 
      ‚ 
      ‚                           * 
      ‚               * 
      ‚                                 *       * 
 -200 ˆ                                     * 
      ‚                           * 
      ‚ 
      ‚ 
      ‚ 
      ‚ 
 -300 ˆ 
      ‚ 
      Š-ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ- 
        0          500        1000        1500        2000        2500 
 
                                   PREDICT 
 
NOTE: 2 obs hidden. 
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         split plot, blocks random, treatments fixed              
                The UNIVARIATE Procedure 
                   Variable:  RESID 
 
                        Moments 
 
N                       48    Sum Weights            48 
Mean                     0    Sum Observations        0 
Std Deviation   103.726232    Variance       10759.1312 
Skewness        -0.0730794    Kurtosis       0.26668103 
Uncorrected  
         SS     505679.167    Corrected SS   505679.167 
Coeff Variation          .    Std Error Mean  14.971592 
 
 
NOTE: some outputs removed 
 
              Tests for Normality 
 
Test                  --Statistic---    -----p Value---
--- 
 
Shapiro-Wilk       W     0.973694    Pr < W      0.3503 
Kolmogorov-Smirnov D     0.102576    Pr > D     >0.1500 
Cramer-von Mises   W-Sq  0.087186    Pr > W-Sq   0.1671 
Anderson-Darling   A-Sq  0.518069    Pr > A-Sq   0.1877 
 
 
                       The UNIVARIATE Procedure 
                           Variable:  RESID 
 
                       Quantiles (Definition 5) 
                       Quantile       Estimate 
                       100% Max       258.7500 
                       99%            258.7500 
                       95%            152.0833 
                       90%            122.0833 
                       75% Q3          56.2500 
                       50% Median      20.2083 
                       25% Q1         -76.8750 
                       10%           -162.9167 
                       5%            -187.9167 
                       1%            -221.2500 
                       0% Min        -221.2500 
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                    Extreme Observations 
 
------Lowest-----        -----Highest----- 
 
 Value        Obs         Value        Obs 
 
-221.250        2         122.083       40 
-197.917       29         127.083       17 
-187.917       41         152.083       26 
-182.917       15         227.083       14 
-162.917       18         258.750        5 
 
 
           Stem Leaf                     #             Boxplot 
              2 6                        1                0 
              2 3                        1                | 
              1 5                        1                | 
              1 023                      3                | 
              0 556678889                9             +-----+ 
              0 002222333444            12             *--+--* 
             -0 4322110                  7             |     | 
             -0 998876                   6             +-----+ 
             -1 00                       2                | 
             -1 9866                     4                | 
             -2 20                       2                | 
                ----+----+----+----+ 
            Multiply Stem.Leaf by 10**+2 
 
                       The UNIVARIATE Procedure 
                           Variable:  RESID 
 
                            Normal Probability Plot 
          275+                                               *  + 
             |                                           * +++++ 
             |                                        +*+++ 
             |                                   +++** 
             |                              ******** 
           25+                        ******* 
             |                    ****+ 
             |               *****+ 
             |           +++*+ 
             |      +*+*+*** 
         -225+ ++*++ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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CRD: Two Factor Experiment, Both Fixed Effects, with 

Second Factor Nested in the First Factor 

REF: Neter et al., 4th edition, chapter 28.1;  not in the 

Freese Handbook 

Introduction and Example  

• In a CRD with two factors, a crossed design shows that 

all levels of Factor A are crossed with all levels in Factor 

B.   Example: 

o Response is weight gain 

o Factor A: Salmon or Trout 

o Factor B:  no warming; warmed 1 degree C; 

warmed 2 degrees C. 

o Treatments:  6 treatments; all combinations of 

Factor A crossed with Factor B. 
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• A nested design is when Factor B has different levels, 

depending on which level of Factor A.   

o Response:  Weight gain 

o Factor A: Salmon or Trout 

o Factor B:   

 For Salmon:  No warming; warmed 2 degree C 

 For Trout: No warming; warmed 1 degrees C 

• Both CRD and nested designs have “No warming”, but 

the levels of warming differ by Factor A (species) for the 

nested design. 

• Sometimes it is difficult to decide if the experiment is 

crossed or nested.  For example: 

o For the experiment, could evaluate this as Factor A, 

Salmon or Trout crossed with Factor B, Not 

warmed or warmed, where the level of warming 

differs slightly by species. 
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Main questions 

7. Is there a difference  

a. Between Factor A means? 

b. Between Factor B means, within Factor A? 

c. Not able to look at the interaction between Factors 

as there is nesting of B within A. 

8. If there are differences:  

a. Which levels of Factor A means differ?   

b. Which levels of Factor B within Factor A differ?
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Notation, Assumptions, and Transformations 

Models  
 
If this were a crossed experiment (Factorial), for two 
factors, we would have: 

Population:  ijkjkABBkjAijky ετττμ ++++=   
 
However, for a nested experiment, we have: 

Population:  ijkjBkjAijky εττμ +++= )(   
 
We cannot separate get the interaction between Factor A 
and B, since we do not have all levels of B for every level 
of A (nested, not crossed). 

ijky  = response variable measured on experimental unit i 
and Factor A level j. and Factor B level k 
 
j=1 to J levels for Factor A; k=1 to K levels for Factor B 
(nested in Factor A) 
 
μ = the grand or overall mean regardless of treatment 

Ajτ = the treatment effect for Factor A, level j 
)( jBkτ = the treatment effect for Factor B, level k, nested in 

Factor A.  
ijkε = the difference between a particular measure for an 

experimental unit i, and the mean for a treatment: 
)( )( jBkjAijkijk y ττμε ++−=  
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For the experiment:   
ijkjBkjAijk eyy +++= ••• )(ˆˆ ττ  

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions 
for the error terms, this will be an unbiased estimate of μ  

jky• = the mean of all measures from the experiment for a 
particular treatment jk  

•• jy = the mean of all measures from the experiment for a 
particular level j of Factor A (includes all data for all levels 
of Factor B) 

ky •• = the mean of all measures from the experiment for a 
particular level k of Factor B (includes all data for all levels 
of Factor A) 
 

)(ˆ,ˆ jBkAj ττ = under the error term assumptions, will be 
unbiased estimates of corresponding treatment effects for 
the population 
 

ijke = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment jk that 
was applied to it 

jkijkijk yye •−=  
njk = the number of experimental units measured in 
treatment jk 
nT = the number of experimental units measured over all 

treatments = ∑∑
− =

K

k

J

j
jkn

1 1
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Assumptions and Transformations: 

As with other designs, we need to meet the assumptions 

that i) the observations are independent; ii) the variances by 

treatments are all equal (residual plot); and iii) the errors 

are normally distributed (normality plot and normality 

tests). 

 

If these are not met, we would transform the response 

variable and check the assumptions for the transformed y-

variable.   Interpretation of all hypothesis tests and 

calculation of confidence intervals would be based on the 

analysis where the assumptions were met. 
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In a crossed experiment,  
SSESSSSy TR +=  

And for two-factors, TRSS is divided into: 

SSABSSBSSASSTR                                    ++=  

For a nested experiment with two factors, where 
Factor B is nested in Factor A: 
 

(A)                      SSBSSASSTR +=  
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Sums of Squares 

SSy:  The sum of squared differences between the 

observations and the grand mean (same as two-factor 

crossed experiment) 

( ) 1 
1 1 1

2 −=−= ∑∑∑
= = =

••• T

K

k

J

j

n

i
ijk ndfyySSy

jk

 

SSA:  Sum of squared differences between the level means 

for factor A and the grand mean, weighted by the number 

of experimental units for each treatment (same as for the 

crossed experiment): 

( ) 1
1 1

2 −=−= ∑∑
= =

••••• JdfyynSSA
K

k

J

j
jjk  

SSB(A):  Sum of squared differences between the level 

means for Factor B with each level of Factor A, and the  

mean and mean of all observations for that level of  Factor 
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A, weighted by the number of experimental units for each 

treatment: 

( ) )1()(
2

1 1
−=−= ∑∑

= =
••• KJdfyynASSB

K

k

J

j
jjkjk  

SSE: Sum of squared differences between the observed 

values for each experimental unit and the treatment means 

(same as for crossed experiments): 

( )∑∑∑
= = =

• −=−=
K

k

J

j
T

n

i
jkijk JKndfyySSE

jk

1 1 1

2 
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Expected Mean Squares and F-tests for Nested Design, 
Both Factors Fixed:  
Source SS MS EMS F 

A    SSA 

1−
=

J
SSA

MSA

 
Aφσε +

2

* F=MSA/MSE 

B (A)  SSB(A) 

)1(
)(

)(

−
=

KJ
ASSB

AMSB

 
)(

2

ABφσ ε + **
F=MSB(A)/MSE

Error  SSE 

JKn
SSE

MSE

T −
=  

2

εσ   

* Aφσ ε +
2

= 1
12

−
+

∑
=

J
nK

J

j
jAτ

σε  when the number of observations (n) 

are all equal. 

** )(

2

ABφσε + = )1(
1 1

)(
2

−
+

∑∑
= =

KJ
n

K

k

J

j
jABkτ

σε  when the number of 

observations (n) are all equal. 
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Comparison of Factorial (Crossed) versus Nested 
experiments, with J=3, K=3 and njk=4 observations per 
treatment 
 

Factorial Exp.  Nested Exp. 
Source DoF  Source DoF 
Treatment 8  Treatment 8 
    Factor A    2      Factor A    2 
    Factor B    2      Factor B(A)    6 
    A x B    4    
Error 27  Error 27 
Total 35  Total 35 
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Example: 

 

A1B1 = 10 

 

A1B1 = 11 

 

A1B2= 13 

 

A2B4 = 23 

 

A1B2 = 15 

 

A2B3 = 18 

 

A2B4= 25 

 

A1B1 = 11 

 

A2B4 = 20 

 

A2B3 = 18 

 

A1B1=  9 

 

A2B3 = 18 

 

A2B4 = 22 

 

A1B2 = 15 

 

A2B3 = 18 

 

A1B2 = 14 

 

Nested design with two factors, where the second factor is 

nested in the first factor, with four replications per 

treatment. 
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Data: 

A B result
1 1 10.00
1 1 11.00
1 1 9.00
1 1 11.00
1 2 15.00
1 2 15.00
1 2 13.00
1 2 14.00
2 3 18.00
2 3 19.00
2 3 17.00
2 3 18.00
2 4 20.00
2 4 22.00
2 4 25.00
2 4 23.00
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SAS: 

PROC IMPORT OUT= WORK.nested 
     DATAFILE= “E:\frst430\lemay\examples\encyl_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="nested$";         GETNAMES=YES; 
     MIXED=NO;                  SCANTEXT=YES; 
     USEDATE=YES;           SCANTIME=YES; 
RUN; 
options ls=70 ps=50 pageno=1; 
 
data nested2; 
set nested; 
*set up a label for each treatment, with factor a and factor b, for 
example,  
treatment of 11 is factor A of 1,and factor b of 1; 
treatment=(a*10)+b; 
lnresult=log(result); 
run; 
 
proc print data=nested2; 
run; 
 
proc shewhart data=nested2;  
      boxchart result*treatment;  
run; 
 
PROC GLM  data=nested2; 
class a b; 
model result=a b(a); 
output out=glmout r=resid p=predict; 
lsmeans a b(a)/pdiff tdiff; 
run; 
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proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
PROC univariate data=glmout plot normal; 
Var resid; 
Run; 
PROC GLM  data=nested2; 
class a b; 
model lnresult=a b(a); 
output out=glmout2 r=resid2 p=predict2; 
lsmeans a b(a)/pdiff tdiff; 
run; 
 
proc plot data=glmout2; 
plot resid2*predict2='*'; 
run; 
 
PROC univariate data=glmout2 plot normal; 
Var resid2; 
Run; 
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Selected SAS Output: 

                   The SAS System          1 
 
Obs  A    B    result    treatment  lnresult 
 
1    1    1      10          11      2.30259 
2    1    1      11          11      2.39790 
3    1    1       9          11      2.19722 
4    1    1      11          11      2.39790 
5    1    2      15          12      2.70805 
6    1    2      15          12      2.70805 
7    1    2      13          12      2.56495 
8    1    2      14          12      2.63906 
9    2    3      18          23      2.89037 
10   2    3      19          23      2.94444 
11   2    3      17          23      2.83321 
12   2    3      18          23      2.89037 
13   2    4      20          24      2.99573 
14   2    4      22          24      3.09104 
15   2    4      25          24      3.21888 
16   2    4      23          24      3.13549 
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                The SAS System             2 
 
               The GLM Procedure 
 
          Class Level Information 
 
Class         Levels    Values 
A                  2    1 2 
B                  4    1 2 3 4 
 
Number of Observations Read          16 
Number of Observations Used          16 
                             
                The SAS System             3 
                 The GLM Procedure 
 
Dependent Variable: result   result 
 
                Sum of 
Source    DF    Squares  Mean Square F Value 
Model      3 328.5000000 109.5000000 64.10 
Error     12  20.5000000   1.7083333 
Corrected  
   Total  15 349.0000000 
 
           Source                 Pr > F 
           Model                  <.0001 
           Error 
           Corrected Total 
 
 
R-Square   Coeff Var   Root MSE  result Mean 
0.941261    8.043275   1.307032     16.25000 
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(Type I SS not shown) 
 
 
Source  DF  Type III SS Mean Square  F Value 
A        1  256.0000000 256.0000000   149.85 
B(A)     2   72.5000000  36.2500000    21.22 
 
              Source          Pr > F 
                A             <.0001 
                B(A)          0.0001 
                             
                The SAS System                         
               The GLM Procedure 
              Least Squares Means 
 
           result     H0:LSMean1=LSMean2 
A          LSMEAN    t Value    Pr > |t| 
 
1      12.2500000     -12.24      <.0001 
2      20.2500000 
 
 
                result      LSMEAN 
B    A          LSMEAN      Number 
1    1      10.2500000           1 
2    1      14.2500000           2 
3    2      18.0000000           3 
4    2      22.5000000           4 
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Least Squares Means for Effect B(A) 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
        Dependent Variable: result 
 
i/j        1         2         3          4 
1             -4.32801  -8.38553   -13.2545 
                0.0010    <.0001     <.0001 
 
2    4.328014           -4.05751   -8.92653            
       0.0010             0.0016     <.0001 
 
3    8.385528 4.057513             -4.86902           
       <.0001   0.0016               0.0004 
 
4    13.25454 8.926529  4.869016 
       <.0001   <.0001    0.0004 
 
NOTE: To ensure overall protection level, 
only probabilities associated with pre-
planned comparisons should be used. 
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             Plot of resid*predict.  Symbol used is '*'. 
 
resid ‚ 
      ‚ 
 2.50 ˆ                                                             * 
 2.25 ˆ 
 2.00 ˆ 
 1.75 ˆ 
 1.50 ˆ 
 1.25 ˆ 
 1.00 ˆ                                       * 
 0.75 ˆ  *                  * 
 0.50 ˆ                                                             * 
 0.25 ˆ 
 0.00 ˆ                                       * 
-0.25 ˆ  *                  * 
-0.50 ˆ                                                             * 
-0.75 ˆ 
-1.00 ˆ                                       * 
-1.25 ˆ  *                  * 
-1.50 ˆ 
-1.75 ˆ 
-2.00 ˆ 
-2.25 ˆ 
-2.50 ˆ                                                             * 
      ‚ 
      Š-ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ- 
      10.0        12.5        15.0        17.5        20.0        22.5 

 
                                   predict 

 
NOTE: 3 obs hidden. 

                 The SAS System                        
             The UNIVARIATE Procedure 
                Variable:  resid 
 
Some outputs removed                          
 
 
             Tests for Normality 
 
Test            --Statistic---   --p value-- 
Shapiro-Wilk       W    0.960624  Pr<W   0.6731 
Kolmogorov-Smirnov D    0.135583  Pr>D  >0.1500 
Cramer-von Mises W-Sq   0.054347  Pr>W-Sq>0.2500 
Anderson-Darling A-Sq   0.353872  Pr>A-Sq>0.2500 
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           Stem Leaf                     #             Boxplot 
              2 5                        1                | 
              1 0                        1                | 
              0 0058888                  7             +--+--+ 
             -0 522                      3             +-----+ 
             -1 220                      3                | 
             -2 5                        1                | 
                ----+----+----+----+ 
 

               Variable:  resid 
 
                            Normal Probability Plot 
          2.5+                                           *+++++++ 
             |                                  ++++*++++ 
             |                        *+**+*+++* 
             |                 *+*+*+++ 
             |        ++++*++*+ 
         -2.5++++++++* 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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               The SAS System            10 
 
             The GLM Procedure 
 
           Class Level Information 
 
Class         Levels    Values 
 A               2      1 2 
 B               4      1 2 3 4 
 
Number of Observations Read          16 
Number of Observations Used          16 
 
                 The SAS System                       
                 The GLM Procedure 
 
Dependent Variable: lnresult 
 
               Sum of 
Source   DF    Squares    Mean Square   F 
Value 
 
Model     3  1.35905142   0.45301714   73.91 
Error    12  0.07355155   0.00612930 
Corrected  
  Total  15  1.43260297 
 
             Source                 Pr > F 
             Model                  <.0001 
             Error 
             Corrected Total 
 
R-Square   Coeff Var  Root MSE lnresult Mean 
0.948659    2.852397  0.078290      2.744703 
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(Type I SS not shown) 
 
Source  DF  Type III SS  Mean Square F Value 
A        1   1.04235590   1.04235590  170.06 
B(A)     2   0.31669552   0.15834776   25.83 
 
    Source                 Pr > F 
    A                      <.0001 
    B(A)                   <.0001 
 
              The GLM Procedure 
            Least Squares Means 
 
         lnresult    H0:LSMean1=LSMean2 
A          LSMEAN    t Value    Pr > |t| 
1      2.48946341     -13.04      <.0001 
2      2.99994258 
 
 
              lnresult      LSMEAN 
B    A          LSMEAN      Number 
 
1    1      2.32390005           1 
2    1      2.65502677           2 
3    2      2.88959896           3 
4    2      3.11028619           4 
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Least Squares Means for Effect B(A) 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
      Dependent Variable: lnresult 
 
i/j          1         2         3         4 
 
1               -5.98141  -10.2187  -14.2051 
                  <.0001    <.0001    <.0001 
 
2     5.981415            -4.23727  -8.22373 
        <.0001              0.0012    <.0001 
 
3     10.21869 4.237271             -3.98646           
        <.0001   0.0012               0.0018 
 
4     14.20514 8.223726   3.986455 
        <.0001   <.0001     0.0018 
 
 
NOTE: To ensure overall protection level, 
only probabilities associated with pre-
planned comparisons should be used. 
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Plot of resid2*predict2. Symbol used is '*'. 
 
resid2 ‚ 
  0.15 ˆ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚                                                       * 
  0.10 ˆ 
       ‚ 
       ‚ 
       ‚       * 
       ‚ 
       ‚                                         * 
  0.05 ˆ                           * 
       ‚ 
       ‚ 
       ‚                                                       * 
       ‚ 
       ‚ 
  0.00 ˆ                                         * 
       ‚ 
       ‚                           *                           * 
       ‚       * 
       ‚ 
       ‚ 
 -0.05 ˆ 
       ‚                                         * 
       ‚ 
       ‚ 
       ‚ 
       ‚                           * 
 -0.10 ˆ 
       ‚ 
       ‚                                                       * 
       ‚       * 
       ‚ 
       ‚ 
 -0.15 ˆ 
       ‚ 
       Šˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ-----------ˆ- 
       2.2         2.4         2.6         2.8         3.0         3.2 
 
                                   predict2 
 
NOTE: 3 obs hidden. 
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          The UNIVARIATE Procedure 
             Variable:  resid2 
 
 (Some outputs deleted)                                
 
 
         Tests for Normality 
 
Test               -Statistic---    --p Value-- 
 
Shapiro-Wilk       W     0.950268  Pr<W  0.4939 
Kolmogorov-Smirnov D     0.150539  Pr>D >0.1500 
Cramer-von Mises   W-Sq  0.047813  Pr>W-Sq   

>0.2500 
Anderson-Darling   A-Sq  0.321185  Pr>A-Sq   

>0.2500 
 
 
 
           Stem Leaf                     #             Boxplot 
              1 1                        1                | 
              0 55577                    5             +-----+ 
              0 003                      3             *--+--* 
             -0 222                      3             +-----+ 
             -0 96                       2                | 
             -1 31                       2                | 
                ----+----+----+----+ 
            Multiply Stem.Leaf by 10**-1 

 
 
 
                            Normal Probability Plot 
        0.125+                                        +++*+++ 
             |                             * * *+*++++ 
             |                        *+**+++++ 
             |                  +*+*+*+ 
             |           ++++*+* 
       -0.125+    +++*+++ * 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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CRD:  One Factor Experiment, Fixed Effects with 

subsampling  [26.7 of textbook (White)] 

 
Example:  Site Preparation 
 
A forester would like to test whether different site 
preparation methods result in difference in heights.  Fifteen 
areas each 0.02 ha in size are laid our over a fairly 
homogeneous area.  Five site preparation treatments are 
randomly applied to 15 plots.  One hundred trees are 
planted (same genetic stock and same age) in each area.  At 
the end of 5 years, the heights of EACH seedling in each 
plot were measured. 
 
We have three hierarchical levels:  

• Treatments 
• Experimental units within treatments – level at which 

the treatment is applied 
• Trees within experimental units – are “nested” in 

experimental units; different trees in different 
experimental units 

We have variation: 
• Between treatments 
• Between experimental units within each treatment 
• Between trees within each experimental unit in each 

treatment 
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Notation 
 
Population:  SUijlEUijTRjijly εετμ +++=     

ijly  = response variable measured on sample l of  
experimental unit i and treatment j 
 
j=1 to J  treatments 
 
μ = the grand or overall mean regardless of treatment 

TRjτ = the treatment effect  
jμ = the mean for treatment j; grand mean plus the 

treatment effect 
 
The difference between a particular measure for a sample l,  
an experimental unit i, and the mean for the treatment j that 
was applied to it is now two parts: 

jijlSUijlEUij y μεε −=+  
The error for the experimental unit and the error for the 
sample unit in the experimental unit.  
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For the experiment:   
SUijlEUijTRjijl eeyy +++= ••• τ̂     

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment 
 

•• jy = the mean of all measures for treatment j ; under error 
variance assumptions, will be an unbiased estimate of jμ  
 

TRjτ̂ = the difference between the mean of experiment 
measures for treatment j and the overall mean of measures 
from all treatments 
 
nj = the number of experimental units measured in 
treatment j; = n  if these are all equal. 
 
 nT = the number of experimental units measured over all 

treatments = ∑
=

J

j
jn

1
; = J  X  n  if these are all equal. 

 
mij = the number of samples measured in experimental unit 
i of treatment j ; mij = m if these are all equal 
 

mT =∑∑
= =

J

j

n

i
ij

j

m
1 1

 the number of samples measured in 

experimental unit i of treatment j ; mT = J X n X m = Jnm if 
these are all equal 
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Analysis Methods 
 
Possible ways to analyze this experiment are: 
 
1. Simplify this by calculating averages for each 

experimental unit and use these in the analysis of 
variance (would then be Completely Randomized 
Design: one factor, already covered) 

 
2. Keep each sample observation, and use least squares to 

calculate as per CRD: one factor, but also estimate the 
within experimental unit variance (will cover this now) 

 
3. Keep each sample observation, and use a mixed model 

and maximum likelihood, with the two “error terms” as 
random-effects (e.g., PROC MIXED in SAS). 

 
Option 1 is simpler; Options 2 and 3 allow us to look at the 
variability within experimental unit.   
 
Another option you will see but NOT CORRECT!! 

• Keep each sample observation and treat this as one 
experimental unit as if this was a CRD: one factor 
experiment.   

Since the treatment was NOT applied at this level, this 
analysis would not be correct.  Treatments are randomly 
assigned to the experimental unit level.  The degrees of 
freedom and the estimated error variance used in the F-
test would not be correct.  In some literature, the 
samples are termed “pseudo-replications”. 
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 We then calculate:  
 
1) Sum of squared differences between the observed values 

and the overall mean (SSy): 

( )

11

 

1 1

1 1 1

2

−=−=

−=

∑∑

∑∑∑

= =

= = =
•••

T

J

j

n

i
ij

J

j

n

i

m

l
ijl

mmdf

yySSy

j

j ij

 

2) Sum of squared differences between the treatment 

means, and the grand mean, weighted by the number of 

experimental units in each treatment (SSTR) 

( ) 1
1

−=−= ∑∑
=

••••• JdfyymSS
J

j
j

n

i
ijTR

j

 

If the number of samples per experimental unit are all the 

same (m) and the number of experimental units per 

treatment are all the same (n), this becomes: 

( ) 1
1

−=−= ∑
=

••••• JdfyynmSS
J

j
jTR  
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3) Sum of squared differences between the means values 

for each experimental unit and the treatment means 

( )

∑

∑∑

=

= =
•••

−=−=

−=

J

j
jT

J

j

n

i
jijijEE

nJndf

yymSS
j

1

1 1

2

)1(

 

 

If the number of samples per experimental unit are all the 

same (m) and the number of experimental units per 

treatment are all the same (n), this becomes: 

 

( )
)1(

 
1 1

2

−=−=

−= ∑∑
= =

•••

nJJndf

yymSS

T

J

j

n

i
jijEE

  

 
 
This is then experimental units nested in treatments.
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4) Sum of squared differences between the observed values 

for each experimental unit and the treatment means  

( ) )1( 
1 11 1 1

2 −=−= ∑∑∑∑∑
= == = =

•

J

j

n

i
ij

J

j

n

i

m

l
ijijlSE

jj ij

mdfyySS  

 
If the number of samples per experimental unit are all the 

same (m) and the number of experimental units per 

treatment are all the same (n), this becomes: 

( ) )1( 
1 1 1

2 −=−= ∑∑∑
= = =

• mJndfyySS
J

j

n

i

m

l
ijijlSE  

 
This is then sample units nested in experimental units and 

treatments. 

AND: 

SEEETR SSSSSSSSy ++=  
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Test for differences among treatment means 
 
The main question is:  Are the treatment means different? 

    H0: μ1 = μ2 = … = μJ 
H1: not all the same 

OR:   
 

What is the appropriate F-test?  Need to look at the 

expected mean squares. 

Expected Mean Square:  Treatments Fixed, and assuming 
the number of experimental units per treatment, and 
samples per experimental unit are all equal 
 
Source df SS MS Expected Mean 

Squares  
Treatment J-1 SSTR MSTR 

 AEESE m φσσ ++
22

 

Exp.  
Error 

J(n-1) SSEE MSEE 22

EESE mσσ +  

Sampling 
Error 

Jn(m-1) SSSE MSSE 2

SEσ  

Total Jmn -1 SSy   
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Expected Mean Square:  Treatments Random, and 
assuming the number of experimental units per treatment, 
and samples per experimental unit are all equal 
 
Source df SS MS Expected Mean 

Squares  
Treatment J-1 SSTR MSTR

 
222

TREESE nmm σσσ ++  

Exp.  
Error 

J(n-1) SSEE MSEE
22

EESE mσσ +  

Sampling 
Error 

Jn(m-1) SSSE MSSE
2

SEσ  

Total Jmn -1 SSy   
 
F-test is the same for Fixed-effects or Random Effects 
Treatments: 
 
Source MS F p-value 
Treatment MSTR 

 
F= 
MSTR/MSEE

Prob F>  
F(J-1),( nT -J),1-α 

Exp. 
Error 

MSEE   

Sampling 
Error 

MSSE   

Total    
 

If   )1,,1( α−−−> JnJ T
FF we reject H0 and conclude that there 

is a difference between the treatment means.  
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Assumptions:  Check residuals as other experiments.  
NOTE:  There are also assumptions on the experimental 
error – could also be checked. 
 
Tests for pairs of Means:  Use experimental error as the 
error term rather than the default which is the sampling 
error. 
 
Confidence Intervals: 
 

∑
=

−•• ±
jn

i
ij

EE
dfEEj

m

MSty

1

21),( α

 

 
e.g., use the mean square used for the denominator of the F-
test (MSEE), and divide by the number of observations 
(samples) for that treatment.  Degrees of freedom for the t 
corresponds to the df for the mean square (dfEE).
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Example from Textbook: 
 

• Have three temperatures: low, medium, and high (J=3) 
• For each, we have two experimental units (batches) 

(n=2) 
• Randomly assign temperatures to each batch 
• For each batch, we have three loaves of bread (m=2) 
• The response variable is crustiness of bread. 

 
Data: 
 

temp batch observation yijl
low 1 1 4
low 1 2 7
low 1 3 5
low 2 1 12
low 2 2 8
low 2 3 10
medium 1 1 14
medium 1 2 13
medium 1 3 11
medium 2 1 9
medium 2 2 10
medium 2 3 12
high 1 1 14
high 1 2 17
high 1 3 15
high 2 1 16
high 2 2 19
high 2 3 18
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SAS code: Three options presented 
1. Using PROC GLM  and the sample observations.  

Model yijk= treat batch(treat); 
2. Using the averages for each experimental unit and 

PROC GLM.  Model yijk=treat; 
3. Using PROC MIXED, and the sample observations. 

Model yijk=treat;  Random batch(treat); 
 
PROC IMPORT OUT= WORK.onesub  
     DATAFILE= "E:\frst430\lemay\examples\ 
            subsampling_neter_newest_p1109.xls"  
     DBMS=EXCEL REPLACE;       SHEET="data$";  
     GETNAMES=YES;    MIXED=NO;   SCANTEXT=YES;       
     USEDATE=YES;       SCANTIME=YES;     
RUN; 
 
options ls=70 ps=50 pageno=1; 
 
* Analysis 1. first, use GLM and bring in the 
Experimental error and the Sampling error into 
the design; 
PROC GLM data=onesub; 
class temp batch; 
model yijl=temp batch(temp); 
random batch(temp)/test; 
test h=temp e=batch(temp); 
lsmeans temp /e=batch(temp) pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
proc univariate data=glmout normal plot; 
var resid; 
run; 
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*Analysis 2.  This is least squares but using 
the mean of all samples in each experimental  
unit; 
proc sort data=onesub; 
by temp batch; 
run; 
 
proc means data=onesub; 
var yijl; 
by temp batch; 
output out=meany mean=ybars; 
run; 
 
PROC GLM  data=meany; 
class temp; 
model ybars=temp; 
lsmeans temp /pdiff tdiff; 
output out=glmout2 r=resid2 p=predict2; 
run; 
 
proc plot data=glmout2; 
plot resid2*predict2='*'; 
run; 
proc univariate data=glmout2 normal plot; 
var resid2; 
run; 
 
* Analysis 3: this is using maximum likelihood 
for a mixed model to estimate variances and get 
correct F-tests; 
 
PROC MIXED data=onesub; 
class temp batch; 
model yijl=temp; 
lsmeans temp/pdiff; 
random batch(temp); 
run; 
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Analysis 1:  GLM using samples with experimental 
error given as batch(treat), and sampling error as 
the Error term. 
                  The SAS System            1 
 
                  The GLM Procedure 
 
               Class Level Information 
 
         Class         Levels    Values 
         temp               3    high low medium 
         batch              2    1 2 
 
    Number of Observations Read          18 
    Number of Observations Used          18 
                             
                The SAS System                            
 
               The GLM Procedure 
 
Dependent Variable: yijl   yijl 
 
                      Sum of 
Source      DF       Squares  Mean Square   F Value 
 
Model        5    284.4444444  56.8888889     21.79 
Error       12     31.3333333   2.6111111 
Corrected  
   Total    17    315.7777778 
 
                 Source                 Pr > F 
                 Model                  <.0001 
                 Error 
                 Corrected Total 
 
 
R-Square     Coeff Var      Root MSE     yijl Mean 
 
0.900774      13.59163      1.615893      11.88889 
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(NOTE: Type I SS removed) 
 
Source     DF    Type III SS  Mean Square   F Value 
temp        2    235.4444444  117.7222222     45.09 
batch(temp) 3     49.0000000   16.3333333      6.26 
 
                 Source                 Pr > F 
                 temp                   <.0001 
                 batch(temp)            0.0084 
  
NOTE: Variance components and GLM Mixed model 
analysis given by SAS removed – often not correct.  
 
                 Least Squares Means 
Standard Errors and Probabilities Calculated Using 
the Type III MS for batch(temp) as an Error Term 
 
                                                              
                            LSMEAN 
temp       yijl LSMEAN      Number 
high        16.5000000           1 
low          7.6666667           2 
medium      11.5000000           3 
 
     Least Squares Means for Effect temp 
    t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
    Dependent Variable: yijl 
 
i/j           1             2             3 
1                    3.785714      2.142857 
                       0.0323        0.1215 
2      -3.78571                    -1.64286 
         0.0323                      0.1990 
3      -2.14286      1.642857 
         0.1215        0.1990 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
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Dependent Variable: yijl   yijl 
 
  Tests of Hypotheses Using the Type III 
    MS for batch(temp) as an Error Term 
 
Source      DF   Type III SS  Mean Square   F Value 
temp         2   235.4444444  117.7222222      7.21 
 
                Source                 Pr > F 
                temp                   0.0715 
 
       Plot of resid*predict.  Symbol used is '*'. 
 
 resid ‚ 
 2.000 ˆ                    * 
       ‚ 
       ‚ 
 1.667 ˆ *                   *                   * 
       ‚ 
       ‚ 
 1.333 ˆ                               *                   * 
       ‚ 
       ‚ 
 1.000 ˆ 
       ‚ 
       ‚ 
 0.667 ˆ 
       ‚ 
       ‚ 
 0.333 ˆ                               *                   * 
       ‚ 
       ‚ 
 0.000 ˆ                    * 
       ‚ 
       ‚ 
-0.333 ˆ *                   *                   * 
       ‚ 
       ‚ 
-0.667 ˆ 
       ‚ 
       ‚ 
-1.000 ˆ 
       ‚ 
       ‚ 
-1.333 ˆ *                   *                   * 
       ‚ 
       ‚ 
-1.667 ˆ                               *                   * 
       ‚ 
       ‚ 
-2.000 ˆ                    * 
       ‚ 
       Šˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       5.0       7.5      10.0      12.5      15.0      17.5      20.0 
 
                                   predict 
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                The UNIVARIATE Procedure 
                   Variable:  resid 
NOTE: All outputs removed except for Normality 
tests and box plot and normality plot 
 
 
              Tests for Normality 
 
Test              --Statistic---    -p Value------ 
 
Shapiro-Wilk       W     0.908031   Pr<W     0.0794 
Kolmogorov-Smirnov D      0.17031   Pr>D    >0.1500 
Cramer-von Mises   W-Sq  0.084708   Pr>W-Sq  0.1732 
Anderson-Darling   A-Sq  0.605378   Pr>A-Sq  0.0984 
 
 
 
           Stem Leaf                     #             Boxplot 
              2 0                        1                | 
              1 777                      3                | 
              1 33                       2             +-----+ 
              0                                        |     | 
              0 033                      3             |  +  | 
             -0 333                      3             *-----* 
             -0                                        |     | 
             -1 333                      3             +-----+ 
             -1 77                       2                | 
             -2 0                        1                | 
                ----+----+----+----+ 
 

 
                 The UNIVARIATE Procedure 
                     Variable:  resid 
 
                            Normal Probability Plot 
         2.25+                                        +++* 
             |                                 *  *+*+ 
             |                              * *++++ 
         0.75+                             ++++ 
             |                         +**+* 
             |                     *+** 
        -0.75+                  ++++ 
             |              +++** * 
             |       *   +*+* 
        -2.25+       ++++ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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Analysis 2:  GLM using averages for each sample 
unit experimental error is now the Error term. 
  
               The SAS System                           
               The MEANS Procedure 
 
-------------- temp=high batch=1 ------------------ 
 
            Analysis Variable : yijl yijl 
 
N      Mean       Std Dev      Minimum      Maximum 
------------------------------------------------- 
3  15.3333333    1.5275252   14.0000000  17.0000000 
------------------------------------------------- 
 
--------------- temp=high batch=2 ------- 
 
          Analysis Variable : yijl yijl 
 
   N     Mean       Std Dev     Minimum     Maximum 
------------------------------------------------- 
3     17.6666667    1.5275252  16.0000000 9.0000000 
------------------------------------------------- 
 
--------------------- temp=low batch=1 ------- 
 
          Analysis Variable : yijl yijl 
 
   N     Mean       Std Dev     Minimum     Maximum 
------------------------------------------------- 
 3     5.3333333   1.5275252    4.0000000 7.0000000 
--------------------------------------------------- 
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----------------- temp=low batch=2 ------- 
        
            Analysis Variable : yijl yijl 
 
   N     Mean       Std Dev     Minimum     Maximum 
------------------------------------------------- 
3      10.0000000   2.0000000  8.0000000 12.0000000 
--------------------------------------------------- 
 
--------------------- temp=medium batch=1 --------- 
 
               Analysis Variable : yijl yijl 
   N     Mean       Std Dev     Minimum     Maximum 
------------------------------------------------- 
  3    12.6666667  1.5275252  11.0000000 14.0000000 
------------------------------------------------- 
 
 
----------------- temp=medium batch=2 ------------- 
 
               Analysis Variable : yijl yijl 
 
   N     Mean       Std Dev     Minimum   Maximum 
------------------------------------------------- 
   3   10.3333333  1.5275252   9.0000000 12.0000000 
--------------------------------------------------- 
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The SAS System 
 
               The GLM Procedure 
 
               Class Level Information 
 
          Class         Levels    Values 
          temp               3    high low medium 
          batch              2    1 2 
 
 
          Number of Observations Read           6 
          Number of Observations Used           6 
                    The GLM Procedure 
 
Dependent Variable: ybars   yijl 
 
                    Sum of 
Source      DF     Squares    Mean Square   F Value 
Model        2   78.48148148  39.24074074      7.21 
Error        3   16.33333333   5.44444444 
Corrected  
   Total     5   94.81481481 
 
              Source                 Pr > F 
               Model                 0.0715 
               Error 
               Corrected Total 
 
 
R-Square     Coeff Var      Root MSE    ybars Mean 
 
0.827734      19.62617      2.333333      11.88889 
 
 

 444

NOTE: Type I SS removed from the SAS outputs. 
 
Source   DF    Type III SS    Mean Square   F Value 
temp      2    78.48148148    39.24074074      7.21 
 
                  Source                 Pr > F 
                  temp                   0.0715 
  
                 The SAS System                                
 
                            LSMEAN 
temp      ybars LSMEAN      Number 
 
high        16.5000000           1 
low          7.6666667           2 
medium      11.5000000           3 
 
 
           Least Squares Means for Effect temp 
         t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
              Dependent Variable: ybars 
 
i/j          1             2             3 
 
1                   3.785714      2.142857 
                      0.0323        0.1215 
2     -3.78571                    -1.64286 
        0.0323                      0.1990 
3     -2.14286      1.642857 
        0.1215        0.1990 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned 
comparisons should be used. 
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                The SAS System                           
 
     Plot of resid2*predict2.  Symbol used is '*'. 
 
resid2 ‚ 
       ‚ 
 2.333 ˆ        * 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
 1.167 ˆ                            *                        * 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
 0.000 ˆ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
-1.167 ˆ                            *                        * 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
       ‚ 
-2.333 ˆ        * 
       ‚ 
       Šˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
        6         8        10        12        14        16        18 
 
                                   predict2 
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                  The UNIVARIATE Procedure 
                   Variable:  resid2 
 
NOTE:  removed all but the normality tests and 
normality plots. 
              Tests for Normality 
 
Test              --Statistic---    --p Value------ 
Shapiro-Wilk       W    0.912907    Pr<W     0.4558 
Kolmogorov-Smirnov D    0.240697    Pr>D    >0.1500 
Cramer-von Mises  W-Sq   0.06404    Pr>W-Sq >0.2500 
Anderson-Darling  A-Sq  0.352911    Pr>A-Sq >0.2500 
 
 
                       The UNIVARIATE Procedure 
                          Variable:  resid2 
 
                            Normal Probability Plot 
          2.5+                                     +*+++ 
             |                           *   *+++++ 
             |                         ++++++ 
             |                    +++++ 
             |              +++++*   * 
         -2.5+         +++*+ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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Analysis 3:  MIXED using each sample unit value. 
 
     
                  The SAS System                           
             The Mixed Procedure 
 
            Model Information 
Data Set                     WORK.ONESUB 
Dependent Variable           yijl 
Covariance Structure         Variance  
                             Components 
Estimation Method            REML 
Residual Variance Method     Profile 
Fixed Effects SE Method      Model-Based 
Degrees of Freedom Method    Containment 
             Class Level Information 
 
          Class    Levels    Values 
          temp          3    high low medium 
          batch         2    1 2 
 
                  Dimensions 
     Covariance Parameters             2 
     Columns in X                      4 
     Columns in Z                      6 
     Subjects                          1 
     Max Obs Per Subject              18 
 
          Number of Observations 
 Number of Observations Read              18 
 Number of Observations Used              18 
 Number of Observations Not Used           0 
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Iteration History 
 
Iteration Evaluations -2 Res Log Like Criterion 
0            1        73.11545106           
1            1        67.84036856    0.00000000 
 
           Convergence criteria met. 
 
              Covariance Parameter 
              Estimates 
        Cov Parm        Estimate 
        batch(temp)       4.5741 
        Residual          2.6111 
 
            Fit Statistics 
       -2 Res Log Likelihood            67.8 
       AIC (smaller is better)          71.8 
       AICC (smaller is better)         72.8 
       BIC (smaller is better)          71.4 
 
           Type 3 Tests of Fixed Effects 
         Num    Den 
Effect    DF     DF    F Value    Pr > F 
temp       2      3       7.21    0.0715 
      
                  Least Squares Means 
 
                      Standard 
Effect temp  Estimate  Error    DF   t Value Pr>|t| 
temp   high   16.5000  1.6499    3     10.00 0.0021 
temp   low     7.6667  1.6499    3      4.65 0.0188 
temp   medium 11.5000  1.6499    3      6.97 0.0061 
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Differences of Least Squares Means 
 
                         Standard 
Effect temp temp Estimate Error DF t Value Pr>|t| 
temp high  low    8.8333  2.3333 3  3.79   0.0323 
temp high medium  5.0000  2.3333 3  2.14   0.1215 
temp low  medium -3.8333  2.3333 3 -1.64   0.1990 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 450

RCB:  One Factor Experiment, Fixed Effects with 

subsampling   

• Blocked (random or fixed-effect, usually random) 
• Fixed-effect factor A (we will label this as TR for 

treatment) 
• Experimental units – level at which the block with 

factor A combinations are applied; may be one 
experimental unit or more than one (generalized RCB 
or RCB with replicates) 

• Sampling units – number of items measured within 
each experimental unit. 

 
Notation for a Generalized RCB with subsampling: 
 
Population:  

SUijklEUijkTRjkBLKTRkBLKjijly εετττμ +++++= ×     

ijkly  = response variable measured on sample l of  
experimental unit i, block j, and treatment k 
 
The difference between a particular measure for a sample l,  
an experimental unit i, and the mean for the block j and 
treatment k combination that was applied to it is now two 
parts: 

SUijklEUijk εε +  
The error for the experimental unit and the error for the 
sample unit in the experimental unit.  
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For the experiment:   
SUijklEUijkTRjkBLKTRkBLKjijkl eeyy +++++= ×•••• τττ ˆˆˆ     

••••y = the grand or overall mean of all measures from the 
experiment regardless of treatment 
 

•• jky = the mean of all measures for block j and treatment k 
; under error variance assumptions, will be an unbiased 
estimate of jkμ  

••• jy = the mean of all measures for block j will be an 
unbiased estimate of jμ  

••• ky = the mean of all measures for treatment k will be an 
unbiased estimate of kμ  
 
njk = the number of experimental units measured in each 
combination of block by treatment; = n  if these are all 
equal. 
 
 nT = the number of experimental units measured over all 

treatments = ∑∑
= =

K

k

J

j
jkn

1 1
; = J  X K X  n  if these are all equal. 

 
mijk = the number of samples measured in experimental unit 
i of treatment and block jk ; mijk = m if these are all equal 

mT =∑∑∑
= = =

K

k

J

j

n

i
ijk

j

m
1 1 1

 the number of samples measured in 

experimental unit i of treatment j ; mT = J X K X n X m = 
JKnm if these are all equal 
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Analysis Methods 
 
Possible ways to analyze this experiment are: 
 
4. Simplify this by calculating averages for each 

experimental unit and use these in the analysis of 
variance (would then be Generalized Randomized 
Complete Block Design: one factor, already covered) 

 
5. Keep each sample observation, and use least squares or  

to calculate as per Generalized Random Complete 
Block: one factor, but also estimate the within 
experimental unit variance (will cover this now) 

 
6. Keep each sample observation, and use a mixed model 

and maximum likelihood, with the two “error terms” as 
random-effects (e.g., PROC MIXED in SAS). 

 
Option 1 is simpler; Options 2 and 3 allow us to look at the 
variability within experimental unit.   
 
Another option you will see but NOT CORRECT!! 

• Keep each sample observation and treat this as one 
experimental unit  

• Since the treatment was NOT applied at this level, this 
analysis would not be correct.  Treatments are 
randomly assigned to the experimental unit level.  The 
degrees of freedom and the estimated error 
variance used in the F-test would not be correct.  In 
some literature, the samples are termed “pseudo-
replications”. 
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 We then calculate:  

SEEETRBLKTRBLK SSSSSSSSSSSSy ++++= ×

 

For a Generalized Randomized Complete Block design with one-

factor, and subsampling of the experimental units. 

Main Questions: 
 

1. For the generalized RCB, we can look at interactions 
between blocks and the treatment (cannot, if there is 
only one experimental unit per treatment and block 
combination with the more simpler RCB, since the 
interaction is the exp. unit error.).  Test this first. 

2. Then, if no interaction, test if there is a difference 
among the Factor A levels (the treatment). 

3. Not really interested in the blocks.  
 

What is the appropriate F-test?  Need to look at the 

expected mean squares.   
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Expected Mean Square:  Treatments and Blocks BOTH 
Fixed, and assuming the number of experimental units per 
treatment, and samples per experimental unit are all equal 
 
Source df SS MS Expected Mean 

Squares  
Block J-1 SSBLK MSBLK

 
22

SEEEBLK m σσφ ++  

Treatment K-1 SSTR MSTR 
 

22
SEEETR m σσφ ++  

Block X 
Treatment

(J-1)(K-1) SSBLK 

X TR  
MSBLK 

X TR  
22

SEEETRBLK m σσφ ++×

Exp.  
Error 

JK(n-1) SSEE MSEE 22

EESE mσσ +  

Sampling 
Error 

JKn(m-1) SSSE MSSE 2

SEσ  

Total JKnm -1 SSy   
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Expected Mean Square:  Treatments Fixed, but Blocks are 
Random, and assuming the number of experimental units 
per treatment, and samples per experimental unit are all 
equal 
 

Source df SS MS Expected Mean Squares  
Block J-1 SSBLK MS

BLK 
 

222
SEEEBLK mKnm σσσ ++  

Treatment K-1 SSTR MS
TR 
 

222
SEEETRBLKTR mnm σσσφ +++ ×

Block X 
Treatment 

(J-1)(K-1) SSBLK 

X TR  
MS
BLK 

X TR  

222
SEEETRBLK mnm σσσ ++×  

Exp.  
Error 

JK(n-1) SSEE MS
EE 

22

EESE mσσ +  

Sampling 
Error 

JKn(m-1) SSSE MS
SE 

2

SEσ  

Total JKnm -1 SSy   
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Assumptions:  Check residuals as other experiments.  
NOTE:  There are also assumptions on the experimental 
error – could also be checked. 
 
Tests for pairs of Means:  Use experimental error as the 
error term rather than the default which is the sampling 
error. 
 
Confidence Intervals: both Blocks and Treatments are 
fixed: 
 

∑∑
= =

−••• ±
J

j

n

i
ijk

EE
dfEEk jk

m

MSty

1 1

21),( α

 

 
e.g., use the mean square used for the denominator of the F-
test (MSEE), and divide by the number of observations 
(samples) for that Factor level k.  Degrees of freedom for 
the t corresponds to the df for the mean square (dfEE). 
 
Confidence Intervals: Blocks Random and Treatments are 
fixed: 
 

∑∑
= =

×
−×••• ±

J

j

n

i
ijk

TRBLK
TRdfBLKk jk

m

MSty

1 1

21),( α
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Analysis of Covariance (ANCOVA) 

For experimental designs covered so far: 

• The response variable (y) is a continuous variable 

• A number of class variables (x’s) are used (effects) to 

explain the variation in the response variable, via a linear 

model 

• We are interested in differences in means for each class 

variable (fixed-effects) or in the variance in the response 

variable that is due to the class variable (random-effects). 

For example, for CRD: two factors, mixed, we were 

interested in: 

• Whether there is an interaction between Factor A and 

Factor B. 

• If there is no interaction 

o  whether the means for levels of Factor A differ, 

and if so, which ones differ? 

o and whether Factor B accounts for some of the 

variability in the response variable, and if so, how 

much? 
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For linear regression analysis, covered in the beginning of 

the course: 

• The dependent variable (y) is a continuous variable 

• A number of continuous predictor variables (x’s) are 

used to explain the variation in the dependent variable in 

a linear equation. 

• We also introduced class variables (x’s also) to help 

explain the variation in the dependent variable, 

represented by: 

o Dummy variables to alter the intercept 

o Interactions between dummy variables and 

continuous predictor variable to alter the slope. 
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Analysis of covariance is an experimental design, where we 

add continuous explanatory variables (called covariates) to 

help explain the variability in the response variable, for 

example: 

• Record the initial weight of all fish prior to adding 

different foods.  Use this initial weight as a covariate 

• Record soil moisture of all plots in a field prior to 

applying different treatments.   Use this soil moisture 

as a covariate. 

The covariates help “even-out” conditions that we were not 

able to control in trying to obtain homogeneous treatment 

units, and explain some of the variation in the response 

variable. 

 

Blocking does this in a similar fashion, but: 

• Blocking restricts the randomization of treatments to 

experimental units (treatments assigned randomly within 

blocks) 

• Blocks are class variables. 
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This is very similar to using continuous and class variables 

in regression analysis to explain the variation in the 

dependent variable, except: 

• We have an experiment, and we are trying to assign 

cause and effect 

• For analysis of covariance: 

o  the slopes are considered the same over all 

treatments (common slope), in order to assess the 

impacts of different factors (called homogeneity 

of slopes) 

o This means that the treatment does not affect the 

relationship (linear trend) between y and x 

o This must be tested, as the slope of y versus x 

may vary by treatment  

• We use these covariates to “adjust” the factor level 

means to a common value (usually the mean) of the 

covariate. 
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Example:   

UBC would like to evaluate three ways of teaching basic 
statistics:  
(A) stats dept. method (3 lectures),  
(B) computer method (3 lectures plus lab using statistical 
software with no lab write-up),  
(C) applied science method (3 lectures plus written lab).  
“Success” is measured as a grade in a common examination 
for all students.   
 
The response (exam grade) might be related to abilities 
before taking the course: 

• Grade in Math 12 is used as a covariate (x variable) 
and obtained for each student.   

• Then students are randomly assigned to one of the 
three class types. 

 
The Math 12 grade is then used to “adjust” the grade in the 

common exam. 
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Looking at 
the trends, 
between 
Mark in 
Stats (y) 
versus Mark 
in Grade 12 
math(x), the 
slopes 
appear to be 
similar. 
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Ignoring the 
Grade 12 
March, the 
mark in 
Statistics is 
higher for 
A, and B 
and C are 
similar. 
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Using the 

covariate, and 

adjusting the 

means along the y 

vs x trend line to 

the average Mark 

in Grade 12 Math, 

C and A are 

similar, and B is 

different 
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If the Math grade was not used as a covariate, the conclusion 

would be much different.   
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Model: 
 
We add a covariate to whichever experimental design we wish 
to use.   
 
For example, using an RCB with two fixed-effect factors, we 
add in the covariate.   
 
Population:  

jklBklABlkAjBLKjkljkl xxy εττττβμ +++++−+= )(     

jkly  = response variable measured on block j and treatment kl 
 
j=1 to J blocks; k=1 to K levels for Factor A; l=1 to L levels for 
Factor B;  and definition of terms follows other designs.   
 
xjkl is a measurement of the covariate for a particular 
experimental unit, standardized around the mean of x over all 
observations, as this can be easier to interpret; β  is the slope of 
the line between y and x.   
 
The expected mean squares are the same as the design without 
the covariate.   
 
The covariate will take up one degree of freedom from the error 
term.   
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Variations in ANCOVA: 

 

1. More than one covariate.  Can add in more than one 

continuous variable.   

• Must check for ANY interactions between continuous 

variables and each of the class variables (effects) in the 

experiment. 

• Each covariate will have a df of 1 (like a continuous 

variable in regression), and this will be taken away from 

the error term df. 

2. Slopes are not equal 
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Interactions between class variables and continuous variables 

are significant.  Can test these using partial F-tests as we did 

for regression using dummy variables to represent classes. 

• Get generalized linear models (GLM) results for all class 

variables (blocks, factors, interactions, etc.), all continuous x-

variables (covariates) , and interactions between covariates 

and all class variables [full model] 

o Record the df(model) and df(error) [full] 

o Record the SSmodel (includes all class and continuous 

variables and interactions) and SSerror [full] 

• Get generalized linear models results for all class variables 

(blocks, factors, interactions, etc.), all continuous x-variables 

(covariates) [reduced model] 

o Record the df(model) and df(error) [reduced] 

o Record the SSmodel and SSerror [reduced] 
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( )

( )

)(
(s))n variableinteractiodroppedtodue(

))((
)()(

OR
))((

)()(

fullMSE
/rSS

fulldferrorSSE
rfullSSEreducedSSEFpartial

fulldferrorSSE
rreducedSSregfullSSregFpartial

=

−
=

−
=

 

Where r is the number of x-variables that were dropped.  Equals: 

(1)the model degrees of freedom for the full model minus the 

model degrees of freedom for the reduced model, OR (2) the 

error degrees of freedom for the reduced model, minus the error 

degrees of freedom for the full model) 

• Under H0, this follows an F distribution for a 1- α/2 percentile 

with r and n-m-1 (full model) degrees of freedom.   

• If the F for the fitted equation is larger than the F from the 

table, we reject H0 (not likely true).  There are different 

slopes (relationship between y and x) for different treatments 

(combinations of the class variable levels) 
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• Harder to interpret, as with any interaction 

o Use graphs to show relationships 

o Switch to a regression approach to finding equations 

using the continuous and class variables (represented 

as dummies) and interpret these results.   

 

(Assignment 8 as the example during class) 
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Expected Mean Squares to get called components of 
variance 
 
1. Get these from a book where they are already determined for 

your type of design.  Must know which of your factors are 

fixed and which are random. 

2. Use the EMS rules to determine these. Expected Means 

Squares “rules”:  Appendix D of text (white or blue editions)  
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Calculation of Expected Mean Squares Using an Example 
 
Steps to Derive Expected Mean Squares. 
1. Write up linear model.   For example, RCB with more 

than one experiment unit for each treatment within a 
block (generalized RCB): 

)( jkijkTRBLKkTRjBLKijky ετττμ ++++= ×  
  for j=1 to J,     k=1 to K,       i=1 to n 
  (blocks)        (treatments)  (replications) 

NOTE:  will use instead: 
  for j=1 to b,    k=1 to t,       i=1 to n 
  (blocks)       (treatments)  (replications) 

Then b is taken from B possible blocks; 
t is taken from T possible treatments; 
n is taken from N possible replicates within each jk.   
Since the replicates are nested within each Treament 
/Block combination, we have added brackets to 
indicate this. 

Note  
brackets  
added  
around jk 
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2. Generate table of indices and number of factor levels 

etc. 
 n b t  

Effect i j k  

τBLKj     
τTRk     

τBLK X TRjk      
εi(jk)     

 

3. Indicate which effects are fixed versus random and add 
a symbol for each component.  Note that we will use 
the symbol for variance (random-effects) for all 
components, and change this to TRφ  for the fixed-
effects treatment at the end. 

 
Type: R R F  

 n b t  
Effect i j k Symbol 

τBLKj    2

BLKσ  
τTRk    2

TRσ  
τBLK X TRjk     2

TRBLK ×σ  
εi(jk)    2

εσ  
 

 

 472 

 
4. Fill in the table by: 

a. Put down a “1”, where subscript is bracketed 
(nested) 

Type: R R F  
n b t  

Effect i j k Symbol 
τBLKj    2

BLKσ  
τTRk    2

TRσ  
τBLK X TRjk     2

TRBLK ×σ  
εi(jk)  1 1 2

εσ  
 
b. For each effect, put down the end value (e.g., t for 

number of treatments in the experiment) for each 
subscript that does not appear for the effect 

Type: R R F  
n b t  

Effect i j k Symbol 
τBLKj n  t 2

BLKσ  
τTRk n b  2

TRσ  
τBLK X TRjk  n   2

TRBLK ×σ  
εi(jk)  1 1 2

εσ  
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c.  Add the “finite population correction factor” for 
each of the other factors:  e.g., for Blocks, this is 

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

B
b

B
bB 1  

 
Type: R R F  

 n b t  
Effect i j k Symbol 

τBLKj n ⎟
⎠
⎞

⎜
⎝
⎛ −

B
b1  t 2

BLKσ  
τTRk n b ⎟

⎠
⎞

⎜
⎝
⎛ −

T
t1

2

TRσ  
τBLK X TRjk  n ⎟

⎠
⎞

⎜
⎝
⎛ −

B
b1  ⎟

⎠
⎞

⎜
⎝
⎛ −

T
t1

2

TRBLK ×σ  
εi(jk) ⎟

⎠
⎞

⎜
⎝
⎛ −

N
n1

 

1 1 2

εσ  
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5. Change FPC values to either 1 or zero. 
a. If factors are random and there is a very large 

number of available levels, e.g., N≈∞, and B≈∞.  
Thus FPC→1 

b. If factors are fixed, then the number of available 
factors is the number of factors sampled, e.g.,  T=t.  
Thus, FPC→0 

c. If factors are random and there is a finite number 
of available factors, then no change is made (we 
will assume we have none of these). 

 
Type: R R F  

n b t  
Effect i j k Symbol 

τBLKj n 1 t 2

BLKσ  
τTRk n b 0 2

TRσ  
τBLK X TRjk  n 1 0 2

TRBLK ×σ  
εi(jk) 1 1 1 2

εσ  
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6. Write up components 

a. For each effect, select all the row(s) with effects 
that contain the same subscript(s)  

b. Ignore any columns with the heading for that 
(those) subscript(s).  (i.e., select all columns that do 
not have the subscript. 

c. Add up the product of the remaining columns for 
the selected row(s) 

 
For Blocks, the subscript is j: 

 
Type: R R F  

 n b t  
Effect i j k Symbol 

τBLKj n 1 t 2

BLKσ  
τTRk n b 0 2

TRσ  
τBLK X TRjk  n 1 0 2

TRBLK ×σ  
εi(jk) 1 1 1 2

εσ  
 

For Block, the E[MSBLK] is:   
22

εσσ +BLKnt  
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For Treatment, the subscript is k: 
 

Type: R R F  
n b t  

Effect i j k Symbol 
τBLKj n 1 t 2

BLKσ  
τTRk n b 0 2

TRσ  
τBLK X TRjk  n 1 0 2

TRBLK ×σ  
εi(jk) 1 1 1 2

εσ  
 

For Treatment, the E[MSTR] is:   
222

εσσσ ++ ×TRBLKTR nnb  
 
BUT Treatment is a fixed-effect (want to estimate the 
effects due to treatment, rather than the variance due to 

treatment).  Using the TRφ  instead, the E[MSTR] is, 
therefore:   

22
εσσφ ++ ×TRBLKTR n  

 
Note:The interaction remains Random with a variance 
symbol, as this is the interaction between blocks and 
treatments.  Since one of these is a random-effect, this is 
random.
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For Block X Treatment, the subscript is jk: 
 

Type: R R F  
 n b t  

Effect i j k Symbol 
τBLKj n 1 t 2

BLKσ  
τTRk n b 0 2

TRσ  
τBLK X TRjk  n 1 0 2

TRBLK ×σ  
εi(jk) 1 1 1 2

εσ  
 
 

For Block Treatment, the E[MSBLK X TR] is:   
22

εσσ +×TRBLKn  
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For the error term, the subscript is ijk: 
Type: R R F  

n b t  
Effect i j k Symbol 

τBLKj n 1 t 2

BLKσ  
τTRk n b 0 2

TRσ  
τBLK X TRjk  n 1 0 2

TRBLK ×σ  
εi(jk) 1 1 1 2

εσ  

The E[MSE] is simply: 
2

εσ  
 

 
For the ANOVA table then:  Using j=1 to J blocks; k=1 to 
K treatments; and assuming all nij are equal to n (as per 
the notes on Generalized RCB): 
 
Source df MS  p-value E[MS] 
 BLK J-1 MSBLK Prob F>  

F(J-1),(dfE), 1- α  
22

BLKKnσσ ε +  

TR K-1 MSTR Prob F>  
F(K-1),(dfBXT),1- α 

TRTBn φσσ ε ++ ×
22

 

BLK 
X TR 

(J-1) 
(K-1) 

MSBXT Prob F>  
F dfBXT,dfE,,1- α 

TBn ×+ 22

σσ ε  

Error nT -JK MSE  2

εσ  

Total nT -1    
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More complex example:  RCB, two-factors, split-plot.  
Factor B is in split-plots (subdivided experimental 
units): 
 
1.  Write up linear model.    
 

)( jlkBklABljkABLKkAjBLKjkly ετττττμ ++++++= ×•••     
for j=1 to J,  k=1 to K, l=1 to L 

            (blocks)  (Factor A)  (Factor B) 
 
 NOTE:  will use instead: 
 for j=1 to b,       k=1 to fA ,       l=1 to fB  
 (blocks)         (Factor A)        (Factor B) 
Then b is taken from B possible blocks; 
fA is taken from FA possible levels of Factor A; 
fB is taken from FB possible levels of Factor B. 
 
The other interactions  

BLK X B 
BLK X A X B 

are combined in the error term in this model.   We will 
separate these out to calculate the EMS: 

ABjklBLKBjlBLKjkl ×× += ττε  
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Steps 2 and 3: Generate table of indices and number of 
factor levels etc.  Indicate which factors are fixed versus 
random and add a symbol for each component.  Note that 
we will use the symbol for variance (random-effects) for 
all components, and change this to BA φφ ,  for the fixed-
effects treatment at the end. 
 

Type: R F F  
b fA   fB   

Effect j k l Symbol 
τBLKj    2

BLKσ  
τAk    2

Aσ  
τBLK X Ajk     2

ABLK×σ  
τBk    2

Bσ  
τABkl     2

ABσ  
τBLK X Bjk      2

BBLK×σ  
τBLK X ABjkl      2

ABBLK×σ  
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4. Fill in the table by: 

a. Put down a “1”, where subscript is bracketed 
(nested) 

b. For each effect, put down the end value (e.g.,  fA for 
number of levels of Factor A) for each subscript 
that does not appear for the effect 

 
Type: R F F  

 b fA   fB   
Effect j k l Symbol 

τBLKj  fA   fB  2

BLKσ  
τAk b  fB 2

Aσ  
τBLK X Ajk    fB 2

ABLK×σ  
τBk b fA    2

Bσ  
τABkl  b   2

ABσ  
τBLK X Bjl    fA  2

BBLK×σ  
τBLK X ABjkl      2

ABBLK×σ  
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c. Add the “finite population correction factor” for 

each of the other factors:  e.g., for Blocks, this is 
⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

B
b

B
bB 1  

Type: R F F  
b fA   fB   

Effect j k l Symbol 
τBLKj ⎟

⎠
⎞

⎜
⎝
⎛ −

B
b1 fA   fB  2

BLKσ  
τAk b 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1  fB 2

Aσ  

τBLK X Ajk  ⎟
⎠
⎞

⎜
⎝
⎛ −

B
b1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1  fB 2

ABLK×σ  

τBk b fA   
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

B

B

F
f

1
2

Bσ  

τABkl  b 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

B

B

F
f

1
2

ABσ  

τBLK X Bjk   ⎟
⎠
⎞

⎜
⎝
⎛ −

B
b1 fA 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

B

B

F
f

1  
2

BBLK×σ  

τBLK X ABjkl  ⎟
⎠
⎞

⎜
⎝
⎛ −

B
b1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

B

B

F
f

1  
2

ABBLK×σ  
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5. Change FPC values to either 1 or zero. 

a. If factors are random and there is a very large 
number of available levels, e.g., B≈∞.  Thus 
FPC→1 

b. If factors are fixed, then the number of available 
factors is the number of factors sampled, e.g.,  fA = 
FA.  Thus, FPC→0 

c. If factors are random and there is a finite number 
of available factors, then no change is made (we 
will assume we have none of these). 

Type: R F F  
 b fA   fB   

Effect j k l Symbol 
τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjk   1 fA 0 2

BBLK×σ  
τBLK X ABjkl   1 0 0 2

ABBLK×σ  
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6. Write up components 
a. For each effect, select all the row(s) with effects 

that contain the same subscript(s)  
b. Ignore any columns with the heading for that 

(those) subscript(s).  (i.e., select all columns that do 
not have the subscript. 

c. Add up the product of the remaining columns for 
the selected row(s) 

 
For Blocks, the subscript is j. 

Type: R F F  
b fA   fB   

Effect j k l Symbol 
τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjk   1 fA 0 2

BBLK×σ  
τBLK X ABjkl  1 0 0 2

ABBLK×σ  
 
For Block, the E[MSBLK] is:   

2
BLKBA ff σ  
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For Factor A, the subscript is k: 
 

Type: R F F  
 b fA   fB   

Effect j k l Symbol 
τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjk   1 fA 0 2

BBLK×σ  
τBLK X ABjkl   1 0 0 2

ABBLK×σ  
 
For Factor A, the E[MSA] is:   

22
ABLKBAB fbf ×+ σσ  

Since Factor A is a fixed-effect, using the Aφ  instead, the 
E[MSA] is, therefore:   

2
TRBLKBA f ×+ σφ  

Note:The interaction remains Random with a variance 
symbol, as this is the interaction between blocks and 
treatments.  Since one of these is a random-effect, this is 
also a random-effect. 
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For Block X Factor A, the subscript is jk: 
Type: R F F  

b fA   fB   
Effect j k l Symbol 

τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjk   1 fA 0 2

BBLK×σ  
τBLK X ABjkl  1 0 0 2

ABBLK×σ  
 

For Block by Factor A, the E[MSBLK X A] is:   
2

TRBLKBf ×σ  

 

This was simply called “Error 1” (
2

1εσ ) on the notes for 
split plot. 
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For Factor B, the subscript is l: 
Type: R F F  

 b fA   fB   
Effect j k l Symbol 

τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjl   1 fA 0 2

BBLK×σ  
τBLK X ABjkl   1 0 0 2

ABBLK×σ  
 
For Factor B, the E[MSB] is:   

22
BBLKABA fbf ×+ σσ  

Since Factor B is a fixed-effect, using the Bφ  instead, the 
E[MSB] is, therefore:   

2
BBLKAB f ×+ σφ  
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For Factor A X Factor B, the subscript is kl: 
 

Type: R F F  
b fA   fB   

Effect j k l Symbol 
τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjl   1 fA 0 2

BBLK×σ  
τBLK X ABjkl  1 0 0 2

ABBLK×σ  
 

For Factor A by Factor B, the E[MSAB] is:   
22

ABBLKABb ×+ σσ  

Since Factor A and Factor B are both fixed-effects, using 
the BA×φ  instead, the E[MSAB] is, therefore:   

2
ABBLKBA ×× + σφ  



 

 489

For Block X Factor B, the subscript is jl: 
 

Type: R F F  
 b fA   fB   

Effect j k l Symbol 
τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjl   1 fA 0 2

BBLK×σ  
τBLK X ABjkl   1 0 0 2

ABBLK×σ  
 

For Block by Factor B, the E[MSBLK X B] is:   
2

BBLKAf ×σ  
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For the error term, the subscript is jkl: 
 

Type: R F F  
b fA   fB   

Effect j k l Symbol 
τBLKj 1 fA   fB  2

BLKσ  
τAk b 0 fB 2

Aσ  
τBLK X Ajk  1 0 fB 2

ABLK×σ  
τBk b fA   0 2

Bσ  
τABkl  b 0 0 2

ABσ  
τBLK X Bjl   1 fA 0 2

BBLK×σ  
τBLK X ABjkl  1 0 0 2

ABBLK×σ  

The E[MSBLK X AB] is simply: 
2

ABBLK×σ  . 
 

“Error 2” is a combination of BLK X B with BLK X AB, 
which is: 

222
2 ABBLKBBLKAf ×× += σσσ ε  

 
Assuming no interaction between Blocks and Factor B, this  

22
2 ABBLK×≅ σσ ε  
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For the ANOVA table then:  Using j=1 to J blocks; k=1 to 
K Factor A levels;  l=1 to L Factor B levels;  and using 
error 1 and error 2 (as per the notes RCB Split-Plot): 
 
Source df MS Both A and B 

are Fixed; 
Blocks are 
Random 

Block J-1 MSBLK 2
BLKKLσ  

Factor A  K-1 MSA 
AL φσ ε +

2

1  

Exp. Err. #1 (J-1)(K-1) MSE1 2

1εσL  

Factor B L-1 MSB 
Bφσ ε +

2

2  

A x B (K-1) 
(L-1) 

MSAXB 
BA×+φσ ε

2

2

Exp. Err. #2 K(J-1) 
(L-1) 

MSE2 2

2εσ  

Total JKL-1   
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Generalized RCB, one-fixed factor with subsampling.  
Blocks assumed fixed. 
 
1.  Write up linear model.    
 

)()( ijkljkijkTRBLKkTRjBLKijkly εετττμ +++++= ×•••     
for j=1 to J,                        k=1 to K,      
(blocks)                  (Treatment=Factor A)   
  i=1 to n, (Exp. units in jk) 
and l=1 to m (sampling in each exp. unit) 
 
 NOTE:  will use instead: 
for j=1 to b,       k=1 to fA   
(blocks)         (Factor A)   
Then b is taken from B possible blocks; 
fA is taken from FA possible levels of Factor A; 
n  is taken from N possible experimental units; 
m  is taken from M possible samples in each experimental 
unit. 
 
The first error term, is the EU error; the second error term 
is the SU error. 
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Steps 2 and 3: Generate table of indices and number of 
factor levels etc.  Indicate which factors are fixed versus 
random and add a symbol for each component.  Note that 
we will use the symbol for variance (random-effects) for 
all components, and change this to φ  for the fixed-effects 
treatment at the end. 
 

Type: F F R R  
 b fA   n m   

Effect j k i l Symbol 
τBLKj     2

BLKσ  
τTRk     2

TRσ  
τBLK X TRjk      2

TRBLK×σ  
εi(jk)     2

EEσ  
εl(ijk)       2

SEσ  
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4. Fill in the table by: 

a. Put down a “1”, where subscript is bracketed 
(nested) 

b. For each effect, put down the end value (e.g.,  fA 
for number of levels of Factor A) for each 
subscript that does not appear for the effect 

 
Type: F F R R  

b fA   n m   
Effect j k i l Symbol 

τBLKj  fA n m 2

BLKσ  
τTRk b  n m 2

TRσ  
τBLK X TRjk    n m 2

TRBLK×σ  
εi(jk) 1 1   2

EEσ  
εl(ijk)   1 1 1  2

SEσ  
 
 
 



 

 495

 
c. Add the “finite population correction factor” for 

each of the other factors:  e.g., for Blocks, this is 
⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

B
b

B
bB 1  

Type: F F R R  
 b fA   n m   

Effect j k i l Symbol 
τBLKj ⎟

⎠
⎞

⎜
⎝
⎛ −

B
b1  fA  n m 2

BLKσ  
τTRk b 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1

 

n m 2

TRσ  

τBLK X TRjk  ⎟
⎠
⎞

⎜
⎝
⎛ −

B
b1  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1

 

n m 2

TRBLK×σ

εi(jk) 1 1 ⎟
⎠
⎞

⎜
⎝
⎛ −

N
n1

 

m 2

EEσ  

εl(ijk)   1 1 1 ⎟
⎠
⎞

⎜
⎝
⎛ −

M
m1

2

SEσ  
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5. Change FPC values to either 1 or zero. 
a. If factors are random and there is a very large number 

of available levels, e.g., N≈∞.  Thus FPC→1 
b. If factors are fixed, then the number of available 

factors is the number of factors sampled, e.g.,  fA = 
FA.  Thus, FPC→0 

c. If factors are random and there is a finite number of 
available factors, then no change is made (we will 
assume we have none of these). 

Type: F F R R  
b fA   n m   

Effect j k i l Symbol 
τBLKj 0 fA  n m 2

BLKσ  
τTRk b 0 n m 2

TRσ  
τBLK X TRjk 0 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
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6. Write up components 
a. For each effect, select all the row(s) with effects that 

contain the same subscript(s)  
b. Ignore any columns with the heading for that (those) 

subscript(s).  (i.e., select all columns that do not have 
the subscript. 

c. Add up the product of the remaining columns for the 
selected row(s) 
 

For Blocks, the subscript is j. 
Type: F F R R  

 b fA   n m   
Effect j k i l Symbol 

τBLKj 0 fA  n m 2

BLKσ  
τTRk b 0 n m 2

TRσ  
τBLK X TRjk  0 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
For Block, the E[MSBLK] is:   

222
SEEEBLKA mnmf σσσ ++  

Since Blocks are fixed: 
22

SEEEBLK m σσφ ++  
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For Factor A (treatment), the subscript is k: 
Type: F F R R  

b fA   n m   
Effect j k i l Symbol 

τBLKj 0 fA  n m 2

BLKσ  
τAk b 0 n m 2

TRσ  
τBLK X Ajk  0 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
 
For treatments (Factor A), the E[MSTR] is:   

222
SEEETR mbnm σσσ ++  

Since treatments are fixed: 
22

SEEETR m σσφ ++
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For Block X Factor A, the subscript is jk: 
 

Type: F F R R  
 b fA   n m   

Effect j k i l Symbol 
τBLKj 0 fA  n m 2

BLKσ  
τAk b 0 n m 2

TRσ  
τBLK X Ajk  0 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
 
For Block by Factor A, the E[MSBLK X TR] is:   

222
SEEETRBLK mnm σσσ ++×  

Since Blocks and treatments (Factor A) are fixed: 
22

SEEETRBLK m σσφ ++×  
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 For the experimental units nested in blocks by treatments, 
the subscript is ijk: 
 

Type: F F R R  
b fA   n m   

Effect j k i l Symbol 
τBLKj 0 fA  n m 2

BLKσ  
τAk b 0 n m 2

TRσ  
τBLK X Ajk  0 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
 
For the experimental units, the E[MSEE] is:   

22
SEEEm σσ +  

And for the samples in each experimental unit, the 
E[MSSE] is:   

2
SEσ  
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If Blocks are random and treatments are fixed, steps 1 
to 4 are the same: 
  

Type: R F R R  
 b fA   n m   

Effect j k i l Symbol 
τBLKj ⎟

⎠
⎞

⎜
⎝
⎛ −

B
b1  fA  n m 2

BLKσ  
τTRk b 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1

 

n m 2

TRσ  

τBLK X TRjk  ⎟
⎠
⎞

⎜
⎝
⎛ −

B
b1  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

A

A

F
f

1

 

n m 2

TRBLK×σ

εi(jk) 1 1 ⎟
⎠
⎞

⎜
⎝
⎛ −

N
n1

 

m 2

EEσ  

εl(ijk)   1 1 1 ⎟
⎠
⎞

⎜
⎝
⎛ −

M
m1

2

SEσ  
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5. Change FPC values to either 1 or zero. 
d. If factors are random and there is a very large number 

of available levels, e.g., N≈∞.  Thus FPC→1 
e. If factors are fixed, then the number of available 

factors is the number of factors sampled, e.g.,  fA = 
FA.  Thus, FPC→0 

f. If factors are random and there is a finite number of 
available factors, then no change is made (we will 
assume we have none of these). 

Type: R F R R  
b fA   n m   

Effect j k i l Symbol 
τBLKj 1 fA  n m 2

BLKσ  
τTRk b 0 n m 2

TRσ  
τBLK X TRjk 1 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
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6. Write up components 
d. For each effect, select all the row(s) with effects that 

contain the same subscript(s)  
e. Ignore any columns with the heading for that (those) 

subscript(s).  (i.e., select all columns that do not have 
the subscript. 

f. Add up the product of the remaining columns for the 
selected row(s) 
 

For Blocks, the subscript is j. 
Type: R F R R  

 b fA   n m   
Effect j k i l Symbol 

τBLKj 1 fA  n m 2

BLKσ  
τTRk b 0 n m 2

TRσ  
τBLK X TRjk  1 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
For Block, the E[MSBLK] is:   

222
SEEEBLKA mnmf σσσ ++  
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For Factor A (treatment), the subscript is k: 
Type: R F R R  

b fA   n m   
Effect j k i l Symbol 

τBLKj 0 fA  n m 2

BLKσ  
τAk b 0 n m 2

TRσ  
τBLK X Ajk  1 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
 
For Factor A, the E[MSTR] is:   

2222
SEEETRBLKTR mnmbnm σσσσ +++ ×  

 
Since treatments are fixed, but blocks are random: 

222
SEEETRBLKTR mnm σσσφ +++ ×  
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For Block X Factor A, the subscript is jk: 
 

Type: R F R R  
 b fA   n m   

Effect j k i l Symbol 
τBLKj 0 fA  n m 2

BLKσ  
τAk b 0 n m 2

TRσ  
τBLK X Ajk  1 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
 
For Block by Factor A, the E[MSBLK X TR] is:   

222
SEEETRBLK mnm σσσ ++×  
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 For the experimental units nested in blocks by treatments, 
the subscript is ijk: 
 

Type: R F R R  
b fA   n m   

Effect j k i l Symbol 
τBLKj 0 fA n m 2

BLKσ  
τAk b 0 n m 2

TRσ  
τBLK X Ajk  1 0 n m 2

TRBLK×σ
εi(jk) 1 1 1 m 2

EEσ  
εl(ijk)   1 1 1 1 2

SEσ  
 
 
For the experimental units, the E[MSEE] is:   

22
SEEEm σσ +  

And for the samples in each experimental unit, the 
E[MSSE] is:   

2
SEσ  
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Power of the Test 

Four possible results from Hypothesis testing: 
 Reject H0 Accept H0
H0 True α 1-α 
H0 False 1-β β 

 
1.  H0 is true, and we accept H0 (we fail to reject it).  Correct 
outcome.  Probability of this is 1-α 
 
2.  H0 is false (H1 is true instead) and we reject H0.  Correct 
outcome.  Probability of this is 1-β.  This is called the Power 
of the Test. 
 
3.  H0 is true, but we reject H0.   Not correct! Called the 
Type I error rate, the chance of rejecting a null hypothesis 
when it is true.   For example, you reject when the means are 
actually the same, for a fixed-effects factor  The probability 
of this happening is α, the significance level that you select. 
 
4.  H0 is false, but we accept H0 (we fail to reject it).  Not 
correct!  Called the Type II error rate, with a probability of β, 
the chance of accepting a null hypothesis when it is false.  
For example, you fail to reject H0: when the underlying 
population means are actually different. 
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Let’s say we are looking at a simple hypothesis, that the true 
mean is equal to a value, μ=μ0: 
 
H0: μ=μ0 
 
We then test this by: 

• Collecting a number of observations (n) from the 
population with mean of μ 

• Calculating the sample mean, y is an unbiased estimate 
of μ 

• If we repeat this a number of times, the sample means 
will vary around the real mean, with some sample 
means being far away from μ  

• The variance of the sample means among different 
sample sets will depend upon: 
o The number of observations in each sample set:  As 

n ↑ , the variance of these means will decrease. 
o If the variance in the observations is low, the 

variance of these means will also be low, for a 
given n. 
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Let’s say the alternative is that the true mean is greater than 
μ0: 
 
H1:μ>μ0    

 
and state this as: 
 

H1 μ=μ1 where this is larger than μ0. 

 
Using a t-test (the y values follow a normal distribution, or n 
is large), sometimes we will reject H0: μ=μ0, even when the 
sample was from that population. 
 
α is the significance 
level that we set.  
α is the probability 
that  
we reject H0 when it 
is true, a Type I 
error, and conclude 
that it came from the 
population with 
μ=μ1.  An error! -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

μ 0   

α
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We choose α  but how do we get β?   
 

β = Type II 
error; β is the 
probability 
that we 
Accept H0 
(do not 
reject) when 
it is false, 

e.g., if μ is really equal to μ1 .  The Power of the Test is 1-β. 
 

 β  is directly related to the α level that we chose. 
If we set α  smaller (Type I error), β will get larger (Type II 
error)! 
 
Examples:  
1. sample mean = -2.5.  Conclusion?   

2. sample mean =0.5.  Conclusion?  Correct?  Depends! 

3. sample mean=2.5.  Conclusion?  Correct?  Depends! 

4. sample mean =4.5.  Conclusion?  Correct? 

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5

μ 0                     μ 1

α

β
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How do we increase Power of the Test? 

1. If we set α  larger, β will get smaller.  But then the Type I 
error is larger!   

          “lumpers” – large α;  “splitters” – small α 
2. If μ=μ1  is very far from  μ=μ0, β will get smaller. 

As our 
alternative 
hypothesis 
(e.g., μ1) 
moves 
farther 
away from 
the null 
value (e.g., 
μ0), β 

decreases and the power of the test increases.   
 
3. Reduce the variance of the sample mean between different 

sample sets by: 
o     number of observations in each sample:  As n     , 

the variance of these means will decrease. 
o If the variance in the observations is low, the 

variance of these means will also be low, for a 
given n.  Can do this via stratifying, or in 
experiments, by blocking. 

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5

μ 0                                   μ 1

α

β
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For experiments, for a given α level, power changes with: 

• the sizes of the real differences between true 

(population) treatment means, and  

• variation between experimental unit means (the means 

from the experiment) for a given treatment. 

• the type of test we use to test our hypothesis.  For 

experimental design, we use an F-test (or more than one 

F-test) 

• CAUTION:  If there are repeated measures, spatial 

correlations, unequal variances, and/or non-normality 

for the error term(s), this becomes very complex.  Can 

use transformations to meet the assumptions in some 

cases. 
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In Power Analysis for experiments, we want to either: 
 

1. Calculate the Type II error and the power after the 
experiment is done, given the size of differences that 
we had in our experimental data, OR 

 
2. Calculate the Type II error before conducting the 

experiment 
• putting in the size of the differences that we wish 

to detect (e.g., how much more does height growth 
have to be before we would add fertilizer?) 

•  the α level, and  
• change the experiment (more experimental units) 

to achieve a certain power (e.g., 0.80) 
 
If Power analysis is used to alter the experiment, prior to 
it being conducted, then any differences that are detected, 
WILL BE DIFFERENCES OF PRACTICAL 
IMPORTANCE.  
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How do we calculate Power after conducting the experiment ( 
post-hoc power analysis)?  Steps: 
 
1. The experimental design is already set, along with the number 

of experimental units in each treatment, and the sizes of 
differences that were detected in the experiment.  
 

2. Choose α.    e.g., α=0.05 
 
3. Find the critical region using α.   
 
e.g., suppose we have a CRD: one fixed-effect factor, with: 
J=5 treatments, and df treatment is 5-1=4 
n=3 observations in each treatment, and df error is  
5(3-1)=10 
Therefore, Fcritical is F(0.95,4,10)=3.48 
 

0.0 1.0 2.0 3.0 4.0

F(4,10,0.95)

α
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4. Power is the probability that we would get the Fcritical or a 
larger value, if H1 was true (the means differed by the 
amounts given in the experiment).  Need to estimate the size 
of the treatment effects (differences between means and the 
grand mean) based on the experiment to get this probability.   

 
E.g., for the example, the experimenter calculated:   
SSTR=753  so  MSTR=753/(5-1)=188.25 
MSE=5.23   
We know that  E[MSTR ]=φTR+

2
εσ     and E[MSE]= 2

εσ , and 
that: 
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Power is then Prob(F>Fcritical | Noncentral)  where Noncentral 
is the noncentrality parameter,  when H1 is true.  This is called a 
“Noncentral F-distribution”.   
 
Using the treatment 
effects we did get in 
the experiment, we can 
then calculate the 
noncentrality 
parameter, and find this 
probability. 
 

36.140
23.5

69.2443ˆ

2
1

2

=
×

==

==
∑

=

noncentral

n
noncentral

J

j
j

δ

σ

τ
δ

ε    

 
for n=3. 
 
Then use SAS: 
 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df 
Error, Noncentral); 
Power=1-probf(3.48,4,10,140.36); 
Run; 
The temporary file will have the result in it, which is 0.9999.  
Very high power.  Often try to get power between 0.80 and 0.95.   

0.0 1.0 2.0 3.0 4.0
F(4,10, 0.95)

1−β
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How do we calculate Power before conducting the experiment?  
Steps: 
 
1. Select the experimental design  

E.g., simplest is CRD with one fixed-effect factor.  Power 
analysis changes with the design, since the numerator and the 
denominator of the F-tests change.   
 

2. State each H0 and H1.  BUT H1 must be explicit, as to the 
size of the differences that you wish to detect.  
E.g. CRD with one fixed-effect factor:  
H1:  μ1=10, μ2=11, μ3 = 12, μ4 = 13, μ5 = 14  
With a grand mean of 12, so the treatment effects are  
τ1=-2, τ2=-1, τ3=0, τ4=+1, τ5=+2,  and:  

10
1

2 =∑
=

J

j
jτ   

We would like to detect quite small differences.  If we reject 
H0, and conclude H1, the differences are at least this large 
(called minimum distances).  And if these differences are 
detected, this is a difference of practical importance. 
 

3. Choose α.    e.g., α=0.05.  Find the critical F value using 
α.  e.g, for 3 experimental units per treatment, df(error) is 5(3-
1)=10.  F(4, 10, 0.95) = 3.48. Therefore, the critical region is 
F>3.48 
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4. Power is the probability that we will get Fcalculated that is 
greater than 3.48, given that the means are as given in H1 (i.e. 
H1 is true).  We again need use the noncentral F distribution:   

Power=Prob(F>Fcritical | Noncentral)   
where Noncentral is the noncentrality parameter,  when H1 is 
true.  Using the treatment effects we wish to be able to detect 
(or larger differences), we can then calculate the noncentrality 
parameter, and find this probability.  BUT we need an 
estimate of the variance of the error terms from a previous 
similar experiment!   

Using the last experiment as being similar:  MSE=5.23  is our 
estimate of the variance of the errors. 

74.5
23.5
103ˆ

2
1

2

=
×

===
∑

= δ
σ

τ
δ

ε

J

j
jn

noncentral    

for n=3. 
 
Then use SAS: 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df 
Error, Noncentral); 
Power=1-probf(3.48,4,10,140.36); 
Run; 
 
The temporary file “power” will have the result in it, which is 
0.30.  Very low power.  Often try to get power between 0.80 
and 0.95.    These are small differences which will be harder to 
detect. 
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Options: 
 
1.  What about increasing this to n=4 experimental units per 
treatment (20 experimental units for the experiment)?  The df 
treatment is still 4, but the df(error) is J(n-1) which is 5(4-1)=15.  
This has a critical F(4,15,0.95)= 3.06 

65.7
23.5
104ˆ

2
1

2

=
×

===
∑

= δ
σ

τ
δ

ε

J

j
jn

noncentral    

for n=4.   
 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df 
Error, Noncentral); 
Power=1-probf(3.06,4,15,7.65); 
Run; 
 
This results in a power of 0.44.  The chance of rejecting H0 
when there is at least these differences is only 44%.  There is a 
large chance of accepting H0, when it is false (Type II error). 
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2.  Another option is to use a different experimental design.  
What if we think we can reduce the MSE to 1.5 by using 2 
Blocks in the design, but only n=2 experimental units per 
treatment (5 X 2 X 2=20 experimental units in total).  We then 
have J=2 blocks, K=5 treatments, and n=2 experimental unit in 
each Block/Treatment combination.  The df(error) is then JK(n-
1) which is 2 X 5 (2-1)=10.  The F critical is F(4,10,0.95)=3.48.  

3.13
5.1
102ˆ

2
1

2

=
×

===
∑
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σ
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J
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noncentral  

 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df 
Error, Noncentral); 
Power=1-probf(3.48,4,10,13.3); 
Run; 
 
The power is now 0.63.   
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3.  Power is still not high enough, but cannot afford more 
experimental units or blocks?  Change your expectations, also: 

H1:  μ1=9, μ2=11, μ3 = 12, μ4 = 13, μ5 =15   
With a grand mean of 12,  so the treatment effects are  

τ1=-3, τ2=-1, τ3=0, τ4=+1, τ5=+3,  and:  20
1

2 =∑
=

J

j
jτ   

 
The F critical is F(4,10,0.95)=3.48, as in option 2. 

7.26
5.1
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For n=2 and using the estimated variance of the error terms 
when 2 blocks are used.  
 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df 
Error, Noncentral); 
Power=1-probf(3.48,4,10,26.7); 
Run; 
 
The power is now 0.92!  Only an 8% chance of a Type II error. 
 
See SAS code called  
One_way_anova_power_using_min_differences.sas 
Gives power for different alpha levels, and n. 

References:   
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Textbook: [newest edition in White] 
Ch. 16.10; 19.11; 21.9;  
 
Biometrics Information Handbook and Pamphlets (see 

www.forestry.ubc.ca/biometrics and click on “link” to find 
the website for these handbooks), particularly: 

Nemec, A.F.  1991.  Power analysis handbook for the design and 
analysis of forestry trials, Handbook No. 2.  BC Ministry of 
Forests, Research Branch, Victoria, BC. 

Bergerud, W. 1995.  Post-hoc power analyses for ANOVA F-tests.  
Pamphlet #52.  BC Ministry of Forests, Research Branch, 
Victoria, BC. 

Bergerud, W. 1992.  A general description of hypothesis testing and 
power analysis.  Pamphlet #37.  BC Ministry of Forests, 
Research Branch, Victoria, BC. 

Bergerud, W.1995.  Power analysis and sample sizes for completely 
randomized designs with subsampling. Pamphlet #49.  BC 
Ministry of Forests, Research Branch, Victoria, BC. 

Bergerud, W.1995.  Power analysis and sample sizes for 
randomized block designs with subsampling. Pamphlet #50.  
BC Ministry of Forests, Research Branch, Victoria, BC. 

Bergerud, W.1995.  Programs for power analysis/sample size 
calculations for CR and RB designs with subsampling. 
Pamphlet #51.  BC Ministry of Forests, Research Branch, 
Victoria, BC. 
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Example from  
Nemec, A.F.  1991.  Power analysis handbook for the design and 

analysis of forestry trials, Handbook No. 2.  BC Ministry of 
Forests, Research Branch, Victoria, BC. 

Pp 15-16. 
1.  Experiment: 

J=5 treatments, and df treatment is 5-1=4 
n=3 observations in each treatment, and df error is  
5(3-1)=10 

Therefore, Fcritical is F(0.90,4,10)=2.605 
2.  Set means for H1: 

H1:  μ1=600, μ2=500, μ3 = 500, μ4 = 400, μ5 =400   
With a grand mean of 480,  so the treatment effects are  

τ1=120, τ2=20, τ3=20, τ4=-80, τ5=-80,  and:  000,28
1

2 =∑
=

J

j
jτ   

 
3.  Estimate standard deviation of the errors as 200 cm, so 
variance of the errors is 2002. 
4.  Calculate noncentrality parameter: 

 

1.2
000,40

000,283ˆ
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noncentral  

 
For n=3. 
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4.  Calculate power using SAS: 
 
Data power; 
*  Power=1-probf(Fcritical,df Treatment, df 
Error, Noncentral); 
Power=1-probf(2.605,4,10,2.1); 
Run; 
 
The power is 0.224. 
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Use of Linear Mixed Models for Experimental Design 
 

What are linear mixed models?   
 
They are a group of linear models that include: 
• One dependent variable, that is continuous (usually 

labeled as Y or y  in textbooks)   
• fixed components  

o continuous variables, and/or class variables 
represented by dummy (indicator) variables;  

o fixed-effects in experimental design, predictor 
variables in regression, usually labeled as X or x;  

o associated coefficients are labeled as β in most texts. 
• error term  

o usually labeled as ε (use e if this is estimated errors, 
not population errors)  

o covariance matrix: variances and covariances of the 
errors; labeled the R matrix in many mixed models 
text books 

o error terms follow a normal distribution 
o error terms may have unequal variance, and /or 

correlations (time and/or space) between error terms 
o error terms are a random component. 
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and may include, also: 
• random components  

o covariance matrix (variances and covariances of these 
random components) is labeled the G matrix in many 
texts 

o the “variables” (really a design matrix) are labeled as 
Z, with associated coefficients “u”.  

o these also follow a normal distribution 
o some models have only random components, and no 

fixed components 
 
Aside:  In math symbols, this becomes: 
 

RZGG'V(y)εuZβxy +=++=  
  
• Estimates of all parameters: 

o the fixed component coefficients (including the 
intercept),  

o the variances for: 
  the random components variances and 

covariances; and random-effects coefficients 
 variances (and covariances) of the error term  

• are estimated using maximum likelihood 
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Likelihood 
 
Given a set of the estimated parameters (coefficients and 
variances/covariances), what is the chance that we would get 
the data that we did get? 
 
For a discrete distribution of y (not the case in linear mixed 
models), this would be a probability for the first observation 
X the prob of the second observation, etc. to the last 
observation – between 0 and 1. 
 
For a continuous distribution, e.g., normal, this is the value 
of the probability density function for the first observation X 
the probability density function for the second observation, 
etc to the last observation – not necessarily less than 1. 
 
Maximum Likelihood 
 
Change the set of estimated parameters until we get the 
largest possible likelihood. 

 
Often easier to take the logarithm of the likelihood to do this 
– most packages report the log likelihood, or  
 -2 X log likelihood. 
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Searching for the Maximum Likelihood 
 
Most packages get the maximum likelihood by: 

o Searching for a set of all of these estimated 
parameters that will result in the maximum 
likelihood of obtaining the data that we did get (ML 
method)  

OR 
o Finding estimates of the fixed component coefficients 

first (sometimes using least squares methods), and 
then using the residuals from that to get the random 
components (REML). 

Because this is a search to find a solution (the estimates that 
give the maximum likelihood), the search proceeds by : 

o getting estimates, calculating the (log) maximum 
likelihood (one iteration),  

o altering the estimates, and recalculating the 
maximum likelihood (another iteration), and  

o so on, until the estimates don’t change (or this may 
stop based on the likelihood does not change. 
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However, the search may not converge –  
o means that the estimates are not becoming the same 

over the iterations of the search.   
o You may need to: 

  increase the number of iterations,  
 change the way the search is done (e.g., 

Marquardt is one method for searching that is 
commonly used) 

 It may mean that your model is not correctly 
specified, or it is just very hard to find a solution 
if your models if very complex. 

The search may converge, but with the statement that the 
“Hessian is not positive definite”   

o This will mean that the variance estimates are not 
reliable.   

o This can occur with a complex model, or when the 
model is not correctly specified. 
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Mixed models for experimental design 
 
Linear mixed models enable us to get estimates for mixed-
effects models, including: 
• testing the fixed-effects factors for interactions, and main 

effects (Type III SS, F-tests).  SAS will use the correct F-
tests based on Expected Means Squares.  

• Get t-tests for pairs of means using the correct 
denominator Mean Squares (same as the one used in the 
F-test) 

• Get estimates of the variances for the random effects, 
including the variance of the residual error.   

• Testing assumptions:  bit harder to do! 
o Use residuals from GLM and do the tests? 
o Check the log likelihood – should be better (higher 

log likelihood OR lower -2 log L) as you better meet 
the assumptions. 

 
Example 1:  CRD with one-fixed and one-random factor 
(handed out in class)  -- discussion. 
 
Others used in class:  Time permitting only.  
Example 2:  Randomized Block Design with replicates in 
each block (Generalized Block Design; handed out in class as 
one of the designs under Randomized Block Design with other 
Experiments) 
 
Example 3:  CRD: one fixed-effect factor with subsampling 
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References: 
Littell, R.C., G. A. Milliken, W.W. Stroup, and R.D. 
Wolfinger.  1996.  SAS system for Mixed Models.  SAS 
Institute Inc., Cary, NC. 
 
Pineiro, J.C. and D.M. Bates.  2000.  Mixed-effects models in 
S and S-plus.  Springer, New York. 
 
Schabenberger, O. and F. J. Pierce.  2002.  Contemporary 
Statistical Models.  CRC Press, New York (available 
electronically to UBC students as by accessing: 

1. www.library.ubc.ca 
2. Indexes and Databases 
3. Stats Net Base 
4. Then search for “Schabenberger” 
5. Then select Chapter 7.  “Linear mixed models for 

clustered data.” 
 
NOTES: 
 

1. Generalized Linear Mixed Models allow for class 
variables and count variables also (PROC GLMMIX). 

2. Nonlinear Mixed Models allow for nonlinear models 
(PROC NLMIX). 
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CRD:  Random and Mixed Effects  

Example Using SAS:  Two Factors, CRD. 

• Factor A, (three levels of fertilization: A1, A2, and A3) (J=3) 

– fixed-effects 

• Factor B (four species: B1, B2, B3 and B4) (K=4)  Random-

effects 

• Crossed: 12 treatments 

• Four replications per treatment (n=4) for a total of 48 

experimental units 

• Measured Responses:  height growth in mm 

species is random -- these are a few of the species that we are 

interested in and we wish to look at the variance in height 

growth that is due to species. 
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• Expected Mean Square Values Comparison:   

Mean 

Square 

Model I 

Both A and 

B are Fixed 

Model II 

Both A and B are 

Random 

Model III 

A is Fixed 

B is Random 

A   

(MSA) 
Aφσ ε +

2
* 

222

ABA nnK σσσ ε ++ 22

ABA nσφσ ε ++

B  

(MSB) 
Bφσ ε +

2

 
222

ABB nnJ σσσε ++  
22

BnJσσε +  

A X B 

(MSAB) 
ABφσ ε +

2

 
22

ABnσσε +  
22

ABnσσε +  

Error 

(MSE) 

2

εσ  
2

εσ  
2

εσ  

 

 

 534 

 
SAS CODE: 

 
PROC IMPORT OUT= WORK.twofactor  
     DATAFILE= 
"E:\frst430\lemay\examples\encyl_examples.xls"  
     DBMS=EXCEL REPLACE; 
     SHEET="crd$";     GETNAMES=YES; 
     MIXED=NO;         SCANTEXT=YES; 
     USEDATE=YES;      SCANTIME=YES; 
RUN; 
 
options ls=70 ps=50 pageno=1; 
 
*  Using the same data as for fixed two-factor 
experiment, but assuming that factor b is random; 
PROC GLM  data=twofactor; 
class a b; 
model result=a b a*b; 
random b a*b/test; 
test h=a e=a*b; 
lsmeans a /e=a*b pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
 
proc univariate data=glmout normal plot; 
var resid; 
run; 
 
PROC MIXED data=twofactor; 
class a b; 
model result=a; 
lsmeans a/pdiff; 
random b a*b; 
run; 
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                 The SAS System                   1 
 
                The GLM Procedure 
 
            Class Level Information 
 
         Class         Levels    Values 
 
         A                  3    1 2 3 
         B                  4    1 2 3 4 
 
      Number of Observations Read          48 
      Number of Observations Used          48 
  
                The SAS System                    2 
 
              The GLM Procedure 
 
Dependent Variable: result   result 
 
                    Sum of 
Source      DF      Squares     Mean Square F Value 
 
Model       11    2209.916667   200.901515  164.37 
Error       36      44.000000     1.222222 
Corrected  
   Total    47    2253.916667 
 
           Source                 Pr > F 
 
           Model                  <.0001 
           Error 
           Corrected Total 
 
R-Square  Coeff Var   Root MSE    result Mean 
 
0.980478  4.850640     1.105542     22.79167 
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Removed Type I SAS output. 
 
 
Source   DF    Type III SS    Mean Square   F Value 
 
A         2    1258.166667     629.083333    514.70 
B         3     934.750000     311.583333    254.93 
A*B       6      17.000000       2.833333      2.32 
 
 
              Source                 Pr > F 
 
              A                      <.0001 
              B                      <.0001 
              A*B                    0.0539 
 
 
                 The SAS System                  4 
 
                The GLM Procedure 
 
Source         Type III Expected Mean Square 
 
A         Var(Error) + 4 Var(A*B) + Q(A) 
B         Var(Error) + 4 Var(A*B) + 12 Var(B)  ???? 
A*B       Var(Error) + 4 Var(A*B) 
   
These are not reliable – do not match textbooks nor 
determination of EMS using the rules. Tests on the 
following page also not useful. 
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              The SAS System                   5 
 
              The GLM Procedure 
 
Tests of Hypotheses for Mixed Model Analysis of 
Variance 
 
Dependent Variable: result   result 
 
Source     DF   Type III SS   Mean Square  F Value 
 
 *  A      2   1258.166667    629.083333   514.70 
    B      3    934.750000    311.583333   254.93 
    A*B    6     17.000000      2.833333     2.32 
 
Error:  
MS(Error) 36     44.000000      1.222222 
  
* This test assumes one or more other fixed effects are 
zero. 
 
          Source                Pr > F 
 
          *  A                     <.0001 
             B                     <.0001 
             A*B                   0.0539 
 
Error: MS(Error) 
* This test assumes one or more other fixed effects are 
zero. 
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                    The SAS System               6 
 
 
                 Least Squares Means  
Standard Errors and Probabilities Calculated Using the 
Type III MS for A*B as an Error Term 
 
                        result      LSMEAN 
             A          LSMEAN      Number 
             1      16.2500000           1 
             2      23.3750000           2 
             3      28.7500000           3 
 
 
         Least Squares Means for Effect A 
       t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
             Dependent Variable: result 
 
i/j         1            2           3 
 
1                 -11.9724      -21.0042 
                    <.0001        <.0001 
2      11.97239                 -9.03181 
         <.0001                   0.0001 
3       21.0042   9.031807 
         <.0001     0.0001 
 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned comparisons 
should be used. 
MUST use the Bonferroni correction.  For every test, 
compare the p-value to alpha/# pairs. 
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                  The SAS System                  7 
 
Dependent Variable: result   result 
 
Tests of Hypotheses Using the Type III MS for A*B as an 
Error Term 
 
Source   DF    Type III SS    Mean Square   F Value 
A        2    1258.166667     629.083333    222.03 
 
              Source                 Pr > F 
 
                A                    <.0001 
 
From class, we estimated the variance for Factor B as 
(n= 

86.25
34

22.158.311ˆ

][][
][][

][

][

2

2

2

2

22

2

2

=
×

−
=

−
=

−
=

−+=−

=

+=

nJ
MSEMSB
nJ

MSEEMSBE
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B
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B
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                The SAS System                    8 
 
       Plot of resid*predict.  Symbol used is '*'. 
 
resid ‚ 
      ‚ 
 2.50 ˆ                          * 
 2.25 ˆ 
 2.00 ˆ 
 1.75 ˆ                              * 
 1.50 ˆ                                          * 
 1.25 ˆ                 *         *     *     *             * 
 1.00 ˆ                           * 
 0.75 ˆ  *       * 
 0.50 ˆ                          *               * 
 0.25 ˆ                 *         *     *     *             * 
 0.00 ˆ                 *         * 
-0.25 ˆ  *       *                   * 
-0.50 ˆ                          *               * 
-0.75 ˆ                 *         *     *     *             * 
-1.00 ˆ                           * 
-1.25 ˆ  *       *                   * 
-1.50 ˆ                                          * 
-1.75 ˆ 
-2.00 ˆ 
-2.25 ˆ 
-2.50 ˆ                          * 
      ‚ 
      Š-ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       10        15        20        25        30        35        40 
 
                                   predict 
 
NOTE: 12 obs hidden. 
 
Some SAS outputs removed.     
                The SAS System               9 
 
               The UNIVARIATE Procedure 
                   Variable:  resid 
 
                  Tests for Normality 
 
Test                --Statistic--   --p Value---- 
 
Shapiro-Wilk       W     0.977162 Pr < W   0.4666 
Kolmogorov-Smirnov D     0.114207 Pr > D   0.1169 
Cramer-von Mises   W-Sq  0.082279 Pr >W-Sq 0.1963 
Anderson-Darling   A-Sq  0.513709 Pr >A-Sq 0.1926 
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               The SAS System                 11 
 
              The UNIVARIATE Procedure 
                  Variable:  resid 
 
Stem Leaf                     #             Boxplot 
   2 5                        1                | 
   2                                           | 
   1 58                       2                | 
   1 022222                   6                | 
   0 558888                   6             +-----+ 
   0 00000022222             11             *--+--* 
  -0 2222                     4             |     | 
  -0 888888888855            12             +-----+ 
  -1 2220                     4                | 
  -1 5                        1                | 
  -2                                           | 
  -2 5                        1                | 
   ----+----+----+----+ 
 
 
            Normal Probability Plot 
         2.75+                                               * 
             |                                              +++++ 
             |                                         *+*++ 
             |                                  ***+**+ 
             |                              **+*++ 
             |                        *****+* 
             |                    +***+ 
             |             **+**+** 
             |       * *++*++ 
             |     +++++ 
             |+++*+ 
        -2.75+ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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                The SAS System                   12 
 
              The Mixed Procedure 
 
                Model Information 
 
   Data Set                     WORK.TWOFACTOR 
   Dependent Variable           result           
   Covariance Structure         Variance Components 
   Estimation Method            REML 
   Residual Variance Method     Profile 
   Fixed Effects SE Method      Model-Based 
   Degrees of Freedom Method    Containment 
 
            Class Level Information 
 
          Class    Levels    Values 
          A             3    1 2 3 
          B             4    1 2 3 4 
   Levels for A and B correct.   
        
                Dimensions 
         Covariance Parameters             3 
         Columns in X                      4 
         Columns in Z                     16 
         Subjects                          1 
         Max Obs Per Subject              48 
Have 3 covariance parameters, as there are 3 random 
components:  B, A X B, and the error term.   
Columns in X: 4.  Why?  Factor A uses 3 dummy variables 
for 3 levels, plus the intercept.   
(NOTE: can use “noint” – to remove the intercept) 
Columns in Z:  16. Why? 

Factor B has 4 levels.  Uses 4 dummy variables   
Factor A X B is 3 dummy variables for Factor A X 4 
dummy variables for Factor B= 12 

Subjects:  only one dataset – not subdivided by 
anything. So 48 obs in one subject (n=4 exp. units per 
treatment) 
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             Number of Observations 
 
        Number of Observations Read              48 
        Number of Observations Used              48 
        Number of Observations Not Used           0 
 
                 Iteration History 
 
Iteration  Evaluations  -2 Res Log Like   Criterion 
 
  0             1       275.37975211 
  1             1       166.72010292     0.00000000 
 
                    The SAS System               13 
 
                  The Mixed Procedure 
               Convergence criteria met. 
 
 
                Covariance Parameter 
                     Estimates 
 
              Cov Parm     Estimate 
 
               B             25.7292 
               A*B            0.4028 
               Residual       1.2222 
 
                   Fit Statistics 
 
        -2 Res Log Likelihood           166.7 
        AIC (smaller is better)         172.7 
        AICC (smaller is better)        173.3 
        BIC (smaller is better)         170.9 
Instead of R Squared used in least squares, we have -2 
Res (residual) log likelihood.   
Instead of R squared adjusted, we have AIC, AICC, BIC 
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         Type 3 Tests of Fixed Effects 
 
                          Num     Den 
 Effect         DF      DF    F Value    Pr > F 
 
 A               2       6     222.03    <.0001 
 
Correct F-test.  
  
              Least Squares Means 
 
                      Standard 
Effect   A   Estimate  Error   DF  t Value  Pr>|t| 
A        1   16.2500   2.5709   6    6.32   0.0007 
A        2   23.3750   2.5709   6    9.09   <.0001 
A        3   28.7500   2.5709   6   11.18   <.0001 
 
df(MSAB)=(3-1)X(4-1)=6 
 
From the GLM output, we expected: 

  ⎟
⎠
⎞

⎜
⎝
⎛=

Kn
MSABmeanlevelAFactorES )(.  

For mixed models, MSAB is replaced with: 

)4028.0)(4(22.1ˆˆ
2

+=+= ABnMSAB σσε =2.8312 
[was 2.833 using least squares) 
 

4207.0
44

833.2)(. =⎟
⎠
⎞

⎜
⎝
⎛

×
=meansAFactorES   

WHY is this given as 2.5709??  VERY 
different using PROC MIXED vs PROC GLM.   
Why? 
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Littell and others (1996) indicate that the 
ones in GLM are not correct.  That we 
should add in all of the random variances. 
 
Using the population model for two factors: 

Population:  ijkjkABBkjAijky ετττμ ++++=     
 
They suggest that for the Factor A level 
means are calculated as: 
 

•••••• ++++= jjABBjAjy ετττμ  
 
When Factor B is fixed, the effects due to 
B and AB do not contribute to the variance 
(the average effect for B is 0, as well as 
the other terms). Then the variance of the 
Factor A level means is simply the variance 
of the error term (estimated by MSE), 
divided by the number of observations for 
that Factor A level (and the F-test is 
MSA/MSE). 
 
When Factor B is random, the F-test is 
MSA/MSAB, to isolate the effects for Factor 
A.   
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For confidence intervals on Factor A level 
means,  there is the variance of the error 
term + variance of B + variance of AB 
divided by the number of observations in 
this Factor A level.  This means the 
standard error would be changed to: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

++= ••••

Kn
nn

KnKK

raVraVraV

ABBABB

jjABB

22

ˆˆˆˆˆˆ

)(ˆ)(ˆ)(ˆ
means) levelA (Factor  Variance Estimated

2222
εε σσσσσσ

εττ

 

 
Divisors: 
• K values used to calculate the average 
Factor B effect; 

• K values used to calculate the average 
interaction effect for each Factor A 
level; 

• Kn values used to calculate the average 
error for each Factor A level. 
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Standard Error (Factor A level means) is the square root of 
this.  For the example: 
 

5723.2
44

76.25)4(4028.0)4(22.1

=

⎟
⎠
⎞

⎜
⎝
⎛

×
++

 

 
As per the MIXED output [shows 2.5709] 
 
         Differences of Least Squares Means 
 
                      Standard 
Effect  A  A Estimate  Error    DF  t Value Pr>|t| 
 
A       1  2  -7.1250  0.5951    6  -11.97  <.0001 
A       1  3 -12.5000  0.5951    6  -21.00  <.0001 
A       2  3  -5.3750  0.5951    6   -9.03  0.0001 
 

Pairs of means t-tests same as for GLM using A X B as the 
error term for Factor A. 
   

5949.0
44

1
44

18312.2

2
1

1
1)21(.

=⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +=−

XX

nobsnobs
MSABmeanmeanES

   

 
Corresponds with least squares means, as other variance 
terms cancel out when we get the variance in the difference 
of the means.
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Randomized Block Design with replicates in each block 
 
Example: Randomized Block Design (RCB), with Factor A 
(three types of food: A1 to A3), and two labs (blocks).    
Randomization of Factor A is restricted to within labs. 
 

Lab 1   Lab 2  

 

A1 = 6 

 

A1=5 

  

A3=11 

 

A3=12 

 

A3=10 

 

A2=8 

  

A1=4 

 

A2=9 

 

A2=7 

 

A3=12 

  

A2=8 

 

A1=5 

Response variable: weight gain of fish (kg) 
Experimental unit:  one tank of fish; 6 tanks in each lab 
 
Use the SAME analysis as for CRD with one fixed and one 

random factor – no difference in analysis.  However, the 

conclusions WILL vary, as we are only interested in sites as a 

way to remove variation for the F-test, and for pairs of means t-

tests. 
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 CRD:  One Factor Experiment, Fixed Effects with 

subsampling  [26.7 of textbook (White)] 

Example from Textbook: 
• Have three temperatures: low, medium, and high 
• For each, we have two experimental units (batches) 
• For each batch, we have three loaves of bread 
• The response variable is crustiness of bread. 

 
Data: 

temp batch observation yijl
low 1 1 4
low 1 2 7
low 1 3 5
low 2 1 12
low 2 2 8
low 2 3 10
medium 1 1 14
medium 1 2 13
medium 1 3 11
medium 2 1 9
medium 2 2 10
medium 2 3 12
high 1 1 14
high 1 2 17
high 1 3 15
high 2 1 16
high 2 2 19
high 2 3 18
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SAS code: Three options presented 
4. Using PROC GLM  and the sample observations.  Model 

yijk= treat batch(treat); 
5. Using PROC MIXED, and the sample observations. 

Model yijk=treat; Random batch(treat); 
 
The F-test for the treatment is F=MSTR/MSEE 
 
For the mean of the treatment: 

••••• +++= jSUjEUTRjjy εετμ  
 
Where experimental errors are random, and the sampling errors 
are random, with a fixed treatment.    
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+= •••

nm
m

nmn

VarVar

SEEESEEE

jSUjEU

22 22

)()(
means) levelA (Factor  Variance Estimated

σσσσ

ετ

 

 
Since the numerator is the Expected value for MSEE , the 
standard error of the mean is estimated by: 

⎟
⎠
⎞

⎜
⎝
⎛=

nm
MSmeanlevelAFactorES EE)(.  

 
Get the same results using GLM as using MIXED. [also get the 
same results using the mean values for each experimental unit as 
the y-variable]
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PROC IMPORT OUT= WORK.onesub  
    DATAFILE= "E:\frst430\lemay\examples\ 
         subsampling_neter_newest_p1109.xls"  
    DBMS=EXCEL REPLACE;       SHEET="data$";  
    GETNAMES=YES;  MIXED=NO;   SCANTEXT=YES;       
    USEDATE=YES;   SCANTIME=YES;     
RUN; 
 
options ls=70 ps=50 pageno=1; 
 
* Analysis 1. first, use GLM and bring in the 
Experimental error and the Sampling error into the 
design; 
PROC GLM data=onesub; 
class temp batch; 
model yijl=temp batch(temp); 
random batch(temp)/test; 
test h=temp e=batch(temp); 
lsmeans temp /e=batch(temp) pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
proc univariate data=glmout normal plot; 
var resid; 
run; 
 
* Analysis 2: this is using maximum likelihood for 
a mixed model to estimate variances and get correct 
F-tests; 
 
PROC MIXED data=onesub; 
class temp batch; 
model yijl=temp; 
lsmeans temp/pdiff; 
random batch(temp); 
run; 
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Analysis 1:  GLM using samples with experimental error 
given as batch(treat), and sampling error as the Error 
term. 
                  The SAS System            1 
 
                  The GLM Procedure 
 
               Class Level Information 
 
         Class         Levels    Values 
         temp               3    high low medium 
         batch              2    1 2 
 
    Number of Observations Read          18 
    Number of Observations Used          18 
                             
                The SAS System                            
 
               The GLM Procedure 
 
Dependent Variable: yijl   yijl 
 
                      Sum of 
Source      DF       Squares  Mean Square   F Value 
 
Model        5    284.4444444  56.8888889     21.79 
Error       12     31.3333333   2.6111111 
Corrected  
   Total    17    315.7777778 
 
                 Source                 Pr > F 
                 Model                  <.0001 
                 Error 
                 Corrected Total 
 
 
R-Square     Coeff Var      Root MSE     yijl Mean 
 
0.900774      13.59163      1.615893      11.88889 
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(NOTE: Type I SS removed) 
 
Source     DF    Type III SS  Mean Square   F Value 
temp        2    235.4444444  117.7222222     45.09 
batch(temp) 3     49.0000000   16.3333333      6.26 
 
                 Source                 Pr > F 
                 temp                   <.0001 
                 batch(temp)            0.0084 
  
NOTE: Variance components and GLM Mixed model analysis 
given by SAS removed – often not correct.  
 
                 Least Squares Means 
Standard Errors and Probabilities Calculated Using the 
Type III MS for batch(temp) as an Error Term 
 
                                                                
                            LSMEAN 
temp       yijl LSMEAN      Number 
high        16.5000000           1 
low          7.6666667           2 
medium      11.5000000           3 
 
     Least Squares Means for Effect temp 
    t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
 
    Dependent Variable: yijl 
 
i/j           1             2             3 
1                    3.785714      2.142857 
                       0.0323        0.1215 
2      -3.78571                    -1.64286 
         0.0323                      0.1990 
3      -2.14286      1.642857 
         0.1215        0.1990 
 
NOTE: To ensure overall protection level, only 
probabilities associated with pre-planned comparisons 
should be used. 
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Dependent Variable: yijl   yijl 
 
  Tests of Hypotheses Using the Type III 
    MS for batch(temp) as an Error Term 
 
Source      DF   Type III SS  Mean Square   F Value 
temp         2   235.4444444  117.7222222      7.21 
 
              Source                 Pr > F 
              temp                   0.0715 
 
       Plot of resid*predict.  Symbol used is '*'. 
 
 resid ‚ 
 2.000 ˆ                    * 
       ‚ 
       ‚ 
 1.667 ˆ *                   *                   * 
       ‚ 
       ‚ 
 1.333 ˆ                               *                   * 
       ‚ 
       ‚ 
 1.000 ˆ 
       ‚ 
       ‚ 
 0.667 ˆ 
       ‚ 
       ‚ 
 0.333 ˆ                               *                   * 
       ‚ 
       ‚ 
 0.000 ˆ                    * 
       ‚ 
       ‚ 
-0.333 ˆ *                   *                   * 
       ‚ 
       ‚ 
-0.667 ˆ 
       ‚ 
       ‚ 
-1.000 ˆ 
       ‚ 
       ‚ 
-1.333 ˆ *                   *                   * 
       ‚ 
       ‚ 
-1.667 ˆ                               *                   * 
       ‚ 
       ‚ 
-2.000 ˆ                    * 
       ‚ 
       Šˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ---------ˆ- 
       5.0       7.5      10.0      12.5      15.0      17.5      20.0 
 
                                   predict 
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                The UNIVARIATE Procedure 
                   Variable:  resid 
NOTE: All outputs removed except for Normality tests 
and box plot and normality plot 
 
 
              Tests for Normality 
 
Test              --Statistic---    -p Value------ 
 
Shapiro-Wilk       W     0.908031   Pr<W     0.0794 
Kolmogorov-Smirnov D      0.17031   Pr>D    >0.1500 
Cramer-von Mises   W-Sq  0.084708   Pr>W-Sq  0.1732 
Anderson-Darling   A-Sq  0.605378   Pr>A-Sq  0.0984 
 
 
 
           Stem Leaf                     #             Boxplot 
              2 0                        1                | 
              1 777                      3                | 
              1 33                       2             +-----+ 
              0                                        |     | 
              0 033                      3             |  +  | 
             -0 333                      3             *-----* 
             -0                                        |     | 
             -1 333                      3             +-----+ 
             -1 77                       2                | 
             -2 0                        1                | 
                ----+----+----+----+ 
 

 
                 The UNIVARIATE Procedure 
                     Variable:  resid 
 
                            Normal Probability Plot 
         2.25+                                        +++* 
             |                                 *  *+*+ 
             |                              * *++++ 
         0.75+                             ++++ 
             |                         +**+* 
             |                     *+** 
        -0.75+                  ++++ 
             |              +++** * 
             |       *   +*+* 
        -2.25+       ++++ 
              +----+----+----+----+----+----+----+----+----+----+ 
                  -2        -1         0        +1        +2 
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Analysis 2:  MIXED using each sample unit value. 
                   The SAS System                           
             The Mixed Procedure 
 
            Model Information 
Data Set                     WORK.ONESUB 
Dependent Variable           yijl 
Covariance Structure         Variance  
                             Components 
Estimation Method            REML 
Residual Variance Method     Profile 
Fixed Effects SE Method      Model-Based 
Degrees of Freedom Method    Containment 
 
             Class Level Information 
          Class    Levels    Values 
          temp          3    high low medium 
          batch         2    1 2 
 
                  Dimensions 
     Covariance Parameters             2 
     Columns in X                      4 
     Columns in Z                      6 
     Subjects                          1 
     Max Obs Per Subject              18 
 
          Number of Observations 
 Number of Observations Read              18 
 Number of Observations Used              18 
 Number of Observations Not Used           0 
   

Iteration History 
Iteration Evaluations -2 Res Log Like Criterion 
0            1        73.11545106           
1            1        67.84036856    0.00000000 
           Convergence criteria met. 
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              Covariance Parameter 
              Estimates 
        Cov Parm        Estimate 
        batch(temp)       4.5741 
        Residual          2.6111 
 
            Fit Statistics 
       -2 Res Log Likelihood            67.8 
       AIC (smaller is better)          71.8 
       AICC (smaller is better)         72.8 
       BIC (smaller is better)          71.4 
 
           Type 3 Tests of Fixed Effects 
         Num    Den 
Effect    DF     DF    F Value    Pr > F 
temp       2      3       7.21    0.0715 
      
              Least Squares Means 
 
                      Standard 
Effect temp  Estimate  Error    DF   t Value Pr>|t| 
temp   high   16.5000  1.6499    3     10.00 0.0021 
temp   low     7.6667  1.6499    3      4.65 0.0188 
temp   medium 11.5000  1.6499    3      6.97 0.0061 
       
Differences of Least Squares Means 
 
                             Std. 
Effect temp temp   Estimate Error DF t Value Pr>|t| 
temp   high  low    8.8333  2.3333 3  3.79   0.0323 
temp   high medium  5.0000  2.3333 3  2.14   0.1215 
temp   low  medium -3.8333  2.3333 3 -1.64   0.1990 
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Brief Summary of the Course 
 

• All linear models 
• Regression analysis and analysis of variance (ANOVA) or 

analysis of covariance (ANCOVA) for experiments. 
• y – is a continuous variable; “dependent” variable in 

regression; “response” variable in experiments 
 
Regression (Fitting Equations): 
 
Reason:  Prediction of the dependent variable (y; hard to 
measure) from related variables (x’s; easy to measure).  Started 
with only continuous x variables, and then added class variables 
as predictors. 
 
Model:   
yi = β0 + β1 x1i + β2 x2i +...+βm xmi +εi 

• Used least squares regression to find estimated coefficients 
and standard errors of the coefficients 

 
• Used “hand calculations” for SLR only.   
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SAS: 
PROC REG data=yourdata; 
 model y=X1 X2 X3; 
 output out=out1 p=yhat1 r=resid1; 
run; 
*------------------------------------------; 
PROC PLOT DATA=out1; 
 plot resid1*yhat1; 
run; 
*-----------------------------------------; 
PROC univariate data=out1 plot normal; 
Var resid1; 
Run; 
Process: 
 
1. Collect data on y and x’s. 
2. Run a model. 
3. Check assumptions.  If met, go to step 5. 
4. If not met, transform the x and go back to step 2.  If this does 

not work, try transforming the y and repeat step 2.  
5. Goodness of fit measures:  R2 (or r2) and root MSE (SEE). 
6. Use an F-test to see if the model is significant.  Null 

hypothesis:  H0:  β1 = β2 =β3 = . . . =βm =0 [all slopes are 
zero meaning no relationship with x’s] 

7. If the regression is significant, test each predictor variable (in 
the presence of the other x-variables), using a t-test. 

8. Can calculate confidence intervals for each coefficient, and 
for the predicted values (mean predicted value, new 
observation, OR mean of g new observations). 
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Adding class variables: 
• Convert these to dummy variables. 
• The set of dummy variables represents that class variable 
• Dummy variables alter the intercept 
• Interactions between dummy variables and the continuous 

variables alter the slopes. 
• Use a partial F-test as this can be used to test a group of 

variables (the group of dummy variables, or the group of 
interactions between dummy variables and continuous 
variables), whereas a t-test is for a single variable (testing a 
single dummy variable has no meaning – the group of dummy 
variables represents that class; unless there is only two levels 
in the class, since this would be only 1 dummy variable) 

( )
))(1(

)()(
fullmnSSE

rreducedSSregfullSSregFpartial
−−

−
=  

Where r is the df(model) for the full model – df(model) for the 
reduced model. 
 
Stepwise methods (as guides to selecting variables): 

1. All possible regressions 
2. R2 (or Adjusted R2).    
3. Stepwise.    
4. Backwards Stepwise 
5. Forward Stepwise 2m-1 

 
CAUTION:  Careful with dummy variables!  Must come in or 
out of the model as a group, as the group represents one class 
variable. 
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Experimental Design: 
• Manipulate by using treatments 
• We are interested in CAUSE and EFFECT 
• NOTE:  We did “hand” calculations for CRD, one-factor 

only 
 
Designs: 
• Select homogeneous experimental units 
• Randomly assign treatments to experimental units 
• Treatments can be divided into Factors 
• A crossed experiment (factorial) includes all combinations 

of the factor levels from all Factor 
• Factors can be nested in another factor – more difficult to 

interpret and cannot look at interactions among factors 
• Factors can be fixed-effect or random-effect 
NOTE: differences in the use of the word random: 

o Random sampling 
o Random assignment of treatments to experimental 

units 
o Random-effects 

• Can “block” before assigning treatments to experimental 
units to reduce variability among experimental units 

• Can “split” experimental units for a second factor, or even 
split again “split-split plot for a third level – will affect the 
analysis and conclusions made 

• Can add “covariates” as measurements on continuous 
variables from each experimental unit, to reduce 
variability 
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• Can have one measurement from each experimental unit 
(or an average for that unit), or can retain sampling unit 
measures but must divide the error in that case. 

• Error terms (experimental error and sampling error) are 
random-effects 

• Blocks are often random-effects 
• F-tests are used to test for interactions (1st), and main effects. 
• Expected means squares are used to determine which F-tests 

to use to test each factor. 
• If there is an interaction among factors, you cannot interpret 

the main effects (each Factor) separately 
• If there is a significant difference in means (for a main effect, 

or there is an interaction), post comparison tests can be used 
to determine which means differ, IF the factor(s) are fixed-
effects. 

• For random-effects factors (and interactions), we can use the 
MS’s to estimate the variance for that factor (or interaction) 
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Process for Analysis: 
1. Set up data in excel, by giving a label to each observation 

as to which block, and factor levels it was measured for, 
experimental unit, sampling unit, etc. 

2. Set up SAS (or other package) with 
a.  the correct class statements,  
b. model statements,  
c. any necessary test statements (use the expected mean 

squares to decide if the default is ok or not), and  
d. multiple comparisons (use LSMEANS for this in 

SAS).   
e. Also, get a residual plot, normal probability plot, and 

normality tests (for the residuals) 
3. Check the assumptions first.  May have to transform the y-

variable until assumptions are met. 
4. When assumptions are met, use F-tests for interactions (if 

any) first.  Make sure you have the right F-test. 
5. If no interactions, check F-tests for main effects (e.g., 

Factor A, Factor B, etc). 
6. For fixed-effects (main or interactions) that show 

significant differences among mean values, do pairs of 
means t-tests (or other multiple comparisons) to decide 
which means differ.  Remember to divide alpha by the 
number of pairs of means when interpreting pairs of means 
t-tests. 

7. For random-effects, estimate the variance for that factor. 
(can do this for error terms also as they are random-
effects) 
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Models: 
 
CRD with one factor: 
 Model: ijjijy ετμ ++=     
SAS: 
PROC GLM data=yourdata; 
CLASS Treatment; 
MODEL y=treatment; 
MEANS treatment/scheffe hovtest=bartlett; 
estimate '1 VS others' treatment 4 -1 -1 -1 -
1/divisor=4; 
OUTPUT OUT=GLMOUT PREDICTED=PREDICT 
RESIDUAL=RESID; 
RUN; 
PROC PLOT DATA=GLMOUT; 
PLOT RESID*PREDICT='*'; 
RUN; 
PROC UNIVARIATE DATA=GLMOUT PLOT NORMAL; 
VAR RESID; 
RUN; 
 
OR: 
Can use: 
MEANS treatment/pdiff tdiff hovest=bartlett; 
 
Instead. 
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2-factor, CRD: 

Model: ijkjkABBkjAijky ετττμ ++++=     
 
SAS:  both factors are  fixed-effects 
PROC GLM  data=yourdata; 
class factorA factorB; 
model result=factorA factorB factorA*factorB; 
output out=glmout r=resid p=predict; 
lsmeans factorA factorB  
factorA*factorB/pdiff tdiff; 
run; 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
PROC univariate data=glmout plot normal; 
Var resid; 
Run; 
 
SAS: mixed-effects, A fixed-effect; B random-effect 
PROC GLM  data=yourdata; 
class factorA factorB; 
model result= factorA factorB factorA*factorB; 
random factorB/test; 
test h= factorA e= factorA*factorB; 
lsmeans factorA/e= factorA* factorB pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
proc plot data=glmout; 
plot resid*predict='*'; 
run; 
proc univariate data=glmout normal plot; 
var resid; 
run; 
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RCB, one fixed-effect 
Model: jkkABjjky εττμ ++++=     
 
SAS: 
PROC GLM  data=yourdata; 
class block treatment; 
model y=block treatment; 
random block; 
lsmeans treatment/pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
[plus statements to obtain the residual plot and 
normality plot/tests] 
 

RCB, two Factors:  

Model:  jklBklABlkAjBLKjkly εττττμ +++++=     
SAS both Factors are fixed-effects, and blocks are random-
effects: 
PROC GLM  data=yourdata; 
class block factorA factorB; 
model y=block factorA factorB factorA* factorB; 
random block; 
lsmeans factorA/pdiff tdiff; 
lsmeans factorB/pdiff tdiff; 
lsmeans factorA* factorB/pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
[plus statements to obtain the residual plot and 
normality plot/tests] 
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Generalized RCB, one Factor (RCB with replicates in each 
block) 

Model:  ijkjkTRBLKkTRjBLKijky ετττμ ++++= ×     
 
SAS (treatment is a fixed effect; blocks are random-effects) 
PROC GLM  data=yourdata; 
class block treatment; 
model y=site treatment block*treatment; 
random block block*treatment; 
test h=treatment e=site*treatment; 
lsmeans treatment/e=site*treatment pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
[plus statements to obtain the residual plot and 
normality plot/tests] 

 
Latin Square, with blocking in two directions 
One fixed-effect factor: 
Model:  jklClRjkAjkly ετττμ ++++=     
SAS: 
PROC GLM  data=yourdata; 
class row column treatment; 
model y=row column treatment; 
random row column; 
lsmeans treatment/pdiff tdiff; 
output out=glmout r=resid p=predict; 
run; 
[plus statements to obtain the residual plot and 
normality plot/tests] 
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Split plots (and split-split plots): 
Model for a 2-factor RCB, split-plot: 

jklBklABljkABLKkAjBLKjkly ετττττμ ++++++= ×•••     
 

SAS:  blocks random-effects, Factor A fixed-effects, FactorB is 
applied to the split-plot 
PROC GLM data=yourdata; 
TITLE 'split plot, blocks random, treatments fixed'; 
CLASS block factorA factorB; 
MODEL y=block factorA block*factorA factorB 
factorA*factorB; 
Test h=factorA e=factorA*block; 
LSMEANS factorA/e=block*factorA tdiff pdiff; 
LSMEANS factorB factorA*factorB/tdiff pdiff; 
OUTPUT OUT=GLMOUT PREDICTED=PREDICT RESIDUAL=RESID; 
RUN; 
[plus statements to obtain the residual plot and 
normality plot/tests] 

 
Nested factors: 
For a crossed experiment (Factorial): 

ijkjkABBkjAijky ετττμ ++++=   
However, for a nested experiment, B nested in A, we have: 

Model: ijkjBkjAijky εττμ +++= )(   
SAS: 
PROC GLM  data=yourdata; 
class factorA  factorA; 
model y= factorA factorB(factorA); 
output out=glmout r=resid p=predict; 
lsmeans factorA factorB(factorA)/pdiff tdiff; 
run; 
[plus statements to obtain the residual plot and 
normality plot/tests] 
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CRD:  One Factor Experiment, Fixed Effects with subsampling   
Model: SUijlEUijTRjijly εετμ +++=     
 
SAS: (note:  expunitlabel is the label for the exp. units, eg., 
batch, board, etc) 
PROC GLM data=yourdata; 
class treatment expunitlabel; 
model y=treatment expunitlabel(treatment); 
random expunitlabel(treatment)/test; 
test h=treatment e= expunitlabel(treatment); 
lsmeans treatment /e= expunitlabel(treatment)pdiff 
tdiff; 
output out=glmout r=resid p=predict; 
run; 
[plus statements to obtain the residual plot and 
normality plot/tests] 

 
NOTE:  could instead average the sample values for each 
experimental unit, to obtain one value for that experimental unit, 
and analyze this as if there were no samples (error term is 
experimental unit). 
 
Generalized RCB [randomized block design, also called 
randomized complete block] with subsampling: 
 
Model: SUijklEUijkTRjkBLKTRkBLKjijly εετττμ +++++= ×     
 
[not given in class, but can modify the SAS code for generalized 
RCB] 
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Analysis of Covariance  
 
Model: shown for CRD with two fixed-effect factors and one 
covariate; covariates are continuous variables; assuming no 
interactions between covariate and factors 

jklBklABlkAjBLKjkljkl xxy εττττβμ +++++−+= )(  
SAS code [full model with interactions which are not shown in 
the model above, and reduce to only one factor] 
PROC GLM data=yourdata; 
CLASS factorA; 
Full: MODEL y=factorA x factorA*x/solution; 
OUTPUT OUT=GLMOUT2 PREDICTED=PREDICT2 RESIDUAL=RESID2; 
RUN; 
PROC PLOT DATA=GLMOUT2; 
PLOT RESID2*PREDICT2='*'; 
RUN; 
PROC UNIVARIATE DATA=GLMOUT2 PLOT NORMAL; 
VAR RESID2; 
RUN; 

 
Compare to the classical analysis of covariance model with no 
interaction between the covariates and the factors: 
PROC GLM data=yourdata; 
CLASS factorA; 
Full: MODEL y=factorA x/solution; 
OUTPUT OUT=GLMOUT3 PREDICTED=PREDICT3 RESIDUAL=RESID3; 
RUN; 
PROC PLOT DATA=GLMOUT3; 
PLOT RESID3*PREDICT3='*'; 
RUN; 
PROC UNIVARIATE DATA=GLMOUT3 PLOT NORMAL; 
VAR RESID3; 
RUN; 
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Using a partial F-test: 
( )

( )

)(
(s))n variableinteractiodroppedtodue(

))((
)()(

OR
))((

)()(

fullMSE
/rSS

fulldferrorSSE
rfullSSEreducedSSEFpartial

fulldferrorSSE
rreducedSSregfullSSregFpartial

=

−
=

−
=

 

 
SSreg=SSmodel 
r=df(model for full model)-df(model for reduced model) 
 
df for numerator of F is r 
df for denominator of F is df(error full model) 
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Expected Mean Squares: 
• Given for all models covered 
• Can calculate this using the “rules” for any model (not be 

required to do this on an exam) 
 
Power analysis: 
Four possible results from Hypothesis testing: 

 Reject H0 Accept H0
H0 True α 1-α 
H0 False 1-β β 

• Set Type I error (α) 
• Solve for Type II error (β) 
• Power is 1- β 

 


