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(> FRST 237 INFORMAﬂoN ABOUT THE COURSE

Course DesCRIFTION FRST 237 (3 credits) ‘Introduction to Forest Mensuration and Photo-
- grammetry’ - Measuring and estimating tree volumes, form, and taper. Timber
scaling and grading. Computer applications. Basic photogrammetry, mapping
from photography, and photo-based inventory systems.

Prerequisite: Forestry 231, 232 (or equivalents).

INTENDED STUDENT  The prospective student must have had a course in introductory statistics
covering the rudiments of probability theory, confidence interval construction,
simple linear regression, and one-way analysis of variance (i.e., Forestry 231 or

" equivalent). An introductory course in computing and/or familiarity with spread
sheet or statistical software on a microcomputer would be a definite asset (e.g.,
Forestry 232 or equivalent). Some explanations of the mensurational techniques
‘require an understanding of differentiation and integration. Access to a micro-
computer would be beneficial for some of the assignments, but is not essential.

This course is designed for: . :
» students who, prior to entering the Faculty of Forestry at UBC, want to complete
y some of the required courses in the B.S.F. program, through a combination

L o L _ _ . of college courses and/or off-campus independent study courses;

» pupils within the ABCPF program who want to complete the course
requirements in mensuration. This course constitutes the prerequisite for
FRST 238, which together with FRST 237, meets these requirements;

* any person who wants to learn more about forest mensuration and photo-
grammetry. '

Course Content  This course is divided into eight lessons. The first four lessons provide an
introduction to mensuration; the latter four provide an introduction to
. photogrammetry and photo interpretation.

1. Basic Mensurational Measurements - an overview of what mensuration
entails, and the theory and procedures for measuring tree diameter at breast
height, tree height, and upper stem diameters;

2. Measurement of Tree Volume - principles relating to the measurement of tree
volume, including total stem volume, merchantable volume, and net
volume;

3. Estimation of Tree Volume - methods of estimating tree volume from
measurement of other related attributes, covering form factors, form
quotients, volume equations, and taper equations;

4. Log Scaling - approaches to determining the volume and quality of logs;

5. Introduction to Photogrammetry and Photo Interpretation - introduction to

. photogrammetry and photo-interpretation, including the concepts of vertical
' aerial photography, characteristics of light, and the photographic process;
: 6. Principles of Photogrammetry - the basi¢ geometric theory behind the tech-
niques for measuring the heights of objects on vertical aerial photographs;

L
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required textbooks

supplermentary reading
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7. Mapping Systems and Mapping from Aerial Photography - map projection
techniques and mapping systems, and planimetric mapping from aerial
photographs, including theory behind planimetric mapping, ground control
points, photo control points, flight planning, radial line triangulation, and
topographic mapping from aerial photographs; i

8. Applications of Photogrammetry and Photo Interpretation in Forestry -
forestry applications of non-photographic imaging systems, photogrammetry
and photo-interpretation, inciuding forest cover typing, species
identification, photo volume equations, and applications in forest
inventories.

Upon completion of this course, you will have: ,

1. gained a good understanding of the rationale, basic theory, instruments, and
techniques for measuring certain tree attributes from the ground and from
aerial photographs;

2. learned some tree measurement techniques that can be used any where in the
world with some emphasis on techniques presently used in British
Columbia; _

3. become familiar with the theory behind planimetric and topographic map
construction from aerial photographs.

. ,_:-ah_\
]

Materials for this course consist of this course manual, required textbooks,
recommended supplementary readings, and a laboratory kit of equipment.

This manual contains lesson commentaries, instructions regarding the course
readings and directions for the completion and submission of assignments. The
lesson commentaries serve to supplement the textbooks, and also to emphasize
important issues and concepts.

One textbook is required for the course. It can be purchased from the UBC
Bookstore, using the order form provided.

AVERY, T.E. & BURKHART, H.E. 1994. Forest Measurements. 4th ed. New York:
McGraw-Hill.

The following books are recommended reading for this course; they can be
obtained from the Extension Library, and some items, as indicated, can be

purchased from the UBC Bookstore or directly from the Ministry of Forests.

AVERY, T.E. & BERLIN, G.L. 1985. Interpretation of Aerial Photographs. 4th
_ed. Minneapolis: Burgess Publishing. [Out of print; the Extension Library
~ may be able to obtain a copy of the book from other library branches. ]
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laboratory kit

How 10 PROCEED THROUGH THE COURSE

P
M

Courst REQUIREMENTS

graded assignments

HuscH, B., MILLER, C.I. & BEERS, T.W. 1982. Forest Mensuration. 3rd ed.
New York: John Wiley. [Out of print.]

MISTRY OF FORESTS. 1980. Scaling Manual. Province of British Columbia,
Victoria. [because of subscription update service, order from Ministry]

PAINE, D.P. 1981. Aerial Photography and Image Interpretation for Resource
Management. New York: John Wiley. [Available from Bookstore by special
order.]

WarTs, S5.W. (Editor). 1983. Forestry Handbook for British Columbia. 4th ed.
Vancouver: University of British Columbia, Faculty of Forestry, Forestry
Undergraduate Society. [Available as a stocked item from Bookstore]

The kit contains the following: Suunto clinometer; dbh tape; 30 m tape;
stercoscope; and height finder.

This equipment is necessary in order to complete certain of the assignments.
Borrowing procedures and deposit requirements are outlined in a cover letter
sent to you with the kit.

As indicated earlier, the course is made up of eight lessons divided into two
parts: Lessons 1 through 4, and Lessons 5 through 8. These two parts essentially
stand alone, but we recommend that you proceed through the lessons in the
order given. Within either part, it is important that you fully understand each
lesson before moving on to the next. You should first read the lesson in the
manual and try any practice calculations given in the commentary. Next, you
should read relevant sections in the text books. These are given in the intro-
duction to each lesson. Before you attempt graded assignments (only six of the
eight lessons have graded assignments), you should answer the relevant
review/self-study questions. These question sets, at the end of each lesson, are
also intended to provide a guide to studying the material prior to the final exam.

Course requirements include six assignments which you must submit for
grading and comments, a two-day laboratory session to be held at UBC, and a
final examination. In addition, each lesson has a number of self-study questions
and activities which provide you with an opportunity to test your understanding
of the material and develop skills.

There are six assignments, one for each of Lessons 1, 3, 4, 5, 6, and 7.
Directions on how to complete each assignment are provided on the assignment
sheets in Appendix A. If any other supplemental material not covered in the
lesson is required to complete the assignment, this is provided as well. The
assighments should be completed and submitted to your tutor for grading by the
dates indicated on your course schedule. All assignments must be completed
before you can participate in the laboratory session.
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laboratory session

final examinafion

GRADING

ROLE OF THE TUTOR AND
Tutor/STUDENT COMMUNICATION

STUDENT EVALUATION
- OF THE COURSE

1In order to pass this course, you must:
1. complete and submit all assignments before attending the laboratory session;

A two-day laboratory session will be held at UBC after you have completed the
material in the course manual. The lab session must be completed satisfactorily
before you can write the final exam. A portion of the lab session will consist of
field work. During this portion, you will have an opportunity to practice using a
number of mensurational instruments too bulky or too expensive to send to you
in your lab kit. The remainder of the session will consist of office work. Most of

- this time will be spent in a computer lab where you will be instructed in how to

use a microcomputer statistical package. You will also have an opportunity to
practice some elementary statistical analyses on data that you collected during
the field portion of the session. A report covering the various activities you
participated in will be due at the end of the session.

There will be 4 three-hour final examination at the end of the course. Questions
on any portion of the course may be included on this examination. Material
examined will be divided equally between the two portions of the course.

The grade for this course will be broken down into the following percentages:
Assignments 30%
Laboratory Session  20%

- - Final Examination =~ 50%

2. attend the Iab session and complete the report prior to writing the final exam;
3. obtain a passing mark (= 50%) on the final exam;
4. obtain an overall passing mark (= 50%) for the course.

Upon registration, you will be assigned a course tutor. The tutor will be
available for telephone communication during specific hours each week. You
can call your tutor at those times free of charge. Please see the instructions on
the free telephone service contained in the Student Handbook. The tutor can
also phone you if you complete and submit the blue student telephone form in

the Student Handbook.

In addition, you can send brief questions to the tutor by mail when you submit
your assignments. The tutor will also include written comments on each
assignment when it is returned.

At the end of this course, a course evaluation form will be sent to you for
completion. This is an opportunity for you to express your opinion on course
content and presentation, administrative procedures, and delivery method. Your
responses will be of great value in improving the course for future students.

N’
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() LessoN 1

BAsiC MENSURATIONAL MEASUREMENTS

INTRODUCTION

LESSON OVERVIEW |

I.ESS_ON OaJec_ﬂvss

£ LEsSSON READINGS

LessON ASSIGNMENT

;/""\
{\.
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The purpose of this lesson is to provide an overview of what mensuration
entails, and to cover the theory and procedures for measuring tree diameter at

. breast height, tree height, and upper stem diameters. The associated assignment

will provide practice using some of the measurement instruments described and
a review of some basic statistical techniques. This lesson provides the back-
ground necessary for Lessons 2 through 4.

After studying this lesson and completing the first assignment, you should be
able:

1. to list and categorize factors involved in mensuration;

2. to measure tree diameter at breast height using a diameter tape;

3. to outline the theory behind two approaches to measuring tree height;

4. to use a staff hypsometer and a Suunto clinometer to measure tree height;
5. to calculate upper stem diameters from relascope measurements;

6. to determine horizontal and slope distances using relascope measurements.

Material relevant to this lesson may be found in Avery and Burkhart pages 1-9
and 97-108. :

‘When you have completed this lesson, be sure to complete both the self-study
question set (at the end of the lesson) and the first graded assignment (in
Appendix A). Mail the graded assignment to your tutor by the date indicated on

~ the course schedule. Don’t forget to include a pink assignment sheet.
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FOREST MENSURATION

PRECISION, BIAS AND ACCURACY

_ ' pre'_c!slon

blas

accuracy

Forest mensuration has traditionally been associated with the measurement of
tree characteristics and the products cut from them. Measurement of the volume
of trees or stands of trees was of primary importance. As forestry has expanded
and management of the forest has become more important, many measurements

"besides volume are required and many things other than trees are being mea-

sured in the forest. Whether or not the measurement of these other things should

‘be considered as part of mensuration or part of a specific discipline (e.g.,
* hydrology, wildlife management, etc.) depends upon how broadly mensuration

is defined. .

As an entity, forest mensuration deals with:

1. identifying the variables that are important for decision making in forest man-
agement (i.e., determining what to measure);

2. designing a sampling scheme to efficiently collect the information required at
an appropriate level of precision (i.e., determining where and how much to’
measure);

3. measuring or estimating variables (i.¢., determining how to measure);

4. analysing the data to provide the information desired (i.c., determining what
the data contains).

Lessons 1 through 4 of this course address the measurement and estimation of
certain characteristics of single trees (category 3). The UBC course Forestry 238
‘Forest Mensuration’ addresses category 2 and portions of categories 1 and 4.

You frequently see these terms used in everyday conversation, often inter-

changeably. In mensuration, these terms each have a unique statistical interpre-
tation. ' - .

~ Precision refers to the spread of observations around the long-run mean of the

observations. Observations are either individual measurements or statistics
which combine many measurements. If individual measurements are used, pre-
cision is measured by the standard deviation. If statistics (e.g., the means of
observations) are used, precision is measured by the standard error of the

statistic. A precise measurement technique produces very similar results if the

same items are measured by a number of different individuals.

Bias refers to the difference between the long-run average of the observations
and the true value. An unbiased measurement technique is one which yields the
correct answer on average. Bias can be introduced by a faulty measurement
instrument. As an example, consider 2 standard 25 cm ruler that is really only
24 cm long. Everything that you would measure with that ruler would systemat-
ically provide a measurement that was too large.

Accuracy refers to how close an observation, or series of observations, are to
being correct. It combines the elements of both bias and precision into a single
measure of “goodness™ and is ofien measured by the mean square error. An
accurate measurement technique is precise and contains little or no bias.

A convenient way for you to keep these concepts clear is to visualize a series of
targets (refer to Figure 1.1). The bull’s eyes represent the true average value and

the X’s represent individual observations.

£
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Ficure 1.1 Relailonship between precision, blas, and
accuracy. (a) s both precise and unblased; there-
fore, It Is also accurate. (b) is unblased, but not pre-

SOURCES OF ERRORS

instrurent error
: {f-j”; ~ rounding error

relationship error

sampling erfror

human error

TRee MEASUREMENTS

(3
Ay

X X XX - X .
;.
' © (d)

)

cise; therefore, It Is not accurate. (¢) Is precise, but
biased; therefore, it Is not accurate. (d) s nelther pre-
cise nor unbiased; therefore, I is not accurate.

Errors in measurement or estimation can arise from a number of sources. We
have classified the major sources below. Al are controllable to some degree,
but the sources may be difficult to quantify.

Instrument error arises from incorrect calibration of your measurement
device. If it occurs, it is usually due to instrument damage or a calibration mis-
take. Examples include nylon chains that are stretched and compasses set with
incorrect declinations. Instrument error usually contributes some bias to your
measurements. These can sometimes be corrected after the fact, provided you
are aware of the extent of the bias.

Rounding error occurs when numbers are rounded. By their nature, instru-
ments are only accurate up to a ceriain level of resolution. Attempting to-go
beyond that level will increase the variability of the results. For example, if a
tape is graduated only in metres (m), measurements made using that tape and
rounded to the nearest metre will obviously be more uniform than measure-
ments taken to the nearest centimetre (cm). However, the results will not neces-
sarily be as accurate since error is introduced by the rounding.

Relationship error arises through an assumed relationship between variables.
As an example, consider a regression equation of the form ¥ = by + b X. You
may be able to measure X exactly, but there will still be some error associated
with the predicted ¥ value. '

Sampling error is a result of making inferences about a population based on a
sample. This error source can be measured and controlled to some extent
through the choice of certain sampling methods and regulating sample size.
(This is discussed in some detail in Forestry 238.)

Human error occurs as a result of mistakes. This type of error cannot be
readily predicted nor recognized, The best way to minimize human error is
through proper training and some sort of checking system.

The question, “How do you measure a tree?” is difficult to answer because it is

-much too vague. There are many “things” that you can measure on a tree. These

“things™ are commonly called attributes or characteristics. For example, you
can measure tree weight, tree height, bark thickness, and so on. The list is as
long as the number of attributes a tree has. Furthermore, you must be specific as
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to what you want to measure. Even tree weight is not specific enough because
the portion of the tree is not specified. Are roots to be included, or only the por-
tion of the tree growing above ground? Do you mean to include branches and
foliage? Is the bark to be included?

Attributes generally vary from tree to tree. For this reason they are often called
variables. In a statistical sense, every tree may be described by a number of
variables, many of which are not important for a particular task. In order to dif-
ferentiate the important attributes from all the other possible attributes you

~ could measure, the attributes that are considered to be important are often called

variables of interest. Of course, whether or not a variable is important to you

‘depends upon the purpose of your measurements.

In the remainder of this lesson, we will concentrate on the measurement of three
tree variables that are frequently important: diameter at breast height, total tree
height, and upper stem diameter. In Lessons 2 and 3, we will introduce the mea-
surement and estimation of several types of tree volume. We will address scal-
ing (the process of quantifying the woody material in logs) in Lesson 4.

'MEASUREMENT OF DIAMETER
AT BREAST HEIGHT -

definition

Diameter measurements can be made at any point along a tree, branch, or log.
These measurements can either include the bark, termed diameter outside bark,
or exclude the bark, termed diameter inside bark. Qutside bark diameters are by
far the most common. If diameter inside bark is not explicitly stated or apparent
from the context, you can assume that we are referring to diameter outside bark in
this course. Diameters are commonly recorded in centimetres or millimetres (mm).
The collective name for instruments that measure diameter is dendrometer.

The most common diameter measurement made on standing trees is taken at
breast height and includes the bark. This measurement is referred to as diame-
ter at breast height and commonly abbreviated as dbh. Breast height is
defined as 1.3 m above some point close to the ground level (usually the esti-
mated point of germination). Standardizing the location of diameter measure-

~ ments on standing trees was necessary to allow for meaningful comparisons
among measurements. Breast height is a convenient location because it can be

easily reached by the individual making the measurement, yet is high enough on
most temperate tree species to be above any butt swell that may be present. This
latter point is important because the major use of dbh measurements is for esti-
mating other variables that are less easy to measure (e.g., volume of wood in the
main bole of the tree). Measurements of dbh also provide the basal area of a
tree. The basal area of a tree is defined as the cross-sectional area of the tree at
breast height and is calculated as (% X dbh? + 4). This is the area of a circle
given a diameter equal to dbh. If dbh is measured in centimetres, then the basal
area units would be in square centimetres (cm?). To convert to square metres

- (m?), simply divide the basal area by 1002 or 10,000.

Other diameters are occasionally measured on a standing tree. For example,
diameter at stump height (usually defined as 0.3 m above the point of germina-
tion) is sometimes measured in addition to dbh to provide a more accurate -

/,-.r.;:-xs\.:‘
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‘\_,,/? ' ' indication of the volume in the lower bole of the tree. Diameter at smmp height,
and any other diameters that can be reached by the individual making the mea-
surement, are measured using the same instruments used to measure dbh.
Diameters beyond the reach of the individual making the measurement {generally
termed upper stem diameters) are also sometimes required. Instruments and
procedures for measuring upper stem diameters differ from those used for mea-
suring dbh. We begin by describing instruments for measuring diameters that can
be reached; measurement of upper stem diameters is covered later in this lesson.

Use OF THE DIAMETER TAPE . You have been issued a diameter tape as part of your field kit. If you look at it
: while you read our description, it will make it easier for you to follow. The

tapes are usually metal and contained in a closed spool which is metal or hard
plastic. When the tape is on the spool it is difficult to damage, but it is possible
to break the tape when it is extended if you pull it too hard. There is a pop-out
handle on one side of the spool for winding in the tape. The tape itself has a
hook at the free end for attaching to the bark. There are two scales on the tape.
The scale that would be on the outside when the tape is hooked into the bark is
calibrated in millimetres times x. This is the scale you will use for determining
diameters. The scale on the flip side of the tape is in millimetres.

The fact that the scale used for determining diameters is in millimetres times &
. _ _ - allows you to measure circumference, but record diameter. Circumference of a
T ' ' circle is equal to diameter times , so if the diameter units are x times larger
N : ' _ . - than standard, conversion occurs antomatically. If the tree is not circular, then
: the diameter recorded will be positively biased. However, this is not usually of
concern because the bias is quite small unless the tree is very far from circular.

To use the diameter tape, stick the hook into the bark at the appropriate height
(e.g., 1.3 m above the point of germination to measure dbh). Then extend the
tape around the tree in a plane that is perpendicular to the central axis of the
tree. This means that if the tree is growing vertically on flat ground, the tape is
extended around the tree parallel to the ground. If the tree is leaning and the
ground is flat, the tape, in order to lie in the plane perpendicular to the central
axis of the tree, will no longer be perpendicular to the ground (Figure 1.2). A
common mistake when using a diameter tape is to allow the tape to sag when
you extend it around the tree. This will positively bias your diameter measure-
ments. The appropriate diameter is read off the tape as the point that coincides
with the zero mark when it is wrapped completely around the tree.

Diameter Tape

( h! Fisure 1.2 Proper posttioning of
vy the diameter tape on (a) a ver-
fical free and (b) a leaning tree. . (@) L (b)
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Use oF CALIPERS

Fisure 1.3 Calipers for measuring

free diameters, .

BILTMORE STICK

Diameter tapes are commonly used for measuring dbh in North America. The

- major reason for this is the size of the instrument. Even a diameter tape large

enough to measure the diameter of the largest trees found on the west coast is
easy to carry and use. Another reason is that it is a consistent measurement
device if used properly. In other words, if two people make the same measure-
ment, they will get close to the same results.

Calipers consist of a calibrated flat shaft, a fixed arm at one end, and a movable
arm (Figure 1.3). Calipers are made of either wood or steel, steel being more
common these days. Because of their construction, calipers are practically
indestructible.

Unlike a diameter tape, calipers measure diameter directly. The fixed end is
placed against one side of the tree and the movable arm is slid tight against the

. opposite side of the tree. The diameter of the tree is read off the calibrated shaft.

This requires the calipers to be longer than the tree is wide.

Calipers are better for determining diameters of noncircular trees than diameter
tapes. On these trees, diameters can be measured in two directions perpendicu-
lar to one another and the results averaged. A quadratic average rather than an

arithmetic (simple) average should be used if the diameter measurements are to

- be used for predicting tree volume since there is a better relationship. The quad-

ratic average is calculated as:

di +d;

2

where d; and 4 are the two diameters.

* Another advantage that calipers have over diameter tapes is speed. Diameters

can be measured much more quickly using calipers. However, results using
calipers may not be as consistent as those obtained using a diameter tape
because the reading you take is dependent upon the direction in which you hap-
pen to approach the tree if the tree is not round. This is important only if very
precise measurements are required. A more important disadvantage relative to
the diameter tape is the size and weight of calipers. If diameters of large trees
need to be measured, the calipers would need to be very large. A set of calipers
is not included in your kit because their size makes it impractical.

The Biltmore stick consists of a straight, graduated rule that is held horizontally
against the tree. The zero end of the scale is placed so that it lies on the line of
sight tangent to one side of the tree. The diameter is read off the scale by shifting

R
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Ficure 1.4 iliustration of the .
geometry underlying the cali-
bration of a Biltmore stick.
P
O
e MEASUREMENT OF TREE HEIGHT
" TYPEs OF HEIGHT
S DiReCT MEASUREMENTS OF
é_\ /% TrRee HEIGHT

- the same eye to form a line of sight with the other side of the tree. In using the

Biltmore stick, it is important that your eye be on the same level as the stick and

at the distance from the stick for which the stick is calibrated. Biltmore sticks

provide only approximate values for diameter, and so should be used only when
rough answers are appropriate (e.g., for reconnaissance work).

You can build a Biltmore stick for yourself from a narrow board (about 1.5 m
by 2 ¢cm by 0.5 cm) and calibrate it for your own arm length. The calibration
formula is:

D

1+£
E

B=

where B is the distance from the zero point on the stick to the position for a
given diameter D, and E is the perpendicular distance from your eye to the stick
(approximately the length of your arm). This formuia is derived by combining
the theory of similar triangles with the Pythagorian Theorem using the basic
diagram given in Figure 1.4, The following relationships will help in the deriva-
tion: (1) XW = XY = D/2; (2) EZ = B/2; (3) VW =E; (4) triangle VYX is sim-
ilar to triangle VWZ. :

Total tree height is the distance between the ground and the tip of the tree.
This is commonly referred to as tree height or simply height. Height measure-
menats are commonly recorded in metres. Tree height is frequently measured
because it is closely related to the volume in the bole of a tree and with other
variables that are frequently of interest but difficult to measure (see Lesson 3),
The heights of certain trees in a stand are also measured to help in estimating

site index which is one means of quantifying site quality (i.e., the ability of a

piece of land to produce timber of a certain species). Site index is described in
detail in the UBC course Forestry 238.

-The height to the living or dead crown is measured occasionally. This is the

distance between the ground and the living or dead branches which comprise
the crown. Height to the living or dead crown can be measured nsing the same
instruments as those used for the measurement of total tree height.

Merchantable height also is measured occasionally. Merchantable height
refers to the distance between the ground and some upper stem diameter that is

- considered to be the lower limit of merchantability (see Lesson 2). Instruments

for measuring merchantable height require some means of determining diame-
ters as well as height. One such instrument is the relascope which is discussed
later in this lesson.

These measurements require that the measuring device be placed along the side
of the tree. For this reason, direct measurements of height can be obtained easily
only from felled or small trees. If the tree is felled, its height can be determined




- PAGE 8

FRST 237

INDIRECT METHODS OF
DeTerMINING TREE HEIGHT

measurament of
horizontal distances

Suunto clinometer

by measuring along the bole with a measuring tape. If the tree is small enough

- (generally under 5 m in height), its height can be measured using a height pole.

Height poles consist of telescoping sections which can be extended along the
side of the standing tree. When the pole is extended to the same height as the
tree, the tree height can be read from a dial on the side of the pole.

Since we are often interested in obtaining heights for standing trees that are too
tall to be measured with a height pole, indirect measurement techniques are fre-
quently required.

Indirect methods of determining tree height require the measurement of some-
thing other than tree height. The quantity that is measured is then used to calcu-
late tree height. Techniques for indirectly measuring tree height are based on
either trigonometry or geometry. Each of these procedures, along with descrip-
tions of some of the instruments that are used with them, are discussed later in
this section. Prior to this, we will cover the measurement of horizontal distances
because this measurement is necessary for both approaches.

If the ground is flat, horizontal distance (HD) can be measured along the
ground surface using a tape or chain. Chains are named after the device origi-
naily used by surveyors for measuring horizontal distances. The original chains
were composed of metal links and were chains in the technical sense. There was
also a unit of distance measurement called a “chain” that equaled 66 feet
(approximately 20 m). Metal tapes 132 feet long (2 “chains™) replaced the
original link chains, and were used in forestry for many years. Following the
introduction of the metric system in Canada, these chains were slowly replaced

- by metric chains, commonly 50 m in length. Modern chains are usually made of

nylon.

If the ground slopes, then either the tape can be held horizontally (this may
sometimes require “breaking chain™), or the distance along the ground (slope
distance) can be measured and corrected to give horizontal distance. If the
ground is very steep, the latter technique is better.

In order to convert slope distance (SD) to horizontal distance, the angle of the
slope must be known, The angle can be measured in either degrees or percent
using a number of instruments. Possibly the most common of these is the
Suunto clinometer. -

A Suunto clinometer is included as part of your kit. It is roughly rectangular in
shape, approximately 7-cm long, 5 cm wide, and 1.5 cm thick (see Figure 1.5).
The casing is metallic with three circular glass windows. A freely turning
weighted wheel is visible through the largest window. The other two windows
are on opposite ends. The largest of these is about 1 cm in diametér. This is the
window that you look through (viewing window). The final window is not
much larger than a pinhole. This provides some light for you to see the numbers
on the scale. There is a metal ring on the end containing the viewing window.
This ring should be on the bottom when you are looking through the instrument.

‘You will see a fixed horizontal line and a rotating wheel when you look through
the viewing window. The line indicates where you should make the reading.

s,

M’
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Fisure 1.5 The Suunto clinometer,.
[
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Ficure 1.6 Relationship of slope
distance to horizontal distance.

P
A

Small Window

Viewing Window

Side Window

(
./

There are two scales on the wheel. One is a percentage scale; the other is likely

Metal Ring

. a degree scale. You can tell which is which by tilting the clinometer all the way

up or all the way down while locking through the window. The scales are
labelled at the ends of the graduated portions. The slope angle may be measured
by looking at an object along the slope which is the same height above ground

_as your eye. It doesn’t matter whether the slope is uphill or downhill when con-

verting SD to HD. Only the absolute value of the angle is important.

If the slope angle () is recorded in degrees, a straightforward trigonometric
correction can be used (see Figure 1.6).

o)
) (goe® §ee
S

HD {horizontal distance)

HD =SD X cos(a)

As an example, consider a slope angle of 10 degrees and a slope distance of
20 m. The horizontal distance is:

HD =20 X cos(10°) = 20X 0.985 = 19.7 m

If the slope angle is recorded as a percentage, the percentage must be converted

_ into degrees before the correction can be applied. The conversion is:

degrees = arctan(% angle + 100)

Arctan is the inverse of the tangent of the number. For example, the degree

equivalent for a slope of 10% is:
arctan(10 = 100) = 5,71
For a slope distance of 20 m, the corresponding horizontal distance is:

HD = 20X cos(5.71) = 19.90 m
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“geometilc approach

Figure 1.7 The principle behind
the staff hypsometer.

Sometimes slope corrections are added on to the end of the tape as a trailer. A
trailer works best if the entire length of the tape is being used at one time (e.g.,
50 m). .

The principle underlying the geometric approach is that of similar triangles.
This is a simple, approximate procedure to use when you want to find the height
of a tree and do not have an angle measuring device with you. The instrument
that is used is called a staff hypsometer. This is simply a straight pole that is
somewhat longer than your arm, and weighted sufficiently at the bottom end to
pull the staff vertical when it is held loosely in your hand at a distance equal to
the length of your arm. In practice, any broken branch that meets the criteria can
be used.

The procedure for using the staff hypsometer (Figure 1.7) is:

1. Tilt the tip towards your eye and straighten your arm. Grasp the staff loosely
in your hand. :

2. Allow the staff to swing to a vertical position, keeping your arm straight. You
should now be holding the staff as far from its tip as your hand is from your eye.

3. Position yourself at a distance from the tree where it is just framed between
the tip of the staff and your hand.

4. Measure or pace the siope distance to the tree. The horizontal distance you are
away from the tree should be approximately equal to the height of the tree.

A

44— HD~ HT——»

The Merritt hypsometer is a special case of the staff hypsometer. It also con-

- sists of a straight pole or board; however, the Meritt hypsometer is calibrated

so that the height of a tree can be read directly from the pole when you are a
specific distance from the tree and holding the pole at a fixed distance from
your eye. To use a Merritt hypsometer, you would stand an appropriate horizon-
tal distance from the tree holding the pole vertically in front of you at the appro-
priate distance for the calibrations (e.g., your arm length, if that is how you cali-
brated it). You then would adjust your line of sight so that the zero point on the
hypsometer coincides with the base of the tree. If you shift your sight to the top
of the tree, the height of the tree can be read off the hypsometer at the point
where your line of sight to the top of the tree intersects the pole. Like the staff
hypsometer, the Merritt hypsometer provides only rough measurements of height.

; /,_,g;?:i—‘z_s,\
\\«”N,

G
I
R
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— : : | Commercial varieties of the Merritt hypsometer are often sold on the back of
Biltmore sticks. Like a Biltmore stick, it is easy to build and calibrate your own
Merritt hypsometer. The formula for calibration is:

D_ExHT

where D is the distance on the hypsometer betyween the zero point and the
mark for a particular tree height (HT?); E is the distance the hypsometer is held
from your eye (length of arm); HD is the horizontal distance you should stand
away from the tree.

the tigonometiic approach The trigonometric approach is used most commeonly. It involves measuring
angles above and below the horizontal plane to the top and the bottom of the
tree. The Suunto clinometer is frequently used to measure these angles. If you
know the horizontal distance from the position where you make the angle mea-
surements to the tree, you can calculate the height of the tree using trigonomet-
ric theory. Like the angle of slopes, these angles can be measured in either per-
centages or degrees. However, unlike correcting for slope, the sign of the angles
is important. Any angle below the horizontal plane is considered negative; any
angle above the horizontal plane is considered positive.

A good rule of thumb for selecting a spot from which to measure the angles to
Sy , - the top and bottom of the tree is to be about as far away from the tree as the tree
K ..... j o is tall. If you are too much closer than this, the angle divisions on the scale of
: _ the measuring device you are using get quite close together, increasing the pos-
sibility of error. (As a general rule, angle measurements should be kept less than
100%.) If you are too much farther away, the visibility of the tree may be
impaired, If the ground is sloping, measuring the angles from the uphill side
allows you to use a shorter horizontal distance while still keeping the angles
below 100%.

If HT is the height of the tree, H, is the height of the tree above the horizontal
plane, and H, is the height of the tree below the horizontal plane, the formula
for calculating tree height with the angles measured as percentages can be
developed as follows. (Refer to Figure 1.8.)

K ; Fisure 1.8 Dlagram lllustrating
the trigonometric approach.
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Fisure 1.9 Drawing of the situa-
tion which occurs when you are
measuring tree height on a
down slope.

HT = H1 +H2
Hy =HDXay+ 100
H, = ~HDXas+ 100 (Recall that a; is negative in Figure 1.3.)

HT = (HD X a; + 100) ~ (HD X a, + 100)
© = HD + 100 x (a; - ay)

As an example, we will calculate the height of a tree that is 22 m (HD) away

from where the angles were measured. The angle to the top of the tree (a;) is
75%. The angle to the bottom of the tree (a;) is —25%. The height of the tree is:

HT = 22+ 100x (75~ (-25))
= 22+ 106 x(100) -
=22m .

We will use the same symbols to derive the formula for height when the angles

are measured in degrees.

HT = Hy+H,
H1 = HDxtan(a1)

H, = -HD X tan(ay)
[Again, recall that a; is a negative angle in Figore 1.8.]

HT = HD x tan(a,) — HD X tan(a,)
- = HD x[tan(a,) — tan(a)]

To illustrate the use of this formula, we will use the same tree as in the previous

‘example. Recall that HD was 22 m. The angle measurement to the top is 36.8°.
- The angle measurement to the bottom is —14°. The height of the tree is:

HT = 22 X [tan(36.8°) — tan(~14%)]
= 22X [0.748 — (~0.249])
= 2x(0997)
=219m

As one last example, we will complicate things by introducing a slope and a
slope distance. Assume the slope distance is 25 m and the slope angle (g) is
~10°. The angle to the tip of the tree (a;) is 21.5° and the angle to the base of
the tree (ay) is —20.4°, Figure 1.9 illustrates this example. [It is often beneficial

A

” -?\czn}\
K Y
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measuring the helght
 ofleaning trees

Ficure 1.10 Variables of interest

_ onaleaning tree,

for you to draw a diagram when faced with a more complicated height calcula-
tion,] The first step is to calculate the horizontal distance:

HD = SD X cos(e) = 25 X cos(10°)
- [Note that the sign of the angle is not important.]
= 25X 0985
= 2462m

Now we calculate the tree height as:

.. HT = HD X [tan(a;) - tan(a,)]
= 24.62 x [tan(21.5°} — tan{—20.4°)]
[The signs of the angles are important here.]
= 24.62 x [0.394 — (-0.372)]
= 18.86 m

Other instruments that can be used for measuring angles include the Haiga hyp-
someter and the Abney hand level. You will have a chance to work with these
instruments during the on-campus laboratory session.

If at all possible, trees that are leaning should not be measured for height. If it is
not possible to avoid measuring the height of these trees, the height above

. ground (HT") should be obtained from a direction perpendicular to the lean of

the tree. One way to find the true height of the tree (HT) is by measuring the
angle of the lean away from the perpendicular (8) and applying trigonometry to
find HT (Figure 1.10). '

It follows from trigonometry that:

$in(90° —6) = HT + HT
HT = HT +sin(90—»)

As an example, consider a tree with a measured height above ground (HT") of -

30 m. (This can be calculated using the formulae that you learned in the

previous section.) The angle of lean is 10°. The height of this tree is:

HT = 30 + sin(90° - 10°)
= 30 = 0985
= 30.46 m.
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MEASUREMENT OF
UPPER STEM DIAMETERS

DETERMINING. THE HEIGHT
* OF THE DIaMETER MEASUREMENT

OBTAINING AN INDIRECT MEASUREMENT
OF UpPER STEM DIAMETER

relascope

i

Upper stem diameters are defined as diameters which occur far enough up the |

stem of a tree as to be out of reach of an individual on the ground.

Measurements of upper stem diameters are required occasionally for accurately
measuring volumes for use in constructing volume or taper equations, for deter-
mining the merchantable point on a stem, or for determining form quotients. We
will discuss these uses in Lesson 3, but the measurement procedure and exam-
ples of some of the instruments involved will be covered here.

Unless you choose to climb the tree or use a ladder, upper stem diameters must
be obtained indirectly (i.e., at a distance). The process of measuring upper stem
diameters indirectly can be logically broken into two parts: (1) determining the
height of the point at which you are measuring; and (2) obtaining the measure-
ment. We will describe each of these aspects separately.

Determining the height above ground for any portion of the tree is not difficult
using an instrument that measures angles, such as the Suunto clinometer. If you
know the horizontal distance from the tree, then all you need to do is to deter-
mine the appropriate reading on the clinometer to correspond to the desired
height. This is most easily done using the percentage scale. The procedure is:
1. Measure the horizontal distance you are away from the tree. If you are going
to do the calculations in your head it is easiest if you choose an easy dis-
tance with which to work (e.g., 20 m as opposed to 19 m).
2. Obtain the percentage reading to the base of the tree.

&
3. Express the desired height as a percentage of the horizontal distance. p

4. Add the percentages obtained in steps 2 and 3.

Say that you want to obtain an upper stem diameter at 2 point 15 m above the
ground. You are 20 m (horizontal distance) from the tree. You take an angle
measurement to the base of the tree and obtain a reading of —5%. The angle
reading you should have at a height of 15 m would be:

% reading at 15 m = (15 + 20) x 100 + (-5)
=75+ (—5)
=70

There are 2 number of instruments available that can be used for making upper
stem diameter measurements. Four of the most common are: the Wheeler pen-
taprism dendrometer; the Barr and Stroud Optical Dendrometer; the Spiegel
relascope; and the telerelascope. We will not describe the first two instruments.
References for additional information are given in Avery and Burkhart. We will
describe the relascope in some detail since it is a very versatile instrument and its
use is relatively common. The telerelascope operates in much the same manner
as the relascope, only it has telescopic sights. You will have an opportunity to
practice using a relascope and a telerelascope during your on-campus lab session.

“The relascope was invented by Walter Bitterlich in Austria around 1960.

Bitterlich is also famous as being the main instigator behind the development of
a technique called “point sampling’ (also known as ‘prism cruising’, ‘angle
count sampling’, and so on). This technique will be described in considerable
detail in Forestry 238. It is likely that the idea for the relascope evolved from
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" Fieure 1.11 Drawing of a Splegal

relascope.

Ficure 1.12 Simplified view
through the eyeplece of a relas-
cope.
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his work with point sampling since some of the underlying principles are the

- same. The relascope can be used:

1. to measure tree heights indirectly as you would with a Suunto clinometer;

2. to measure tree heights indirectly with no calculations if you are an appropri-

ate distance from the tree for one of the several height scales;
3. to fix angles for point sampling;
4. to find out how far you are away from an object (i.., as a range ﬁnder)
5. to measure upper stem diameters.

After we describe the insmlm.ent, we will cover all the uses on the above list
with the exception of item 3. This item is covered in the appropriate section of

- Forestry 238,

The relascope is approximately 12 cm high, 4 cm wide, and 6 cm deep. It oper-
ates somewhat like a Suunto clinometer in that there is a weighted wheel inside
that rotates as the instrument is moved from the horizontal. However, there are
many more scales on this wheel than on a clinometer. The wheel is housed
inside a metal casing (Figure 1.11). There are three ground glass windows to
provide light to the interior of the instrument. On one end there is an eyepiece
for viewing the interior of the instrument; on the other there is a lens with a visor
to adjust the light conditions. On the end with the lens, there is a brake button for
locking and unlocking the weighted wheel. The wheel is locked when the button
is in its normal position and unlocked when the button is pushed and held.

Ground
Glass
Window

Ground
Glass
Window

Brake
Button

(a} front view (b) side view (c) rear view

- When you look through the eyepiece of the relascope you see a circular view
_(Figure 1.12). The circle is split in half horizontally. The top half is completely

transparent and you are able to see the object that you wish to view (i.e., the bole

Tree

Scale for angle measurements

Quarter Bands
Wide Bands
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measuring free height

measuring diameter

of the tree). The bottom half is opaque and contains a number of alternating black
and white contiguous bands. The majority of these bands are the same width at
any given level for the instrument. These bands are widest when the relascope is

- pointed horizontally and taper uniformly as the relascope is moved up or Gown.

At the right of the equal width bands are four narrower bands. Each of these
bands equals one quarter of the other bands and are known as quarter bands. At

* the far right is a scale for measuring vertical angles in percentages or degrees.

Readings are made at the point where the opaque section meets the transparent
section. In order to use the relascope, you sight at the portion of the tree on
which you wish to make a reading while holding in the brake button. As soon as
the scales stop moving, release the button and make a reading. The way you
make a reading depends upon the kind of measurement you are making. We
describe some of the measurements below.

As indicated earlier, the relascope can be used to determine tree height in the
same manner as you would with a Suunto clinometer. Also, you can determine
height with fewer calculations if you are an appropriate distance from the tree.
In order to determine height as you would with a clinometer, simply use the per-
centage or degree scale and follow the procedures we described for the clinome-

. ter. If you wish to determine height with fewer calculations, measure a horizon-

tal distance from the tree equal to 4, 6, 8, ..., 20 m. The distance you select
should be approximately equal to a visual estimate of the height. Once you are
standing a known distance from the tree, choose the appropriate scale. (You can

. see which scale corresponds to your distance by looking at the scales while the

relascope is held horizontally.) Take a reading at the top and bottom of the tree.
The numbers you see will be the height above or below the horizontal in metres.
When you subtract the bottom reading from the top reading, you will get the
height of the tree. If you need to be at a greater distance from the tree than the

_ largest scale, read from a scale corresponding to some fraction of the distance
(e.g-, 1/2) and multiply your readings by the inverse of that fraction (e.g., 2). For

example, if you want to use a base distance of 32 m, you could read from the 16
m scale and multiply your readings by two. You could also choose to read from
the 8 m scale and multiply your readings by four.

Since the relascope measures the diameter indirectly (i.c., at a distance from the

. tree), you can use jt to measure the diameter at any point along the bole.

However, you should use a diameter tape or calipers when you can because
these instruments are much more precise. The procedure for using the relascope
to measure diameter is:

1. Measure the horizontal distance you are away from the tree.

2. Determine the height of the point on the tree at which you wish to make your
measurement. (We described this procedure earlier.)

3. Determine the number of bands covering the diameter at that point. The easi-
est way to do this is to line up the left side of the tree with the beginning of a
band in such a way that the right side falls into the region occupied by the
quarter bands.

4. Convert the diameter reading in bands to a diameter in centimetres.:

Diameter (cm) = # of bands x 0.02 x HD x 100
: = # of bands x 2 x HD

co
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This procedure works because each full band has a width that exactly covers a
1 m width at a distance of 50 m. The tapering of the bands is such that it exactly

~.matches the increase in sighting distance as the relascope sights above or below
_ the horizontal. In other words, the relascope corrects for slope distance if the

scale is allowed to rotate freely. One band will exactly covera 1 m widthata
horizontal distance of 50 m, no matter what the slope distance is to the point of
the reading. This relationship is reflected in the 0.02 factor in the equation above.
This factor is called the relascope constant. When you multiply the relascope
constant times the horizonta] distance in metres, you get the width of one band
in metres. When you multiply this by 100, you get the band width in centimetres.

Consider a tree 20 m away (horizontal distance) from where you are standing.
One relascope band would represent 20 x 0.02 x 100 which equals 40 cm. If you
measure the diameter of the tree at some point as 1.25 bands using the relascope,
the diameter at that point in centimetres would be 1.25 x 40 which equals 50 cm.

‘The relascope can be used to determine the horizontal distance you are away

from a target of known width. An instrument which performs this kind of mea-
surement is known as a range finder. Although the relascope works fine as a
range finder in theory, in practice imprecise width measurements cause estimat-
ed distances to be imprecise as well.

' In order to use the relascope as a range finder, you need a target. The target is

usually a 1 m stick or bar which is calibrated into 0.1 m bands of alternating
colours (usually black and white). There is a fastener for attaching the target to
a tree. To calculate the distance you are away from the target, you simply need
to determine the width of target one or more relascope bands cover. If you allow
the bands to move freely when sighting at the target, you will obtain a horizon-

- tal distance. If you lock the relascope bands at horizontal before sighting, you
will determine a slope distance. Distance (D) may be calculated as:

D = band width + (0.02 x 100)
=band width +2

D will be in metres using this formula if band width is measured in centimetres.

Let’s look at a few examples of how this formula can be used. Say you want to
be 25 m away from the tree. What width of the target scale should one band
cover? To answer this question, you simply need to substitute 25 for D and
solve for band width. '

D = band width < 2-

25 = band width = 2

band width =25 x2 =50 cm
Say you are an unknown distance from the target. You sight through the relas-
cope allowing the bands to rotate, You note that two bands cover 70 cm on the

target, What is the distance? The first step is to determine the width of cne
band. In this case it is 70 + 2 which equals 35 cm. Then it is simply a matter of

~ ‘solving for D.

D = band width + 2
=35:2
=175m
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Try this problem to see if you understand the process: You are standing at an
unknown distance from a tree. A 1 m target is attached to the tree at eye level.
When you sight at the target using a relascope with the scales locked at the hori-
zontal position, you note that one band covers 45 cm. When you untock the
wheel, you note that one band covers 40 cm. What is the slope distance to the

~ target? What is the horizontal distance? What is the percentage slope of the ground?

Answers:  Slope Distance = 22.5m
Horizontal Distance = 20.0 m
- Percentage Slope = 51.5 %

MEASUREMENT OF
OTHER TREE ATTIRIBUTES

BARK THICKNESS

Measurements of other tree attributes are sometimes required. We will not
cover many in this section, but we will briefly describe a few. You will have an
opportunity to practice these measurements during the weekend laboratory ses-
sion. We will also demonstrate the proper use of the instruments at that time.

Bark thickness measurements are used to convert diameters measured outside of

the bark to diameters inside of the bark. When diameters are measured at

heights easily accessible from the ground, bark thickness can be measured
directly. Bark thickness can be quite variable around the circumference of a tree
and usually needs to be measured a few times at different points and then aver-
aged. The most frequently used instruments for directly measuring bark thick-

.ness are bark gauges and increment borers.

Bark gauges come in many forms. Generally, the gauge consists of a hollow
metal bit that is driven through the bark of the tree, a scale indicating how far
the bit has penetrated, and a handle for driving in the bit. The wood below the
bark stops or severely retards the progress of the bit into the tree because it is
considerably harder than the bark. This indicates to the user that the bark has

been penetrated. Bark thickness is then read off the scale.

We discuss the use of an increment borer in the following section on “Age.” An

“increment borer is generally used for measuring bark thickness if the bark is too

thick for whatever bark gauge you have on hand or if measurements are also to
be made on the wood portion of the core {e.g., ring width for determining diam-
eter growth rates, age of the tree).

When bark thickness is required at points along the stem of a tree that are not
easily accessible from the ground, it is usually approximated from the bark
thickness at a more easily accessible height (e.g., breast height). A common
assumption used in this approximation is that bark thickness represents a con-
stant percentage of outside bark diameter at any point along the stem. Thus, the
bark thickness at height /# along the stem can be approximated as:

- BT
BT, » —x D,
k™ 3op h
where BT is bark thickness at breast height and Dj, is the outside bark diameter

at the height at which bark thickness is required.
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For converting outside bark diameters to inside bark diameters, bark thickness
measurements need to be doubled. (Bark is found on both sides of the tree.)
This quantity is called double bark thickness (DBT). Inside bark diameter at a
height of & from the ground (DIBy) is calculated from the outside bark diameter

~ {Dy) and double bark thickness (DBT}) at that height as: -

DIB,' - -Dfl - DBT}I

Frequently, the two previous formulas are combined as:

BT
DIB, = D, - 2% —=x D,
h = En S X Gph

Age at some height along the stem of trees growing in climates with one grow-
ing and one non-growing season within a year may be determined by counting
the rings formed in the wood between the pith and the bark, Normally ring
counts provide good indicators of age, but sometimes rings may be missing or
extra rings may be present due to some form of stress (e.g., insect attack, dis-
ease, frost, drought) the tree may have suffered in the past. Also, rings on some
species are difficult to see without a hand lens or microscope because of little
colour differentiation between early and late wood or slow diameter growth

. rates.

- Counting rings at any point along the stem can be done easily on felled and

bucked trees (destructive sampling). If the trees are not to be sampled destruc-
tively, measurements are usually restricted to heights that can be easily reached
from the ground. In this situation, an increment borer is used to extract a small
round core (approximately 5 mm in diameter) of wood from the tree at some
point on the tree’s circumference. The core must include both the pith and the
bark if it is to provide an accurate count of the tree’s age.

Increment borers consist of a hollow tempered steel drill bit, a handle, and an

.extractor. They are available in different sizes. The bit will need to be at least as
“large as half of the outside bark diameter in order for the pith and bark to be

included in the same core. The hollow bit is drilled into the tree at a direction
thought by the user to intersect the pith. When the bit has penetrated to a suffi-

‘cient distance to intersect the pith, the extractor is inserted into the bit, and the
bit is rotated one complete revolution out of the tree to break off the core. The

extractor is then removed from the bit along with the core. Finally, the bit is
removed from the tree. If the core does not intersect the pith, another core will

need to be taken to determine an accurate age.

Increment cores are frequently taken at breast height. If age is counted at that
point, it is referred to as breast height age. If the total age of the tree is required,
it can be meastred at ground level or approximated by adding a correction factor
to breast height age. This correction factor reflects the average number of years
for a tree of that species to reach breast height on a specific site.
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REVIEW/SELF-STUDY
QUESTIONS

" These questions should be answered before you go on to the graded assignment.

Do not submit answers to the tutor. These questions are of value to check your
understanding of the material before progressing to the next lesson, as well as

- later review for the final examination.

. What does mensuration entail?

. Differentiate among precision, bias, and accuracy.
. Briefly describe the five major sources of error.
Why can you not measure a ‘tree’?

. What is a variable?

S L A W N e

. What were the reasons for choosing breast height as a standard point for
measuring diameters?

~1

. What is tree basal area?
8. How does a diameter tape work?

9. What is the most common error when using a diameter tape?

10. What are the relative advanfages of calipers and diameter tapes?

* 11. Differentiate among total tree height, height to the living crown, and

merchantable height.

12. How can height be directly measured? Why are these techniques not used
“all the time?

13. What is the relationship between horizontal distance and slope distance?

'14. How is a staff hypsometer used? What is the underlying principle upon

which the procedure is based?

15, What is the relationship among tree height, horizontal distance and percent-

~ age angles measured to the top and bottom of a tree?

16. What is the relationship among tree height, horizontal distance and angles
measured in degrees to the top and bottom of a tree?

17. How can the height of leaning trees be determined?
18. What are upper stem diameters?
19. How is the height of an upper stem diameter measurement determined?

20. What are the diffcrént measurements that can be made with a Spiegel
relascope?

21. How are diameters and distances measured using a relascope?
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LESSON 2

T

¥ MEASUREMENT OF TREE VOLUME

INTRODUCTION

LessoN OVERVIEW

LEssoN OBJECTIVES

LessoN READINGS

LessON ASSIGNMENT

The purpose of this lesson is to provide detail on principles relating to the
measurement of tree volume. Common methods of estimating tree volume are
covered in the next lesson. In this lesson, total stem volume, merchantable
volume, and net volume are discussed.

" After studying this lesson and completing the self-study assignment, you should
‘be able: '

1. to define the notion of volume and to relate the volume of certain sections of
the tree to the volume of particular geometric shapes;

2. to identify the strengths and limitations of Smalian’s, Huber’s and Newton’s
volume formulae;

~ 3. w differentiate among total, merchantable, and net volume;

4. to state which measurements need to be made to calcutate total,
merchantable, and net volume quantities.

The material in this lesson is not well covered in Avery and Burkhart, but is
essential for obtaining a firm understanding of Lesson 3. The book by Husch,
Miller and Beers (available through Extension Library loan) cover some of this
material on pages 90-108. '

‘There is no graded assignment for this lesson, but the material covered in this

lesson will be required in order to complete the graded assignment for Lesson 3.

- Complete the self-study questions on page 33 at the end of this lesson.
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WHAT IS VOLUME?

EQuATiONS FOR VOLUME

Ficure 2.1 The porobdloid
shape.

h
V=4, X

L

I \\

o)
s

In order to manage the timber resource, foresters need to know the volume of
the rees. The measurement of tree volume is therefore important, The volume
of the tree can be restricted to the volume of the main stem or it may include the
volume of the branches, roots and leaves. For this lesson, we will begin with a
general discussion about volume, and then we will discuss how to measure the
volume of the main stem and portions of the main stem,

Length, height, and width of an object are one-dimensional measarements; area
of an object is a two-dimensional measurement; and volume is a three-
dimensional measurement. Volume is therefore expressed in cubic units such as

cubic metres (m) or cubic centimetres {cm3).

. Volume can be measured on an object by placing the object into a full container

of water, collecting the water which is displaced by the object, and measuring
the volume of this displaced water. Alternatively, for standard shapes, the
volume of the object can be calculated using equations already derived, Volume
of a cube or rectangular solid can be calculated by multiplying the length times
the height times the width. The volume of a cylinder is found by multiplying
the area at the base of the cylinder by the height of the cylinder (4, x 2= V).
The base of a cylinder is a circle; therefore the area at the base is calculated as;

2
Ay =TX %—- =nr?

where x is approximately 3.14159; d is the diameter of the circle and r is the o
radius of the circle (one-half of the diameter). . }

If diameter and height are measured in metres, then volume will be in cubic
metres. For example, for a diameter of 0.20 metres and a height of 20 metres,
the volume would be:

volume = 3.14159 x %20 = 0.6283 m3

0.20*
4

The equations for volume of other shapes are summarized below,

Ficure 2.2 The cone shape. Ficure 2.3 The neiloid shape.

h B N
*73 | VEA g "/
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Ficure 2.4 Radius versus height
Yy of a cone-shaped object.

Ficure 2.5 Radius versus height

from the top of a cone-shoped _

object.

Shapes that have the same base area and height can be ranked from the least
volume to the most volume, as neiloid, cone, paraboloid, and cylinder. By
examining the equations for volume, we can get a feeling of what equations for
other shapes might be. For instance, if the shape of the object is between a
cylinder and a paraboloid, the equation for volume would still be area at the
base times height, but the number that we divide by would be somewhere

- between 1 (for cylinder} and 2 (for the paraboloid).

The equations for calculating volume of these standard shapes were derived
using calculus to find the volume of a solid of revolution. First, let’s look at the
cone shape. If we plot the radins of the cone-shaped object (y-axis) against the
height of the object (x-axis), we obtain a graph that appears as in Figure 2.4.

Radius at the base {r,)

{ Height of the cone (h)

‘We can also show this graph as the mirror image, following the cone from the
top to the base as we go along the x-axis (Figure 2.5).

’/- Radius at the base (r,)

Height of the cone (h)

The relationship between the y-axis and the x-axis for any of the shapes that we
have described (cylinder, paraboloid, cone, and neiloid) can be shown in
equation form as follows:

y=c><\/x_1’=r—">< xP
N

where x is height down the cone; y is radius at that height; ¢ is a constant; pis a
power; r;, is the radius at the base; and h is the height of the cone.
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Ficure 2.6 Rotation of radius
versus height line

Ficure 2.7 A disk from the
cone appears much like a
cylinder shape.

“The power p varies depending on which shape we are interested in. For a cone,
p =2, therefore:- '

) 2_T
y=~mm=XYxt =—=Xx
Vi? k

The square root signs disappear and we obtain an equation for the straight line
shown in Figure 2.5, with a slope of r, /& and an intercept of zero.

If we then imagine that the line that we have drawn on the graph is rotated in a
circle around the x-axis (to obtain the third dimension nieeded for volume), we
will see the cone shape emerging as in Figure 2.6.

Y (radius)

X (height from
top of cone)

-
o ——
e e ——————

§
&
£ 4

o’

The term volume of a solid of revolution refers to the fact that a line is rotated
around the x-axis (or curve if the shape is not a cone) and we are assuming that
the shape that is formed by the revolution has volume (i.e., it is a solid).

If we cut a disk from the cone shape, we see that the disk looks much like a
cylinder (Figure 2.7).

Y (radius)

X (height from
top of cone)

llﬁ\‘“" .

o
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Ficure 2.8 Volume of the cone
as the sum of disks. -

Tase 2.1 Power (p) Values for
Different Standard Shapes.

The volume of the disk is, approximately, that of a cylinder with a radins of y

(defined in the equation above for the height down the cone from the top) and a
disk height equal to a very small value, which we will call the dx. If we repeat
this process for the entire cone shape, then the volume for each disk would be
summed together to obtain the volume of the cone as shown in Figure 2.8. The
volume of the cone is then the sum of the volumes for each cylinder with a
height of dx and a radius equal to the y value at the small end of each disk.

Because each disk is not quite a cylinder in shape, we obtain a better calculation
of volume if we let dx become a small value. The smaller the dx is, the closer -
the cylinder shape matches the shape of the disk taken from the cone. This is the
process of integration used in calculus. When we use integration, we allow the
height of each disk (the dx) to approach a very small value, close to zero. To
calculate volume then, instead of dividing a standard shape (in this case the

ccone) into small disks, we can use calculus. The integration to obtain volume of

the cone-shaped object is as follows. First:
2

T {72
b ) =Ebe 2

2
=7t = ==
y JCX( XX

Area=1xr

. Then:

B3
ng (r® 0%} 2
SHAX K| —— = — | =TT X
w2 (3 3
. .
=A x—
573

Using integration, we have obtained the same equation for the cone given

. eatlier in this lesson.

For the other standard shapes which we described, the power (p) changes, but
the remainder of the equation to describe the radius (¥} at different points down
the shape (x), is unchanged, as shown in Table 2.1.

Shape p Equation

Cylinder 0 xVx0 =7,
Paiboloid 1 y=—Ttoxyxt =2 o Jx
| \/_
- Cone 2 L]
Vr?
Neiloid 3 x Vx>

= rb
VK
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Ficure 2,9 Radius versus height
from the top for a paraboloid-

shaped object,

Ficure 2.10 The cone frustum
shape.

" replace the 0 as the lower limit of the integration with some other limit, and we

%_,.f_/‘"’.;;ﬁh\

\v“\mw‘-/

The power (p) increases as the volume (for a given area at the base and height)
decreases. '

For the parabeloid shape, the gfaph of the radius from the top of the shape to the
base of the shape appears as in Figure 2.9.

Using integration to find the volume of a solid of revolution, the equation for a
paraboloid shape is found by:

P \]
/

h

= A »—_
)

This, again, is the familiar equation given earlier in this lesson. ‘You may wish to try

using integration to verify the equation for volume assuming the neiloid shape.

If the shape of the object is not one of the standard shapes (e.g., a cone) we
could still find the volume of the object if we knew the equation which
describes the relationship between the radius (y) and the height down from the
top of the object (x). Once this equation is known, integration can be used to
calculate volume. '

Integration can also be used to find the volume for a part of the object, if we
know the equation for radius () with height (x). For instance, if we remove the
top of any of the standard shapes, we are left with the base of the shape. This is
called the frustrnm. Notice that a frustum of a cylinder will also be a cylinder.
A cone frustum is shown in Figure 2.10.

In this case, we would follow the same procedure as for the entire shape, but we

would replace the k of the upper limit with some other limit. For example, if the
object were a cone 15 metres in height, we could find the volume from 2 metres
down from the top to 15 metres (i.., remove the top of the cone), as follows: .

Mt
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15 15 " 2
Volume x{(area) dx={nx(—£—xx) dx

15
2 rbZ

r 15 3
b 2

=A% [x“dx=mx
th; R?

*
2 3

If the diameter of the base is 18.0 cm, the area at the base is 0.0254 m?, and the
volume for this cone frustum would be:

3 3
0.02254 x{ 15° 2%} _ 0.1269 m?
12 \3 3

MEASUREMENT OF
'TOTAL TREE VOLUME

MEASURING THE V OLUME
OF Warer DispLACED

ASSUMING A STANDARD SHAPE
FOR THE TREE

v’

{,
N

‘We have discussed in general the idea of what volume is and how volume can be
calculated for standard shapes. However, we are most interested in tree volume.

The volume of the main stern of a tree (total tree volume) can be expressed as
volume inside bark (i.b.) or less commonly, as volume outside bark (o.b.). If
the volume i.b. is needed, then all measurements of the diameter or radius of the
tree stem must also be i.b., or must be corrected from 0.b. measurements to i.b.
by using a measure of bark thickness (discussed in Lesson 1).

There are several ways of measuring total tree volume. Each of these methods

has inherent advantages and disadvantages.

The volume of a tree could be measured by cutting the tree down, placing it into
a large container, and measuring the volume of the water displaced. The

" instrument which is used to measure tree volume in this way is called a
~ xylometer. The disadvantages to using this instrument to measure volume are:

the measurement is time consuming; the instrument (and the tree) is bulky; and
the tree must be cut down (and cut into logs if the tree is large). Also, if volume
i.b. is required, the tree bark must be removed before the tree is immersed, or an-
allowance for the volume of the bark must be made. The advantages to using
this instrument are: an accurate measurement of volume is obtained; and the
volume of parts of the tree outside the main stem can be measured.

An alternative to using a xylometer is to assume that the tree shape is one of the
standard shapes. We can then do some simple measurements and calculate tree
volume. For instance, we could assume that the tree shape is a cone shape. To




PAGE 28

FRST 237

ASSUMING STANDARD SHAPES
FOR DIFFERENT PARTS OF THE TREE

Cone

Paraboloid .
Frustum
shapes

— Cylinder or
Neiloid Frustum

Fisure 2.11 Siandard shapes
assumed for portions of the
tree bote,

o
g

calculate volume, we must have a measurement of the diameter of the tree at the
base to calculate the area at the base, as well as a measurement of the tree
height. The volume is found by entering the area at the base and the height of
the tree into the equation to calculate the volume of a cone.

For example, for a tree of 14.35 cm diameter i.b. at the base (0.1435 m) and a
total height of 16.8 m, the volume, assurning a cone shape would be:

) 2
(nx@—'lis—s)xlﬁ.S

= 0.0906 m?

3

. Note that volume ib. is calculated if the diameter at the base is i.b., and volume

0.b. is calculated if the diameter at the base is 0.b. The diameter 0.b. can be
measured using one of the instruments described in Lesson 1, such as a
diameter tape or calipers; if volume i.b. is needed, the diameter i.b. can be found
by reducing the diameter 0.b. by two times the thickness of the bark (double
bark thickness). Another way of obtaining diameter i.b. is to cut down the tree
and measure the diameter .b. on the cut base using a ruler or measuring tape.

The advantages of using this technique to obtain tree volume are: only a few
simple tree measurements are needed; the tree can remain standing; and the
required calculations are simple to perform. However, this method does not
usually result in an accurate measurement of total tree volume.

Instead of assuming one standard shape for the whole stem, different shapes
may be used for different parts of the tree. If we draw a diagram of the main
stem of a typical tree, we can get an idea of which shapes to use for which part
of the tree stem (Figure 2 11).

The part of the main stem nearest the ground looks like either a neiloid frustum
or a cylinder. If the main stem of the tree is divided into sections, these sections
generally have a paraboloid frustum shape. The tree top appears to be a cone
shape.

In order to calculate total tree volume, we will need measurements of the
diameter at the top and base of each section of the tree and the length of each

- section. We can obtain these measurements using a relascope, as described in

Lesson 1 of this course. (Note that this will give us diameter o.b., which must be
corrected to diameter i.b. to caleulate volume i.b.) Alternatively, we can cut the
tree down, cut the tree stem into sections, and measure the diameter at the top of
each section (i.b. or 0.b., depending on which volume is wanted) using a ruler,
and measure the length of each section.

Once we have the tree measurements, we could calculate the volume of each
section using integration, as discussed in the previous section. However, instead
of using integration, we will use equations already derived for the standard
shapes and frustums of the standard shapes.

Husch and others list several different equations for calculating volume of ( §
frustums of the standard shapes (page 101). For this course, we will cover only p—
three of these equations.
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1. Smalian’s equation for a paraboloid frustum
) _ i
V=(4,+A, |x—
( b All) 2

2. Huber’s equation for a pai’aboloid frustum
V=A xh

3. Newton’s equation for a neiloid, cone or paraboloid frustum

V=(Ab+4Am+Au)xg-

where - A, is the arca at the base of the tree section;

A, is the area at the middle of the tree section;
A, is the area at the top of the tree section;
h is the height {or length) of the section of the tree.

Note that if the shape is a cylinder, all of these equations simplify to the
equation given previously for calculating volume of a cylinder.

'Newton’s formula is used to calculate the volume of the neiloid, cone, or

paraboloid frustum shapes exactly. However, a measurement of the diameter at
the midpoint of the section is needed, as well as the diameter measurements at
the top and base of the tree section. Not only is an additional diameter
measurement needed, but you also must be able to locate the midpoint of the
section in order to measure this diameter. This is particularly difficult to do if
the tree sections are stacked logs in which only the base and top of the log are

~ easy 1o see and measure.

Smalian’s and Huber’s formulas are exact only if the tree section follows the
paraboloid frustum shape. If the true shape of the section is closer to a cone or
neiloid frustum shape, then Smalian’s formula will overestimate the volume of
the section anid Huber’s formula will underestimate the volume, Overestimation
or underestimation is minimized if the lengths of the sections (or logs) are
smaller than 2.5 metres, Because Smalian’s formula requires only a
measurement of the diameters at the base and top of the tree section (or log), as
well as the height of the section, this formula is most often used. Huber’s
equation requires only one diameter measurement at the middle of the section or
log, but as already mentioned for Newton’s formula, this diameter measurement
is often difficult to obtain,

Smalian’s formula for a paraboloid frustum can be thought of as the average

~ area of the section, times the height of the section (average area = (4, + 4,) /2).

This is the same as calculating the volume of a cylinder with the area equal to
the average area, Another way of interpreting Smalian’s equation is to rewrite
the equation as follows:

v-{d)(at)

" The volume of the paraboloid is then the sum of two volumes. First, the volume
- of a cylinder with the area equal to A, and the height equal to R/2 is calculated.
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Taste 2.2 Calculation of Tree

Volume.

- Next, the volume of'a cylinder with the area equal to A, and the height equal to

h/2 is calculated. The volume from these two cylinders is then added to obtain
the volume of the paraboloid frustum.

An example calculation of the total volume of a tree is shown in Table 2.2. In
this example, the equation for a cone is used to calculate volume for the top
section, the equation for a cylinder is used for the bottom section, and Smalian’s

equation is used for the intermediate sections.

Section No. d.ib.attop

1 (Stump)

Ow~NMOUaON

10
11 (Top)
Totals

14.35
14.00
12.40

11.45
-11.35

10.35
8.35
7.55
6.20
4.80
0.00

Length

0.30
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
3.00

16.80

Area

0.0162
0.0154
c.0121
0.0103
0.0101

. 0,0084

0.0055
0.0045
0.0030
0.0018
0.0000

Volume

0.0045
0.0237
0.0206
0.0168
0.0153
0.0139
0.0104
0.0075
0.0058
0.0036
0.0018

0.1241

Notice that the volume i.b. using this method is 0.1241 m3, whereas using a
cone shape for the entire tree stem results in a volume 1.b. of 0.0906 m3.

The advantages of using this method as a measurement of tree volume are: as
with the second method, measurements can be taken on the standing tree if
desired; the measurements are relatively simple; and the method results in a
more accurate measurement than the second method shown, although more

diameter and height measurements are required.

MEASUREMENT OF

MERCHANTABLE TREE VOLUME

Merchantable tree volume is defined as volume of the merchantable part of
the tree stem. Generally, the merchantable limits (or merchantable standards) -
of the tree are defined as a lower height limit (stump height), referring to the
point where the tree is cut above ground when harvested, and an upper
diameter limit, usually diameter inside bark, referring to the smallest usable
diameter, Limits commonly used in B.C. are a lower limit of 0.30 or 0.45 metres
stump height, and an upper limit of 10.0, 15.0, or 20.0 cm top diameter i.b.

Another criterion of merchantability which may be added is a minimum length
required between the stump height and the minimum top diameter i.b.
(merchantable length). For instance, we may decide that a ree with less than
2.5 metres between the lower and upper merchantability limits is not usable for
the product of interest. In this case, if we encounter a tree which has less than
2.5 metres, the merchantable volume is considered zero, Other criteria of

/"“"\
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-MEASURING THE VOLUME OF
WATER DISPLACED

ASSUMING A STANDARD SHAPE FOR
THE MERCHANTABLE PART OF THE TREE

ASSUMING STANDARD SHAPES
FOR DIFFERENT PARTS OF THE TREE

-merchantability exist in Canada, and vary between provinces. For this reason, we

will concentrate on the measurement of merchantable volume defined by a lower
and an upper limit only. As with the measurement of total tree volume, there are

several methods which we can use 1o measure merchantable tree volume.

To measare the merchantable tree volume, only the merchantable part of the
tree stem is placed in the xylometer (see page 27). The velume of the water
displaced is then a measure of merchantable volume. This is the most accurate
measurement of merchantable tree volume, but it has all the disadvantages
noted for the measurement of total tree volume using the xylometer.

The merchantabie part of the tree can be assumed to be a frustum of a standard
shape. If we have measurements of the diameter for the tree stem at the lower
limit, 2 measurement of the diameter at the upper limit, and a measurement of
the merchantable length, we can calculate volume for the merchantable part of
the tree stem using Smalian’s equation. For example, for a diameter i.b. ata
stumyp height of 0.30 metres of 40.0 cm (0.40 m), an upper limit defined as 20
cm diameter i.b., and a merchantable length of 10 m, the volume can be
calculated as follows:

2
Ay = [“_’“1_42_] =0.1257 m?

. 2
A, =[—"—x%3'9-)= 0.0314 m?

Volume =

(0. 1257; 0.0314) . 10.0 = 0,786 m3

The advantage of this method is that few tree measurements are required. How-
ever, there is potential for inaccuracy, Because the equations given for frustums
of shapes (e.g., Smalian’s equation) result in biased measures of volume for
long lengths (greater than 2.5 metres), the merchantable volume calculation is
inaccurate for trees that are not the shape assumed for the equation.

To increase the accuracy in measuring merchantable volume, measurements of
diameter and length can be taken for each section afong the main stem. As for
total tree volume measurements of a standing treg, the measurements can be
taken using a relascope, resulting in diameter 0.b, measures. Alternatively, the
tree can be felled and cut into sections. In each case, the volume for each

* section can be calculated using an equation for a frustum shape. Smalian’s

equation is most commonly used.

The disadvantages of this method of measurement are: it is not as accurate as
using a xylometer; and many tree measurements must be taken. Also, accurate
i.b. measurements of diameter can be obtained only by felling the tree and the
tree must be cut into short lengths of 2.5 metres or less.
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MEASUREMENT OF NET
MERCHANTABLE TREE VOLUME

The merchantable tree volume, defined in the previous section, can also be
called gross merchantable tree volume. Conversely, net merchantable tree

- volume is gross merchantable tree volume less the amount of wood which is not

usable for the product of interest. Wood that is unusable includes decayed wood
which is structirally damaged and the remainder of the wood in a decayed log.

Definitions of unusable wood vary depending on the product of interest, and

between provinces in Canada, even for the same product. In B.C., three
deductions are made o gross merchantable volume to obiain net merchantable
volume. These are decay, waste, and breakage. Decay is defined, generally, as
wood that can be pierced by 2 dull object such as your fingernail or a pencil.
Waste is defined as the remaining volume if the log is more than 50% decayed.
Also, if the merchantable part of the tree has more than 50% decay volume, the
remaining volume in the tree is waste. Breakage is the volume lost because the
tree breaks when it impacts the ground upon felling.

The measurement of net merchantable tree volume can be done by:
« processing the tree into the product and measuring the resulting volume.
= using scaling techniques.

The first technique is used in assessing the return in processing and will not be
further discussed in this course. The scaling technique, commeonly used to
obtain net merchantable volume for stacked logs, is discussed in Lesson 4.
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REVIEW/SELF-STUDY  These questions are of value to check your understanding of the material before

QUESTIONS = progressing to the next lesson, as well as later review for the final examination.
B Do not submit answers to the tutor.

. In general, how is the volume of any object accurately measured?

. What would be the volume of a neiloid-shaped object with a radius of 12.0

cm and a height of 4.5 m? (Answer: 0.0509 m3)
If a paraboloid-shaped object had the same radius and height, would it
have more or less volume?

. Why is the use of calculus to find volume of a regularly shaped object

called the *volume of a solid of revolution’?

. If the shape of an object appeared to be between a cone and a netloid, what

equation might you expect for volume?

. 'What is a xylometer used for?

. Name three techniques for measuring total tree volume and list the

advantages and disadvantages of each.

. If the shape of a section of the tree is a paraboloid frustum, which of the

three equations, Newton’s, Smalian’s, or Huber’s, can be used to calculate
volume of the section exactly?

. How does Smalian’s equation for a paraboloid frustum relate to the

equation for calculating the volume of a cylinder?

. 'What is merchantable tree volume? merchantable limits?

10.

What is the difference between gross merchantable tree volume and net
merchantable tree volume?

. 'What three deductions are made to gross merchantable tree volume in

B.C.? Describe each of them.
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ESTIMATION OF TREE VOLUME

INTRODUCTION The purpose of this lesson is to show how to estimate total, merchantable, and
net merchantable tree volume from the measurements of other related tree
attributes, using linear regression techniques. A review of simple linear
regression is presented, as well as a description of the measures of tree form.
Commonly used equations are presented. Taper fimctions are introduced.

Lesson OVERVIEW

Methods to measure tree volume were discussed in Lesson 2. Because the
accurate measurement of tree volume is time consuming, and we often wish to
know the volume of many trees, tre¢ volume is commonly estimated from other
tree attributes which are more easily measured.

For this lesson, we will begin with a discussion about regression, a technique
used to fit equations, with an emphasis on simple linear regression. Next,
because measures of form may be used in the estimation of tree volume, a
section on these measurements is presented. The estimation of total tree volume
is then covered, followed by the estimation of merchantable tree volume, and of
net merchantable tree volume. Finally, a discussion of taper functions is
presented.

- _ o _ L
( Jo " LessoN OBJecTives . After studying this lesson and completing the assignment, you shouid be able:

1. to show how regression can be used to obtain estimates of tree attributes and
interpret the results of regression;

2. to contrast different measures of tree form;

- 3. to differentiate between local, standard, and form class total tree volume
_ functions;

4. to show an understanding of the ideas behind estimating merchantable tree
volume from total tree volume by using merchantable ratio functions and by
using reduction equations;

5. to describe the principles used in estimating decay reductions used in Canada
and the U.S. and the decay, waste, and breakage functions used in B.C,;

6. to describe the principles behind taper functions.

LessoN ReaDINGS  Relevant information on this topic can be found in Avery and Burkhart, pages
23-32, 111-114, and 120-139.

LEssON ASSIGNMENT  Answer the self-study questions at the end of this lesson before you complete
Graded Assignment #2 in Appendix A which you submit to your tutor with a
pink assignment sheet. You should send it by the date indicated on your course
schedule. '
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REGRESSION TECHNIQUES  Linear regression is used to relate one depéndent variable (y) to independent A
- FOR FITTING EQUATIONS  variables (x’s). For multiple linear regression, more than one independent
: variable is used. This regression procedure will be described in the second
mensuration course {Forestry 238). For simple linear regression, there is only
-one independent variable and the relationship between x and y is described as:

Yi=Bo+Pyxx; +g;
where By is the y intercept;
B is the slope, or change in y for the change in x;
g; is the difference between the observed y value, and the value given
by the line;
Bg and B, are called the coefficients of the regression hne

Simple linear regression is used to. find estimates of the slope and intercept from

sample data. Once these estimates are obtained, we can:

« determine how well the regression line fits the sample data (goodness-of-fit);

+ calculate confidence intervals for the true slope and intercept (population);

= calculate confidence intervals for a mean predicted y value (y value on the
regression line);

* test whether the regression is significant.

AsSUMPTIONS OF SiMPLE LINEAR  In order to estimate the slope and intercept, calculate confidence intervals for
REGRESSION the coefficients and for the predicted line, and test for significance, some £ \}
. . - assumptions concerning the sample data must be met. N

1. The relationship between x and y is linear. If this assumption is not met,
then the regression line will not fit the data well. For example, if the plot of y on
x shows a curvilinear trend as in Figure 3.1, then the fitted regression line will
appear as shown in Figure 3.2

For the smaller and larger x values, the y values will be overestimated. For the

- middle range of x, the y values will be underestimated. In this case, another
equation is needed, such as using 2 instead of x as the independent variable,
Alternately, multiple linear regression may be used if both x and x* are included
in the equation.

FIGURE 3 l Curnvilinear trend between xcnd y Ficure 3.2 Linear regression for a curvilinear S
trend.
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FiGuRE 3.3 Equai variances of yvalues. Ficure 3.4 Unequal variances of y values,

FicURE 3.5 Normal distribution
of yvalues for a given xvalue.

2. The variance of the y values must be the same for every x value, If this
assumption is met, then the graph of y versus x will appear as in Figure 3.3. If
the variance of y differs across the range of the x, then the graph of y versus x

will appear as in Figure 3.4.

The estimated coefficients (slope and intercept) will be unbiased, but the usual
estimates of the variances of these coefficients will be biased. The result is that
we cannot calculate confidence intervals nor can we test the significance of the
regression line, We can, however, estimate the coefficients of the regression line
and calculate the goodness-of-fit. In this case, a technigue called “weighted
icast squares regression” should be used if confidence intervals are wanted.

3. Each observation (x,y) must be independent of all other observations. For
example, if we take a measurement of dbh and height of a tree at age 30 years

~and again when the tree is 50 years, the two sample observations are related

(i.e., they are not independent). In this case, if we were to use simple linear
regression, the estimated coefficients would be unbiased {as with the unequal
variances discussed above), and we could calculate how well the Lne fits the
data (goodness-of-fit). However, we could not calculate confidence intervals nor
test hypotheses, The confidence intervals would be narrower than expected. If

- confidence intervals were desired, the difference in the y variable between time

periods could be used rather than y itself. Similarly, the difference in the x
variable between time periods would be used as the independent variable.

4. The y values must be normally distributed for each x value. For a given
range of the x value (e.g., dbh from 15 to 20 cm), the plot of the y values should
appear as in Figure 3.5, '

The pattern in Figure 3.5 is calied the normal distribution because it occurs in
many natural situations. The majority of the y values are at the centre (mean
value) and a few are at the upper and at the lower ends. If the y values are not
normally distributed, confidence intervals and significance tests will be
inaccurate. For most forestry problems, the assumption of normal distribution is
met. The exception is when the y values are recorded as percentages, such as
percent of insect infestation. In this case, we can modify simple linear
regression by transforming the y values (this transformation is called the arcsine
transformation) and using simple linear regression for the transformed data.
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ESTIMATING THE SLOPE AND INTERCERT

FicURE 3.6 Plot of x versus v.

%
5. The x values must be measured without error. The assumption in _
regression is that the x values are fixed. If this is not true, then the estimates of
the coefficients and of their variances will be biased. The estimated regression
line, confidence intervals, and significance tests will all be inaccurate. For most
forestry applications, this assumption is met if measurements are taken
carefully,

6. The y values are selected randomly for each x value. Ideally, the x values
are fixed (Assumption 5) and for each fixed x value, a list of all possible y
values is made. A random selection of a sample of the y values is then obtained.
For most forestry applications, because this list is difficult to obtain, this
assumption is nsually not met and is commonly ignored.

If we take a sample set of data and plot the y values versus the x values we
obtain a graph like that shown in Figure 3.6. We would like to find the line
which best describes the relationship between x and y, One way that we could
do this is to guess where the line should be, and then add up the differences
between the observed y value and the y value from the regression line over all
sample points. If our guessed line is balanced, then the sum of the differences
(called error terms or residuals) will add up to zero; the negative error terms
will balance the positive exror terms. In fact, any line which goes through the

point described by % (the mean value for x) and ¥ (the mean value for y), will

have a sum of error terms equal to zero. The best line, then, cannot be based cn £
just a balanced line, ' A

The criterion used in linear least squares regression is that the sum of the

squared error terms is minimized. This will also result in a balanced line which

goes through the point defined by X and y. We could try various lines until we
find one which will give us this result. Alternatively, we can use calculus to find
a quick solution. ' '

‘We would like to find an estimate of the slope and of the y intercept, using the
sample data, which results in a minimum for the sum of squared error terms. In
calculus, if we have an equation, we can take the first derivative of the equation

- with respect to the unknown value, set the derivative to zero, and solve for the

unknown value which will be either a minimum or a maximum point. However,
in this case, we wish to solve for two unknown values. If we had two equations,
we could solve for these two unknowns.

To obtain two equaticns, we first identify the equanon for which we want to
find the minimum:

S = sum of squared ermror terms

=Ze£2=2(}’i-5’i)2 |
=Z(yi—(bo +b ><x‘-))2

where  y;and x; are the observed values for the sample;

. §; is the predicted value for the sample; §;=bg + by x x; _ PN
¢; is the difference between the observed value for y and the predicted A
- value from the regression line (residuaf). '
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N ' : We then take partial derivatives. Since we have two unknown values, by and by,
we will have two paru'al derivatives as follows:

& 250 xx)

a= -2 %, (%~ & 'bl xx;)

I we set these equations to zero, solve for by in the first equation, and for by in
the second equation, after some rearranging we obtain:

bo=y-bixx

ST
P SsX
Zi‘_z__(znf)

where - ¥ is the mean of y for the sample;
X is the mean of x for the sample.

| 'SPXY is the sam of product_XY, and is calculated as:

x; ¥:
SPXY = 3 (x; = %)(3:=5)= X 23~ b )n(z ]
i\ Ji ' : SSX is the sum of squares X, and is calculated as:
SSX=Z(:¢,~ Zx [Zx)

'SPXY can be a negative or a positive value. SSX must be positive because the
differences are squared. The second form of the equation for SPXY and for S5X
is used more commonly than the first because the calculations are easier.

By inputting the x and y values from the sample data, we will find the values for
bg and by which will result in minimizing the sum of squared differences.

The following example shows the fit of an equation which is used 1o estimate
height of a tree given the dbh of that tree, Ten trees were measured and used to
find an estimate of the slope and mtercept of this equation. These values are
shown in Table 3.1.

To verify the assumptions of simple linear regression, a plot of the y values
versus the predicted x values, as shown in Figure 3.7, is needed.

The relationship between dbh and height for this limited range of data appears
to be linear (Note: If we had data for the lower dbh values, the relationship may
appear to be not Linear). Because we have only ten samples, it is difficult to see
whether the variance of height is the same for every dbh. There does not seem
to be any reason to disagree with this assumpfion for these ten points, however,
P _ The remaining three assumptions will also be considered to be met, because the
) o measurement of dbh and height for one sample tree can be considered indepen-
. - dent of the measurement of dbh and height on other sample trees, dbh can be
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TasLE 3.1 Measurements of “Tree dbh {cm) Height (m) x.2 y,2 XiYi
dbh and Height of Ten Trees No. (x)) {y3)
1 23.7 16.20 561.7 262.44 383.94
2 24.7 16.45 610.1 270.60 406.32
3 17.9 14.90 320.4 222,01 266.71
4 20.5 " 14.43 420.2 208.22 205.82
5 16.5 13.93- 2722 194.04 229.84
6 15.8 13.90 2496 193.21 219.62
7 12.8 13.10 163.8 171.61 - 167.868
B8 13.7 13.60 187.7 184.96 186.32
9 12.6 11.82 156.2 139.71 147.75
10 _ 11.4 9.55 130.0 91.20 108.87
Totals 169.5 ~ 137.88 3071.9 1938.00 2412.87
169.5 137.88
= =17.0; 7= =13.79
**0 T
SPXY = 2412.87-109-3X137.88 _ 5 ¢4

Ficuge 3.7 Plot of dbh_(x) Versus
height (). - - '

2
SSX=307L9- -(1—6-—?-0—5)—- = 198,88

b =280 _g.3811

by =13.79-(0.3811x17.0) = 7.311

.

st
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GOODNESS-OF-Fit

considered to be measured without error (as long as the measurements were
taken with care), and the distribution of height for any dbh can be considered

- normal. We can then say that the estimated regression line is unbiased, and we

can calculate confidence intervals and test hypotheses for this regression line.

Once we'havc found the line which best describes the relationship between y
and x, we can also find out how well the line fits the sample data (goodness-of-

- fit). There are two measures which are commonly used to describe the

goodness-of-fit. These are the coefficient of determination and the standard
error of the estimate.

The coefficient of determination (72 value) represents the amount of variation of
the y observations accounted for by the regression. The calculation of »2 is as
follows:

2 _SSR_.SSE

SSY =~ SSY
where SSY is the tota? sum of squares, or the sum of squares of y, calculated as:

ssY-3 -5 - T -2

SSE is the sum of squares for the error. This is the term that we are minimizing.

" 8SE is calculated as follows:

SSE=Y (3 -5)* =1-$sR
S5R is calculated as follows
SSR=Y (5-7) =4 xSPXY

Notice that SSY, SSE, and SSR must all be positive, because we are summing
squared differences. As with SPXY and $SX, the second form of these
equations is most commonly vsed because the calculations are simpler.

Once SSR and SSY are calculated, the r? value can be found. For the height-
dbh equation given in the example, the r2 value is:

(137.88)
10

58Y =1938.0- =36.91

SSR =0.3811x75.80=28.89

The total sum of squares (SSY) is a sum of the SSR and the SSE. As SSE
decreases, SSR rises, and so the r value rises. Since SSR can never be negative
and can never be greater than the SSY value, the r? valne must be between zero
and one. A higher r? value indicates that a high proportion of the variation in y
is accounted by the regression.

- The standard error of the estimate gives us an indication of how far the

observations are spread around the regression line. Approximately 68% of the
sample observations will be within one standard error of the estimate on either
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Ficure 3.8 Standdard emor lines
around the regression line.

CONFIDENCE INTERVALS FOR
THE COEFFICIENTS AND
THE PREDICTED VALUES

side of the regression line. Approximately 95% of the sample observations will
be within two standard errors from the regression line, as shown in Figure 3.8.

The standard error of the estimate is calculated as follows:

SEg = VMSE = | o8

n—2

The term n-2 represents the degrees of freedom. Two degrees of freedom are
lost from the n degrees of freedom from the sampie points, because the intercept
and the slope are fixed values for the fitted regression line.

For the height-dbh example, the standard error of the estimate is:
SSE=8SY-SSR

=36.91-28.89=8.02

SEg =1’-3'—32-=1.00

Thus, approximately 68% of our sample cbservations are within 1.00 metres
above or below the height~dbh regression line, Approximately 95% of our
sample observations are within 2.00 metres above or below the regression line.

The estimated slope and intercept were based on sample data. Because the
sample set is only a subset of the population (all of the observations that we
could measure), we would like to know how likely it is that if we took another
sample set, we would obtain similar estimates of the slope and intercept. If we
could repeat the sampling, taking n samples each time, for a large enough value
of n (greater than 30 or s0), we would find that the values that we obtained for
the slope would have a frequency distribution as shown in Figure 3.9.

P

T
g

5, 7
p
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Ficure 3.9 Distribution of esti-
mated slope values calcu-
lated from samples of size n.

(

Most of the values would be similar 1o the true population parameter for the

slope (if we could measure all samples and calculate the slope), and the mean of

all of the slope values that we would calculate would be equal to the population
valug for the slope. We would see a similar pattern for the estimated intercept
values,

Because of the tendency of the values that we might calculate for the intercept

-and for the slope to be normally distributed, we can calculate confidence

intervals for the true population intercept and slope using the information from
only one sample set. We generally use the (-distribution instead of the normat
distribution, because this results in wider, therefore more conservative,
confidence intervals. Also, the ¢-distribution is used when the standard
deviations are not known. Since we do not know the true standard deviations of
the slope and intercept estimates, these must be estimated from the sample data.

For the intercept value, the confidence interval is calculated as follows:
bo 21 25 as2)Shy

which is simply the estimated intercept plus or minus the value in the ¢ table (for
n-2 degrees of freedom, and /—o/2 probability, where o is the significance level)
fimes the standard deviation of the estimated intercept. The standard deviation
of the intercept (how much the estimates would be expected to vary for different

sample sets) is calcnlated as follows:

=55 (1| 22 |
bo = ""E\n | SSX
Using the height-dbh example, a 95% confidence interval for the intercept is:

1 30719
=1.00,/| — — =124
Sba (10 ) x( 198.88)
bo =7.31 1; t3,0-975 =2, 306

7.311£2.306 X 1.24 = (4.45,10.17)

For the estimaied slope coefficient, the confidence interval can be calculated as
follows: '

b2ty 21-a/2)%

where s, is the standard deviation of the estimated slope coefficient and is
calculated as: '

’ 1
sb1=SEE -S-§f :

For the height-dbh equation, the 95% confidence interval for B, is:

1
198.88

b1 =0.3811; 3 0.075 =2.306
'0.381142.306x0.071 = (0.217, 0.545)

8p = 1.00 =0.071
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Ficure 3.10 Confidence bands
along the regression line.

- 95% confidence intervals), for the mean value of y all along the x-axis, the g/"}

A confidence interval can also be calculated for the mean predicted value of y S
for a given value of x. As with the estimated slope and intercept values, the

distribution of the predicted y values at any point on the x-axis follows a normal

distribution. That is, if we were to repeat the sampling over and over again, the

distribution of the predicted y values for any point on the x-axis wounld be a bell-

shaped, normat distribution. We can therefore use the information from a single

sample set to calculate a confidence interval for the true value of the population

regression line (if we had measured all observations and fitted the regression

line). The calculation for the mean predicted y value, given a particular x value

is as follows:

Hxot {n-2.1-02)%5)x,
where  3|x, is the value of y given that x is fixed at the value xp; -
Fxo =bo + by X xp.

The standard deviation of the value of y given that x is fixed at the value x; is
represented by Si']z . This is calculated as:
. .

'—SE. (l)JfQ:E)_Z_
Sixo“_- E\\%/)" ssx

If we calculate (1-o) % confidence intervals (e.g., if « is 0.05, then we calculate

This does not appear the same as Figure 3.8. Figure 3.8 gives only a range for
the sample observations, whereas Figure 3.10 gives the confidence intervals for

the true value of the regression line. Because the regression line must pass

through the point defined by ¥ and ¥, the regression is more fixed at this point.

There is still some variation in the level of the line, because we have the sample

mean of y and of x, not the population mean values. However, as we go farther

away from this central point on the regression line, the confidence intervals P
become wider. The regression line can vary not only in level but also in slope if %
we go away from the mean values (Figure 3.11).

S
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Ficure 3.11 Variability of
estimated regression line.

* SIGNIFICANCE OF THE REGRESSION

Ty

R

For the height-dbh regression line, we can calculate a 95% confidence interval
for the mean predicted y value as shown below for a dbh of 20.0 cm (xg = 20.0).

_ 1Y, (20.0-17.0% _
i =100 )+ IO 5

5""0 (height at dbh = 20)=7.311+0.3811x20.0= 14.93
13’0_975 = 2.3%

14.93+2.306x0.3811 = (14.05,15.81)
The mean predicted height for a dbh of 20 cm will be between 14.05 to 15.81

metres for 95% of all possible samples of size n that we might take from the
population. '

The significance of the regression is a term which means, “Is the relationship of
x and y important?” Basically, if the true slope coefficient is zero (B = 0), then
the line showing the relationship between x and y is a horizontal line. This means
that y does not change, no matter what the x value is, and the relationship is not
significant. In other words, there is no statistical relationship between x and y.

To test whether or not a regression line is significant, we test whether or not the
true slope coefficient is zero, as in the following hypothesis statement.

Ho: Bl =0

Hyi: B0

There are several ways in which we can test this hypothesis statement. First, we

can calculate a confidence interval for B,. If the confidence interval does not

include zero, the null hypothesis is rejected, the true slope coefficient is likely

not zero, and the regression is significant. For the height-dbh regression line, the

confidence interval for B; was (0.217, 0.545). Since this does not include zero,
the regression is significant.

~Another test which we can perform is the F-test. This tests the same hypothesis
again. The test statistic must first be calculated:

SSR
FoMSR (T)
MSE [ SSE J
(n-2)

This is then compared to the critical value from an F-distribution table for one

~ degree of freedom for the numerator (across the top of most tables), n-2 degrees
of freedom for the denominator (down the side of most tables), and (1-x)
probability, where « is the significance level, If the test statistic is larger than the
tabular value, we reject the null hypothesis (Hp) and conclude that the
regression is significant (true slope likely not zero). For the height-dbh
regression line, the test statistic for the F-test is:

_ rp=w=m_79' :

)
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TESTNG HYPOTHESIS STATEMENTS
CONCERNING THE REGRESSION
COEFFICIENT

WEIGHTED LEAST SQUARES AND
CONDITIONAL REGRESSION

Since the tabular value for the F distribution with 1 and 8 degrees of freedom
and 95% probability (Fi g 095} is 5.32, the test statistic is greater than critical
value and the regression is significant. Notice that we obtained the same results

~ by calculating the confidence interval for B;.

Another way of testing significance is to calculate the correlation coefficient
(r value). This is found by taking the square root of the rZ value. The r value is
then compared to critical values from an r-distribution table. If the r value is
greater than the critical value, the regression is significant.

Finally, the significance of the regression can be found by usmg a t-test. The
test statistic for the z-test is as follows:

(=)

. St .

The hypothesized value, c, in this case is zero. The critical value is the value
from the r-distribution for #-2 degrees of freedom and (1-o/2) probability. If the

¢ statistic calculated is greater than the critical value from the ¢ table, or is less
than the negative of the critical ¢ value, the regression is significant.

=

The t-test described in the previous section may be used to test other hypothesis
statements about the slope by putting in another value for ¢. The resulting test
statistic would be again compared to the critical value from the r-distribution
table for n-2 degrees of freedom and (1-o/2) probability. The hypothesis would
be rejected if the ¢ statistic were greater than the critical ¢ value.

Similarly the t-test could be used to test the intercept by using the following test
staistic:
_{o=q)
Sbo

This could be used to test if the intercept were zero, for example (¢ = 0). The ¢
statistic would be compared to the critical ¢ value (as defined above for testing
the slope). If the test statistic is greater than the critical 7 value, or is less than
the negative of the critical 7 value, the null hypothesis (Hy: By = ¢) would be
rejected.

If the assumption that the variance of the y values is constant for every x value

{is not met, we can use simple linear regression to obtain estimates of the slope

and intercept. However, we cannot calculate confidence intervals for the true
slope and intercept, nor can we test whether or not the regression is significant.
We need an alternative technique to fit the regression line in this case. The
alternative that we will discuss is calied weighted least squares.

Weighted least squares is like simple linear regression, except that we transform
the x and y values, and calculate coefficients and confidence intervals for the
transformed data. For forestry applications, often the variance of the y values
increases with the value of the x values, as shown in Figures 3.12a and 3.12b.

s
\-r«t g

o,

-’
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Ficure 3.12(c) .Vcricnc.e of y propertional to x. Fieuse 3.12(b) Variance of y proportional fo x2.

The weighted least squares procedure in this case, is to divide the x and y values
by the square root of x if the variance looks like Figure 3.12a, and by x if the
variance looks like Figure 3,12b, Once the x and y values are ransformed, we
proceed with the simple linear regression using the transformed data. An
example of this technique will be shown in the “Estimating Total Tree Volume”
section of this lesson.

'With conditioned regression, we have some additional information about the

slope or the intercept, and we would like to restrict the estimates of the slope or
intercept based on this information. A common restriction is that the intercept

'should be zero. This means that when x is zero, y should also be zero, However,

a conditioning of the intercept should be considered only if the confidence
interval for the intercept from the unconditioned regression contains the fixed
value. '

The simple linear regression technique is modified slightly for conditioned
regression through a y-intercept of zero.

n-a

by =0.0

2 _SSR (cond.) _ B XY xy;
r* (cond.)= SSY (cond.) 2 y?

SSE (cond.)=SSY (cond.)—SSR (cond.) = 337 — & X Y. %:¥;

SEg (bond,) - m; SS?n(fci;);d_)
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TaBLE 3.2 Measurements of
dbh and height of ten trees,
modified for conditioned
regression,

Since we are assuming that the true intercept (8p) is zero, we know what it is

and therefore we do not calculate a confidence interval. For £, the true slope,
the confidence interval is calculated as:

byt ) 1ear2)Sh

where s, —SEE (cond} ‘Z 3

The degrees of freedom are n—1 for the conditioned regression because only the
slope is being estimated (degrees of freedom are n-2 when the slope and
intercept are estimated).

An an example for the height-dbh regression, we might expect that the y

" intercept would be 1.3 m since the height of the tree is 1.3 m when the dbh is

zero. If we fix the intercept at 1.3 metres, we obtain:
height; =1.3+B, xdbh; +¢;

{height; —1.3)} =B, xdbh; +¢;

To obtain an estimate of the slope using the sample data, we let y equal the
height minus 1.3, and we condition the regression so that the intercept for this
reduced height is zero, The mformation for the conditioned regression is shown
in Table 3.2. :

Tree  dbh{cm) Height-13m ¢ ¥ xy;
No. (x) S 7 I
1 237 14.90 561.7 220.01 353.13
2 24.7 15.15 610.1 229.52 a74.20
3 17.9 13.60 3204 184.96 243.44
4 20.5 1313 4202 172.40 260.16
5 165 1263 2722 159.52 208.40
8 15.8 12.60 2496 158.76 199.08
7 12.8 11.80 163.8 139.24 151.04
8 13.7 12.30 187.7 151.29 168.51
9 125 10.52 156.2 110.67 131.50
10 11.4 8.25 130.0 68.06 94.05
“Totals 169.5 124.88 30719 1594.43 2192.51
_ 169:5 . 124.88
= =17.0; j= 12.49
TR ANET)
2192.51
= =0.7137; by =0.0
5 =379 b
/2 (cond.) = 0.7137x2192.51 _ 156479 _ o oo, 0

1593.43  1594.43

SEg (cond.)= J 1594.43;

1564.79 =J29.64 —1815
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The fitted regression equation is as follows:
(height; —1.3) = 0.0+ 0.7137 x dbh;

height; = 1.3+0.7137 x dbh;

The r2 value for the conditioned regression cannot be compared to the r2 value
for the unconditioned regression. The SEg, value can be compared, and is higher

. for the conditioned regression, because we are not allowing the regression line

to be as flexible. Also, the estimated slope is higher for the conditioned
regression because we are forcing the regression line through 1.3 when the x
value is zero. For the unconditioned regression, the confidence interval for the
intercept was 3,76 to 10.86, values higher than 1.3. We have, therefore, “tipped”
the regression line up by introducing a fixed intercept at a value smaller than the
lower limit of the confidence interval, causing an increase in the estimated
slope. We have used this height and dbh data to illustrate the procedures for
conditioned regression. However, the conditioning of this regression of height
versus dbh is not justified because the confidence interval for the intercept did
not include 1.3.

MEASUREMENT OF TREE FORM

N,
\Lw"g

FOrRM FACTORS

FORM QUOTIENT

The height and dbh measurement of the tree define the tree size, whereas form
measures provide more information about tree shape. Tree form varies by
species, and also by age, dbh, height, and stand attributes such as density. The
common form measurements can be divided into two types: form factors and
form quotients.

A form factor is a ratio of the volume of the tree in comparison to the volume of
a standard shape. For instance, we may use the volume of a cylinder with the

- same area at the base and height as a reference point, as follows:

__volume of the ree
volume of a cylinder

This particular form factor is called the cylindrical form factor. This
measurcment is useful as a form measurement, but it is difficult to obtain. We
must have an accurate measurement of the tree’s volume, either by using a
xylometer or, as described in Lesson 2, by dividing the tree into sections and
obtaining measurements of each section as described in Lesson 2. The second
method for measurement described in Lesson 2 - assuming one standard shape

for the entire tree stem — would not be accurate enough for a form factor,

~ The use of a form quotient is pei'haps a more practical measurement of form.

Basically a form quotient is a ratio (or it may be expressed as a percent) of an
upper-stem diameter measurement to dbh. The form quotient, expressed as a
ratio, is always less than or equal 10 one. A higher ratio means a lower rate of
stem taper. Generally, trees grown in the open have a higher rate of taper than
trees grown in the forest for a given spec1es Several types of form quotient
have been developed.
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In 1899, Schiffel developed the normal form quotient which is defined as: S

_ diam'etero_b' at half the tree height
% dbh,

st

- The problem with this measure of form is that if the tree is only 2.6 metres in

height, the two diameters are measured at the same point on the tree stem. The
differences in form may be due to a difference in tree height rather than in tree
form. o

The absolute form quotient was developed by Jonson in 1910. This measure is
defined as: _ ' : :

' _ diameter,,,, at one - half the height above breast height

- dbh, p, 1

9a

The problem with this measure of fonn is that it varies with a given diameter- -
height combination within a given species, and, therefore, differences in the

"absolute form quotient may indicate differences in tree size and form rather than
~ simply differences in tree form.,

A more commonly used measure of form is the Girard form class. This is
defined as:

_ diameter; ;, at top of the first 16.0 foot log

fe dbho.b.

" The top of the first log was considered to be 16.0 feet plus a (.3 foot trim £ \}

allowance plus a 1.0 foot stump. The diameter i.b, was therefore taken at 17.3 N
feet above ground, This measure was considered to be independent of species

except that some allowances were made for excessive butt swell. The

advantages to this measure of form are: the top of the first log is close enough to

the ground to measure diameter at this point accurately (using telescoping

" calipers or a relascope); bark thickness is taken into account; and the reference
diameter (dbh, ) is near enough to the ground 1o reflect bust swell.

ESTIMATION OF
TOTAL TREE VOLUME

LocAL VoluME FUNCTIONS

The volume of the main stem, total tree volume, can be estimated from easily
measured tree atiributes. The most commonly used attributes are dbh, height
and form. These estimation equations are called Volume Equations or Volume
Functions., :

Volume functions which are based on a measurement of dbh alone are called
local volume functions. The assumptions of the local volume equation
approach is that for a given diameter of a species (or a group of similar species),
the height will be relatively constant. Since this assumption is met only if the
trees occupy a small area of land, the term *“local” is used. The assumption is

* not met for large land bases, particularly if there are great changes in elevation o

and in latitude, _ _ _ o
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g\ } . . Commonly used local volume equations include:

2, Volume; =B +B, X dbh; + B, xdbh? +¢;
3. Volume; = By +B, xdbh? +g;

4. Volume; = fi; X c‘.lbhi-32 XE;

The first equation describes a linear relationship between volume and diameter.
Since volume is more closely related to area at breast height {basal area), the
relationship between volume and dbh is more likely a curve (1.e., basal arca =
7 x dbh?). This equation would apply only to a limited range of diameters, as

~ shown in Figure 3.13. In this figure, the equation would apply to dbh values
from zero to 40.0 cm,

The second equation is a multiple linear regression equation (more than one
independent variable), which describes a parabola (Figure 3.14).

Fisure 3.13 Linear relationship of volume with Ficure 3.14 Parabolic equation for volume with
cibh for a limited range of DBH values. dbh., '

This equation more closely resembles the relationship between dbh and volume,
until the maximum point when the y value begins to decrease. This would be
unreasonable for estimating volume from dbh if we used the function beyond
the maximum point of the parabola.

The third function defines a linear relationship between volume and dbh
squared. Because volume and basal area are linearly related and dbh squared

- times Tt equals basal area, we would expect this function to be a realistic
representation of the volume-dbh relationship,

The fourth function is a curvilinear relationship. The function can be trans-
formed using logarithms to be a linear relationship.

logyo (Volume; )} =1og; (B)) + B, Xlog;o{dbh;) + logyo(g;)

‘% The coefficients for this transformed function can be found using simple linear
o regression, '

P
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STANDARD VOLUME FUNCTIONS

Standard volume functions relate volume to both dbh and height. In Canada,
these are the most frequently used total tree volume functions. Because height is
included in the equation, it can be used for a larger land area for a given species
(or group of related species). Commonly used functions include:

1, Volume; = By + B, x dbh? x height; +&;
2. Volume; =B, x dbh? x height; +;

3. Volume; = B, x dbh's2 X helghtﬂ3

The first equation describes a linear relationship between volume and dbh
squared times height. Since dbh squared times height is similar to the equation
used to calculate the volume of the standard shapes {e.g., volume of a cone is

= x dbh? x height /3), this equation closely describes the relationship between
volume and dbh with height. Also, the equation can be fitted using simple linear
regression. However, the variance of volume for a given dbh? times height
varies, so the assumptions of simple linear regression are not met. A weighted
least squares regression technigue is required to fit this volume function.

The second equation is the same as the first, except that the intercept has been
set to zero, This is logical in that when height is zero, dbh? times height would
also be zero, and thus volume should be zero. When dbh is zero, dbh? times
height would also be zero, and volume should be close to zero; there may be a
small volume because the dbh is at 1.3 metres above ground but volume would
be negligible, This function would again be fitted using weighted least squares
regression because the variance in volume would likely vary over the range of
the x variable (dbh? times height). Also, the regression would have to be
conditioned to have a zero intercept.

The third equation is a curvilinear model. Logarithmic transformations can be
used to obtain a linear model,

logo(Volume;) = log;, + Bz x log;o(dbh; ) + Bs X logo (height; } +log;o(€;)

This model can be fitted using multiple linear regression, unweighted. The
unequal variance of volume is usually removed by the logarithmic transfor-

" mation of volume, Also, the ¥ intercept does not appear in the nonlinear

equation, so the y intercept is zero.

This last equauon, the curvilinear standard volume function, is used in B.C. to
estimate total tree volume, The equations are fitted from sample data, by species
and by region, and then a table of estimated volumes for given dbh and height
values is derived using the fitted equations. An example of a B.C. volume table
is given as Table 3.3.

From this table, we can find volume for any dbh and height value. For example,
for a dbh of 90 cm and a height of 54 m, the estimated tree volume is 10.16 m?

~ from the table.
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TaBLE 3.3 A section of g B.C. Ministry of Forests Volume Table (For mature Douglas-fir over 120 years, Forest Inventory
Zones A, B, C.; Logarithmic {base 10) equation for whole stem volume ks given as: =4.348375 + 1.692440 log. dbh + 1.181970 log. helght.)

.D.B.H. HEIGHT IN METRES
{em) 48 51 54 57 60 63 66 69 7275 78 81 84 87 90
10
15
20
25
30
a5 1.79
40 224 241
45 273 234 314 33
50 327 351 376 400
55 884 412 441 A70 500 529 559 590
60 445 478 51 545 579 613 648 6.83
65 503 S47 585 624 663 702 742 782
70 577 620 664 708 752 7896 841 887 _
75 649 697 746 795 845 895 946 097
80 724 778 832 BB7 942 988 1055 1112 1169 1227 1285 1344 1403 1462 1522
85 802 862 922 983 1044 1106 1169 1232 1295 1359 1424 1489 1554 1620 16.86
90 884 049 1016 1083 1150 1219 1287 1357 1427 1497 1568 1640 1742 1785 1857
a5 968 1040 1113  11.86 1260 1335 1411 1487 1564 1641 1719 1797 1876 1855 2035

100 1056 1134 1214 12.94 13.75 14.56 1539 1622 1705 17.90 1875 1860 2046 2133 2220
105 147 1232 1318 14.05 14,93 15.82 1671 1761 1852 1944 2036 2129 2222 2316 24N
Ho 1241 1333 1426 15.20 16.15 7.1 18.08 1906 2004 2103 2203 2303 2404 2506 26.08
115 13.38 1437 1538 16.39 17.42 18.45 1948 2054 2160 2267 2375 2483 2592 2702 2812
120 1438 1545 1653 17.62 18.72 19.83 2055 2208 2322 2437 2552 2669 2786 2904 3023
125 1541 1655 1771 18.88 20.06 2125 2245 2366 2488 2611 2735 2860 29.85 31.12 3239
130 1646 1769 1882 2017 21.43 2.70 2399 2528 2659 27.90 29.22 30,56 3190 3325 3461
135 1785 1885 2017 2150 22.85 24.20 2557 2685 - 2834 2974 31,15 3257 3400 3544 3689
140 1866 2005 2145 22.87 24.30 25.74 27.19 2866 3014 31863 33.13 3464 3616 3768 3924
145 1981 2128 2276 2427 2578 27 28.86 3041 3198 33.56 3516 3676 3838 4000 4164
150 2088 2253 . 2411 2570 - 2731 28493 3056 3221 3387 3555 3723 3883 4064 4236 4409
155 2217 2382 2548 27147 28.86 3058 3231 3405 3580 3I757 3938 4114 4285 4478 4661
160 23.40 26113 2689 28.67 30.46 3227 3403 3593 3778 3965 41,53 4342 4533 4725 48.18
165 2465 2648 2833 30.20 32.09 3399 3501 3785 23880 4177 4375 4575 4776 4978 5181
170 2592 2785 29.80 31.76 33.75 36575 3777 3981 4186 4383 4602 4812 5023 5236 54.50
175 2723 2825 329 33.36 35.44 3755 39867 44181 4387 4614 4833 5054 5276 54980 5724

180 3068 3282 3499 3718 3038 41861 4385 4612 4840 5069 53.00 5533 5768 60.03
185 3213 3438 3665 38.94 4125 4353 4583 4830 5069 5310 5552 5796 6041 6288
190 3362 3597 36.34 40.74 4316 4560 4806 5053 53.03 5555 5808 6063 6320 6579
195 3513 3758 40.06 4257 4510 4765 5022 5281 - 5542 5805 6069 6336 6604 6374
200 36.67 3923 41.82 44.43 47.07 4973 5241 5512 5784 6059 6335 6613 6893 7175
205 4633 4908 5185 5465 5747 6031 63.17 6605 6896 7188 7481
210 48.26 5112 5401 5653 5986 6282 6580 6880 71.83 7487 7793
218 50.22 5320 5621 5924 6220 6537 6848 7160 7474 7791 8109
220 §2.21 §5.31 5844 6159 6477 6797 V119 7444 7771 8100 843
225 54.23 5745 6070 6388 6728 7060 /395 7733 8072 8414 8758
230 ’ 56.20 5963 6300 6640 6983 73.28 7676 8026 8378 8733 9050
- 235 58.38 61.84 6534 6886 7241 7599 7960 8323 8689 9057 9427
240 6049 64.08 67.71 7136 7504 7875 8249 8625 90.04 0385 9760
245 62.64 66.36 7011 7389 7771 B1S5S 8542 8931 93.24 9718 101.16
250 6482 68.67 7255 7646 8041 8438 8835 9242 9648 10057 10468
TABLE SHOWS TOTAL VOLUME OF ENTIRE STEM, INSIDE BARK, INCLUDING STUMP AND TOP, WITHOUT ALLOWANCE FOR DEFECT, TRIM OR BREAKAGE
BASED ON 603 TREES STANDARD ERROR OF ESTIMATED VOLUME FOR SINGLE TREES: +0OR 123 PERCENT PAGE20OF 2

Form Cuass VOLUME EQuAnions — Form class volume equations relate volume to dbh, height, and form. A measure
' of form may be included in the equation, or alternatively, the sample data may
be separated by form, and a standard volume equation fitted for each sample set.
The fitted equations are then nsed 1o create Form Class Volume Tables.
Generally, these tables show volume for a given height and dbh class (like the
B.C. volume tables), but a different table is given for each Form Class. These
Form Class Volume Tables are not often used in Canada, because form is
difficult to measure, and often form does not contribute much to the regression
 fit. Instead, sample data are often separated by species and by land region, to
account for differences in tree form, and then standard volume equations are
fitted to each set of data.
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PHOTO VOLUME EQUATIONS

FirminG VolME EQuATIONS

TasLe 3.4 Measurements of
dbh, height and volume of
twelve trees.

Instead of estimating volume from ground measurements, we could also éstimate

‘volume from measurements taken on aerial photographs. For example, we may

fit the following equation.

Volume; =, + By X height; + By xcrown width,-I +¢€;

“'We will discuss how to take measurements on photographs later in the course,

and describe how photo volume functions can be obtained using these estimates.
Generally, these equations are not as accurate as equauons derived solely from
ground measurcments.

A fitted volume equation is needed so that an estimate of volume can be
obtained from simpie tree measurements. In order to fit the volume equation,
measurements of volume and other attributes of interest must be obtained from

_sample trees. A rule of thumb is that at least 30 sample trees for a given species

in a given area are needed to fit a volume equation. Volume can be measured by
either using a xylometer, or by sectioning the tree and summing the volume for
the sections {see Lesson 2).

As an example of how we can fit a volume function, 12 sample trees were

felled, sectioned into short lengths and measured. The dbh and total height,

shown in Table 3.4, were recorded for each tree, since our intentions were to fit
the following standard volume function:

Volume; = By + By x dbhf x height; +¢;

_ The volume of each tree was calcunlated by summing the volumes of all

sections, using Smalian’s equation for the middle sections, the cylinder equation
for the stump section, and the cone equation for the top section. We can use the
information from the sample data to get a fitted equation, First, we will graph
the y values (volume) versus the x values (dbh? x height), to see if the
assumptions of simple linear regression are met (Figure 3.15).

Tree dbh o Vol.(m3)  dbhht ¥ b X
No. fem)  (m () ()
1 21.7 2028 05920  15560.63 0.3505 242133280 9212
2 182 13.65 02023 452142  0.0400 20443248 915
3 316 23.10 0.8580 23066.75 0.7362 - 532074752 19791
4 352 28.50 1.1410 3531283  1.3319 1248981376 40292
) 85 10.50 0.029 75863  0.0008 575512 22
6 10.1 10.90 0.0479 1111.91 0.0023 1236340 53
7 252 18.90 0.3966 1200225  0.1573 144053904 4760
8 162 14.95 0.1409 392347  0.0199 15393643 553
9 466 31.10 2.3947 67535.50 57346 4561043456 161727
10 412 20.90 1.8589 5075343 36058 2575910912 96376

-
-

M5 2330 0.9125 7283 0.83z7 769109504 25306
12 21 | 1990 02671 8030.79  0.0713 64633256 2147

TOTALS ' 8.3810 250318.94 12.8541 10173583360 361154
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Ficure 3.15 Graph of volume
(y) versus dbh? times height
0.

S

-,

S

‘The relationship between volume (y) and dbh” times height (x) appears to be
linear and ait other assumptions of simple linear regression appear to be met
except that the variance of the y values appears to be increasing proporticnally
“to x squared. This pattern of variance is common for this standard volume

function. Least squares regression can be used to find the estimated regression
line as follows:

y= % =0.7401; x.—.&gl?ﬂ=20859.91

361154  250318.94 x8.8810

by = 12 =0.000035521

2
10173583360 — (250%9-&2-—

by =0.7401 - 0.000035521 x 20859.91 = —0.000865

Notice that the values for the y variable, volume, are very small relative to the x
variable, dbh? times height. A practical hint for simplifying the calculations for
this regression is that we could relate volume to dbh? times height divided by
1000 instead of dbh? times height and use simple linear regression to fit this
alternative equation. In either case, because the variance of the y variable is not

' the same for every x value, we cannot calculate confidence intervals in the usual

manner. Instead, we could used weighted least squares regression. First, we will
transform the equation by dividing by the x value (dbh? times height).
o
Volume; Bo By x(dbh,- xhe:ghr,,-)_ £
2 it 1 (2 e hetatr ) 2 ot T
(abb? x height;) ~(abhf xheight;)  (dbh} x height;)  (dbhf x height;
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TasLe 3.5 Transformed informa-
tion for weighted regression
taken from ¢ sample of
twelve trees.

This simplifies to:

Yi=Bpx

where y; =

1
(avh? x heighr, }

volume;
(dbh? x height;

+Py+e;

) ‘and €] is the weighted error term.

‘We can then use simple linear regreésion to find estimates of By and B; for this

" weighted equation. Notice that 8 is now a slope (multiptied by 1 over dbh?

times height) which we will call By’ and B, is now an intercept value for the
transformed regression which we will call 8,". The transformed sample
information for the weighted regressions are in Table 3.5, (Note: For display
purposes, all values in the table have been multiplied by 10%)

Tree X ¥ X Xy;
No. '
1 0.3804 0.8426 0.00001447 G.00004130 (0.00002449
2 0.4474 2.2212 0.00002002 0.00048915 0.00009857
3 03720 0.4335 0.00001384 0.00001879 0.00001613
4 0.3231 0.2832 0.00001044 0.00000802 0.00000915
5 0,3836 13.1817 0.00001471 0.01737582 0.00050584
_ 6 0.4308  8.9935 0.00001856 0.00808838 0.00038743
7 0.3304 0.8332 0.00001092 0.00006841 0.00002753
8 0.3591 2.5488 0.00001290 0.00064962 0.00009153
9 _ 0.3546 0.1481 0.00001257 O._0000021 9 0.00000525
10 03741 - 0.1970 0.00001400 0.00000388 0.00000737
" 0.3290 0.3606 0.00001083 0.00001300 0.00001186
12 03322 1.2438 0.00001104 0.00015471 0.00004132
SUM 4.4169 31.0778 0_.0001 6429 0.02691426 0.00122662
~Note: All values in the table have besn muitiplied by 10%.
D (4.41_60x104)(31.o778><104) &
SPXY = (0.00122621 x10 )- 5 : =8.272487x 10
2
4 (310778x10%) .
SSX =(0.026914260x10 )-— > =1.886567 %10
2
4 (4.4169x104) 10
SSY =(0.00016429 10 ) - = L714953x10
4
. x _
y=3AOXWT _ ;5 2075105
12
: —4
=207 5 se0816x 10~

12 -

.\-@;.,.,v-f’}‘

o
4
H s
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The estimates of By' and B4’ are:

pr o 8272487 x 107

by = —— = 4.384942x1073
1.886567 x 10™

b = (3.68075x1075) - (4.384942x 10} x(2.589816 x 1074)

= 3.567188x107°
The value for By’ is similar to By from the simple linear regression, and the value
for B,' is similar to B, from the simple linear regression, because simple linear

regression does give unbiased estimates of the coefficients even if the variances
of the y values are not equal.

However, unlike the simple linear regression fit, we can use the results from the
weighted regression to test hypothesis statements. For example, to test whether
the slope of the original regression is zero (regression is not significant), we use
the weighted least square results. First, we need the standard error of the estimate
for the weighted regression.

SSR = b x SPXY =(4.384942 x 102 (8.272487x109 ) = 3.627437 x 10°

_ SSE =S$SY -SSR =1.714953 x 10710 - 3.627437x 107! = 1.352209 x 1070

-10
SEg = VMSE = (SSF; - 1/1'3522050" N 3677239107
n—-

Since the slope of the original volume equation is now the intercept of the
weighted equation, we need to test the intercept of the weighted equation. The
standard deviation for the intercept of the weighted equation is as follows:

(1) 2z
")

\n Lssx

{ 13/ 0.02691426 x 104
\12)| "Leses67x10°

= 3.677239 x 10'-6\/

=1.267904 x 1076

The confidence interval for the intercept of the weighted regression is therefore
(for « = 0.05):

f10,0.975) = 2-228

3.567188 107 «(2.228) x{1.267904 x 10

= (3; 284698 x 1075, 3.849677 x 10-5)

Because zero is not in this confidence interval, we conclude that the slope of the
original volume equation is not zero, and that the regression is significant.

If the variance of the y values is not proportional to the x values squared, a different
transformation is needed than that shown for this volume example. If a different
transformation is needed, multiple linear regression is needed to fit the equation.
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ESTIMATING MERCHANTABLE
VOLUME

Merchantable volume can be estimated directly by changing the “Volume;” in
the equations above, with “merch. volume,”, and then fitting the equation using

‘the merchantable volume for the sample trees as the y values. However, because

we often are interested in an estimate of total volume, and of merchantable
volume for several merchantable limits, merchantable tree volume is commonly
estimated by reducing the total tree volume by a factor.

‘We will call the first of these factors the merchantable ratio, defined as:

Merchantable Volume
Total Volume .

I we have an estimate of the merchantable ratio, and an estimate of the total
volume (using one of the functions described in the previous section of this
lesson), then we can obtain an estimate of merchantable volume as follows:

Est. Merch. Volume = Est. MR x Est. Total Volume

Merchantable ratio is a function of tree size (dbh and height) and also of the
merchantable limits. Common functions for estimating merchantable ratio are:

2
meich. height merch. height
1L MR; =B, + _— — =1 +g;
i =Po le( total height )i+ﬁ2x( total height )i i

"2, MR,-==60+|31x(%)i+52x(
(d.i.b.
\ dbh

2
merch. height
3. MR, =g +By x _“___jk) .
: i

) 48, x
), +P2 (1 total height

where  d.i.b. is the upper merchantable limit (diameter inside bark);
merch, height is the height from ground to the top merchantable limit.

These equations were developed by Honer (1964 and 1967). Other equations
include the Jower utilization limit (stump height) as an independent variable in
the equation.

Another factor used to estimate merchantable tree volume from total tree
volume is the reduction factor used in B.C. for quick estimates of merchantable
volume. :

Merch. Volume = Est. Total Volume x (1- reduction factor )
The total volume is found by using the B.C. Total Volume Functions as found in

the Volume Tables. The reduction factor is given for the loss in volume for the
stump and for the top utilization limits, as a percent, shown in Table 3.6.

y s {\‘

-

. 2
d.i.b. _ s
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Tagte 3.6 Merchantable Fac- - Diam. PERCENT REDUCTION TO BE MADE FOR LOSS AT THESE
tors for Douglas-fir, Forest . (cm) STUMP HEIGHTS ~ AND TOP DIAMETER LIMITS
Inventory Zone C class 30cm  45cm 10 cm 15 cm 20 cm
Constants used to derive whole . 250
- 10 50 6. S .
. stem volumes of fir (c:g_e range e e 80 260 70
121 to max years) In cubic metres 20 50 6.0 6.0 45.0 91.0
and factors which are applied to 25 40 6.0 3.0 ' 21.0 64.0
obtain  various  specified 30 4-3 5-2 f-g “5’-2 33-3
merchantable volumes (note ﬁ :jo ::u _ o 3.0 :1:°
diameter s meagsured at 1.3 45 3.0 5.0 30 7.0
metres). 50 3.0 50 20 50
{From Forest inventory Division, g g-g :-g :-g ;g
B.C. Forest Servlce. Victoria, B.C.. &5 30 40 0 20
1976.) 70 3.0 40 1.0
75 30 4.0 1.0
Logarithmic (base i0) equation ao 20 4.0 1.0
for whole stem volume is: - 85 20 40 10
log. Volume = ~4.348375 + ot 20 30 0
1.692440 log. diameter + 1.181970 100 20 30 10
|Qg_ he[ghf 105 20 3.0 1.0
: 110 20 30 1.0
: 115 2.0 3.0 ]
120 20 3.0
125 20 3.0
130 2.0 3.0
135 20 3.0
140 20 30
145 20 30
150 20 3.0
155 20 30
160 20 3.0
165 20 a0
170 20 a0
175 20 ao
180 20 30
185 20 20 0 0 0

Net merchantable free volume is defined as gross merchantabie volume less
the losses due to unusable wood. To estimate net merchantable volume, gross

‘merchantable volume is first estimated, then reduced to obtain net merchantable

volume.

Est, Net Merch. Volume = Est. Merch, Volume x (1~ 1oss ratio)

The loss ratio is often expressed as a percent. In B.C., there are three types of
percent losses used to obtain net merchantable volurne: percent decay, percent

. waste, and percent breakage (see Lesson 2).

In order to obtain estimates of these losses, sample tree data are needed, Trees
are selected, felled, and cut into sections. Each section is measured for diameter

and lengt_h so that the merchantable volume can be calculated for each tree. In
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addition, each section is scaled to obtain decay and waste percents for the tree
(see Lesson 4 on scaling). For breakage, the amount of volume lost due to
breakage is recorded for each tree. Usually, the dbh, height, and presence of
damage (conks, scars, broken top, disease and insect damage) are also recorded
for each tree. Once sample data showing merchantable volume, and decay,
waste, and breakage volumes for each tree are obtained, the estimation of
percent decay, percent waste and percent breakage can be performed.

A simple approach to estimating losses is to separate the sample data by
species, region, dbh, and risk group, and to calculate a mean percent decay,
percent waste, and percent breakage for each of these groups. These values then
become the estimated values which can be used to obtain net merchantable
volume. Risk group is defined as groups of trees having similar chance of
losses. For example, trees with conks are known to have some decay. Trees with
scars will likely have more of a chance of decay then trees with no damage
recorded.

Another approach 1o estimating losses is to fit equations to describe the percent
loss as a function of tree size, presence of damage, and other tree or stand
attribuies such as height, site indicators, density, and soil moisture). For
example, the following formula could be used to estimate percent decay losses.

Percent decay; =B +B; xdbh; +B, x height; + B4 x risk group; +¢;

In B.C., percent losses have been estimated by separating sample data by
species, region, risk groop, and maturity class, and then fitting the percent
decay, percent waste, and percent breakage each as a function of dbh. The
resuits of these fitted equations have been tabulated. An example of these tables
is given in Table 3.7. ' .

TAPER FUNCTIONS

FIGURE 3.16 The relationship
between atree’s radius and its
height is used to deﬁne taper.

Taper is defined as the change in diameter for the change in height. For a tree,
the taper generally appears as in Figure 3.16. This graph is much like the one
shown for the volume of solid of revolution in Lesson 2. In fact, in Lesson 2 we
said that if the equation which describes the relationship of radins with height
from the top of a shape down (in this case, the top of a tree to its stump) were
known, we could use integration to obtain the volume of a solid of revolution
(i.e., in this case the volume of the tree). Further, we said that we could obtain
volume for any subset of the height, This could be used to find the merchantable
volume of the tree, or to find the volume of each log of the tree. Also, if we
know the height at any point on the tree, we could solve for the radius, and
therefore for the diameter at that point. Conversely, if we knew the radius at any
point, we would solve for height.

Taper functions are used as estimates of the taper curve, and can therefore be
used to obtain total and merchantable tree volume, and volume of logs, as well
as estimates of diameter or of height at any point on the main stem of the tree.
Ideally, one taper function could replace several functions, particularly the total
and merchantable tree volume functions.

R 2,
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Taste 3.7 B.C. Ministry of Forests Table of Decay Waste and Breakage Percentage Reduction Factors
Used in Volume Computation of Standing Samples, for Douglas-fir, Age Range 121 to 251+

Diam. GROUP 1 GROUP 2 GROUP 3
Class Decay Waste Breakage Decay Waste Breakage Decay Waste Breakage
10 4 4 50.0
15 12 1.2 5.0 15 o 5.0 50.6 17.0 50
20 20 15 50 26 5.0 497 172 50
25 27 25 5.0 35 0 5.0 485 177 . 50
30 33 32 5.0 4.1 3 50 475 179 50
as 37 a3 50 4.5 ] 5.0 463 18.3 50
40 40 32 5.0 4.7 1.1 50 453 183 50
45 4. 28 5.0 42 1.4 50 443 183 5.0
- 50 4.0 24 50 46 15 50 432 18.3 50
85 38 18 50 42 15 5.0 42.0 185 5.0
60 38 1.0 50 38 1.4 5.0 410 182 50
65 3z 2 50 35 13 50 40.0 179 5.0
70 27 A 50 33 12 50 338 177 5.0
75 24 0 5.0 32 12 50 377 175 50
80 1.9 50 32 12 50 367 17.1 5.0
L 16 50 ‘ 358 169 5.0
20 1.4 50 346 165 50
a5 1.2 50 336 16.2 50
100 1.0 50 325 158 50
105 314 156 5.0
110 303 154 5.0
115 293 149 50
120 282 147 50
125 272 142 5.0
130 261 139 50
135 250 135 5.0

GROUP 1: Any living tree which (a) haé no indicators, or {b) has indicators in only ene of these categories: dead and/or broken tops, large rotten branches,
or frost cracks.
GROUP 2: Any living tree which {a) has indicators in only one of these categories: mistietoe, forks and’or crocks, or scars, or (b) has any combination of
indicator categories, but has no conks or blind conks.

. GROUP 3: Any living tree having conks or blind conks.

The problem in finding a taper function is that the equation describing tree

shape is much more complex than for standard shapes, such as a cone or
paraboloid. In fact, we really need three functions: one for the base of the tree,
one for the middle, and one for the top. The points where the shapes change are
called inflection points. We have several options in fitting taper functions.

1. We can ignore the differences in shapes and use one simple equation to
describe the tree. The result would be that the volumes from this simple
taper function would not be very accurate.

2. We can include the variation at the stump by using a more complex equation,
or by fitting two separate equations and conditioning them to join at the
lower inflection point. This would be more accurate than alternative 1, but
more difficult, particularly since the point on the tree where the shape
changes, the lower inflection point, is difficult to define.

3. We could include the three shapes by fitting three equations and conditioning
them to join at the two inflection points, or by using a detailed equation,
This would be the most accurate method.
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The problem with more complicated taper functions is that they often cannot be
integrated. The volume must be found by estimating the diameter at many -

~ heights along the tree stem, calculating volume for these small disks and
summing the disk volumnes to obtain tree volume (this process is called
iterationms), This requires much computer time, and some of the advantages of
the taper function over the total and merchantable tree volume functions are
lost. As computers increase in power and speed, however, this problem w1t11
complex taper functions becomes less of a concemn.

Below is an example of a simple taper function (by Kozak, Munro & Smith, 1969):

d? K?
aon? ~P1x (__ 1}' P [h—z_ 1} T
where  d;is the diameter inside bark at the point /; from the top of the tree;

h is the total tree height.

Instead of describing the taper by the radius at a point on the tre¢ stem, this
function describes the taper by the diameter at a point on the tree stem. The two
estimated slope values, b; and b5, can be found asing multiple linear regression,
Once the coefficients are estimated, we could calculate volume for the entire
tree by using calculus as in Lesson 2. First, we will rewrite the taper function:

' 2
d? = dbh? x by x(%—l)-wz x(i”—z— )
We can then define the calculation of area at any point on the tree stem by: L J
. & xn 5 ) K
=ax-t==xdbh? x| & x| L-1 b -
Arca=mx T3 x| by ( p +b, X i
The volume of the entire tree, from the ground where h; is zero, to the tip where h; is

equal to the tree height, is then found by: (Note h; replaced with x for the
integration)

Volume = jarca dx

h 2
£ x X
!debhz x(bl x[;—l)-f—bz x[}?——lndx
2

1'l: 2 X b 4
I h j-[ Xz—bl+bth—2—b2]dx

h

2 3

LI b x%—b, Xx+by xT-bZ X x

1
~la

0

dbh® B pyxhebyx by i
X X b1x2h b x +b2x3k2 by %

.r:- :4 .M:q A

x dbh? x (b, x-'f:-—bl X h+b, ><£-b2 xh)

xabhthx(bl ><—-+bx_2) I .
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The final equation can be used 10 find volume by entering the dbh, the total
height, and the estimated slopes, b; and b,. The fitted taper equation can also be
written to calculate height for a given diameter of the tree stem, and to calculate
merchantable volume. The fit of a single taper function therefore results in
equations for diameter at a height, height at a diameter, total volume, and
merchantable volume.
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'REVIEW/SELF-STUDY Do these questions before you go on to complete the Graded Assignment. These

iy,

:'//H

QUESTIONS questions are of value to check your understanding of the material before
: : progressing to the next lesson, as well as later review for the final examination.
Do not submit answers to the tutor.

1. What is the main difference between simple and multiple linear regression?
2. Why is simple linear regression also c_élled “least squares” regression?

-3. What are the six assumptions which must be met in order to use simple
linear regression? What are the effects if each of these assumptions is not
met?

4. Define coefficient of determination and standard error of the estimate.

5. Why do we calculate confidence intervals for the slope and for the
intercept?

6. Describe two ways 10 test whether the simple linear regression is
significant. If a regression is significant, what does this mean?

7.. Differentiate between form factor and form guotients,

8, What is the difference between a local volume function and a standard
volume function? When should a local volume function be used?

9. What independent variables are commonly used to estimate the
merchantable ratio and why?

10. How is net merchantable volume currently estimated in B.C.?

11. Describe the advantages and disadvantages of using a taper function to
estimate total and merchantable volume.
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()  Lesson 4
- INTRODUCTION
LessON OVERVIEW
LessON OBJECTIVES
£
L

LessoN READINGS

LESSON ASSIGNMENT

Mo

Pt

This lesson presents approaches to determining the volume and quality of logs.
Scaling is important because the volume and quality of logs harvested ulti-
mately determine the value of the stand which in turn influences the return
(stumpage} to the landowner (the Province in the case of public land). Scaling is
also an important component in assessing whether usable wood has been left on
the ground after harvesting has been completed (residue surveys). Scaling sys-
tems are specific to a particular jurisdiction {e.g., British Columbia). For this
reason, this lesson contains much information specific to British Columbia’s
scaling procedures. However, many of the principles remain the same in other
parts of the world. '

After completing this lesson and the assignment, you should be able:
1. to distinguish between the major scaling methods;

2. to scale a log using the B.C. Metric Scale;

3. to state the major factors that influence log grade;
4. to describe examples of each log grade, including in the examples each major
factor contributing to the grade. '

Avery and Burkhart (pages 53-95) provide an American perspective on the
topic of log scaling. If you are interested in more detail on scaling in British
Columbia, the Ministry of Forest’s Scaling Manual or the Forestry Handbook
Jor British Columbia may be borrowed from the Extension Library; the latter
book may be purchased from the UBC Bookstore. (See page vi for information
about obtaining items from the Extension Library.) We recommend you

~ complete this lesson before you read these books.

Answer the self-study questions at the end of this lesson before you complete
Graded Assignment #3 in Appendix A. Mail the Graded Assignment to your

tutor by the date indicated on your course schedule. Don’t forget to include a

pink assignment cover sheet. '
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SCALING

Wiy Loss Are MEASURED FOR
QUALITY AND QUANTITY

volume units

Scaling involves the measurement of log volumes. A component of scaling, log - L

- Historically, scaled volume was most often tecoided in units pertaining to the

grading, consists of assigning logs to particular quality classes. You will see as

.you work your way throngh this lesson that “art” as well as “science” are

involved in the techniques of scaling and grading. For this reason, the scaling
and grading procedures that have been developed in various jurisdictions (e.g.,
the province of British Columbia) differ. These procedures usually are based on
legislation specific to the jurisdiction. Individuals generally must be licensed in

_.order to carry out the procedures officially within a jurisdiction. Such individu-

als are called scalers.

Identification of the species and origin of logs are important components of
scaling. Species identification is generally made from bark and wood character-
istics. The origin of logs is generally indicated by a stamped symbol called a
timber mark. We will not discuss these aspects of scaling any further, although
scalers are required to have a detailed comprehension of them.

- In this lesson, we initially present some background on scaling methods in gen-

eral. We follow this with a detailed summary of stick and weight scaling proce-
dures practiced in British Columbia. Finally we provide a brief overview of the

. provincial grading procedures.

Timber is scaled and graded in order to determine its value. Land owners usu-

ally receive payment (called stumpage) from other individuals or companies £
for the right to harvest their timber, Stumpage systems often vary among juris-
dictions, and may vary among contractual agreements (tenure types) within a
jurisdiction. Almost all stumpage systems depend in part on the value of the
stand. Scaling and grading of logs after harvesting, and/or estimating log scale

P
.'r

. and grade from standing trees, is an important component of these stumpage

systems. Log value is also used for buying and selling logs, and sometimes for
payment of logging contractors.

Values are assigned to logs based upon measures of quantity and quality. Qual-
ity depends on criteria which affect the end use of the log. Some of these criteria
are described in the latter part of this lesson. Quantity can be measured in a
number of ways. The principle methods used over the years have included the
number of logs, their weight, and their volume. Number of logs, a simple mea-
surement, is not frequently used by itself because it does not reflect log size
which often has a major influence on value of a log. Weight and volume are
directly related to log size. It is easier to measure weight than volume, but the
relationship between weight and value can be confounded by the inclusion of
bark, mud, and ice, as well as varying moisture content of the wood. Hence,
volume is regarded as the most precise method for obtaining an indication of
quantity in scaling. In situtations where weight scaling is used, the weights are
frequently related to volume and quality through sampling. Samples should be
representative of specific species, for a given region and season. We discuss
how this procedure is applied in British Columbia later in this lesson.

common end product of the log—lumber. Volume of lumber is usually recorded - L.
in 2 nominal unit known as a board foot, which represents 2 volume of 12
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“STICK” SCALING

IN BRITISH COLUMBIA

THE SCALING STICK

Fisure 4.1 Drawing of a scaling
stick. Numbers on the scaling
stick face are reproduced in Fig-
ure 4.3.

 inches by 12 inches by 1 inch. Standardized procedures known as board foot

log rules were developed to relate measures of log length and diameters to a
volume in board feet. Numerous log rules were developed over the years, each
based on different assumptions of board sizes, saw widths (kerf) and board
length. Either diagrams or mathematical formulae were used in the derivation. It
is extremely rare that actual lumber output from a run of logs exactly matches
the predicted board foot scale, although some log rules are more accurate than
others. We do not discuss log rules in any more depth in this course.

The recent trend in log scaling in Canada is to use cubic volume units (m?).

‘These units have become popular principally for two reasons: the units are stan-
‘dardized and not dependent upon assumed sawing standards; and the units are

appropriate for other timber products {e.g., pulp and firewood). If you are inter-
ested in obtaining additional background about log rules, see Avery and
Burkhart (pages 45-52).

Calculating the volume of logs in cubic units has been covered in Lesson 2. For
scaling purposes, it is essential that the measurements required to obtain volume
for a given log be made quickly since often many logs are scaled at the same
time. This means that one of the sectional volume formulae you learned in Les-
son 2 (Smalian’s, Huber’s, or Newton’s formula) is generally used to convert

- measurements of length and diameter inside bark to volume. Of these three for-

mulae, Smalian’s is used most frequently since it requires only log length and
diameter inside bark at the ends of logs. Huber’s and Newton’s formulae both

. require diameter inside bark at the midpoint of the log. This is difficult to

measure if bark is present or if the logs are located in the interior of a pile.

Logs frequently are measured for diameter (or radius) using a scaling stick.
Scaling sticks do not differ much in basic design. However, numbers printed on
the face of the stick pertain to a specific log rule and differ among jurisdictions.
A drawing of the scaling stick used in British Columbia is given in Figure 4-1.
You will get a chance to work with a scaling stick during your on-campus labo-
ratory session. The main body is comprised of fibreglassed wood. The tine on
one end of the scaling stick is metal and the handle is cork. Common lengths are
one, one and a half, and two metres, not including the handle,

Three distinct sets of numbers are printed on the main body of the scaling stick.
These numbers are used to measure inside bark radius and, occasionally, length,
reducing length or radius measurements to reflect the amount of decay present
in the log, and calculating log volume. In order to understand what these numbers
represent, it is necessary to become familiar with British Columbia’s scaling
system. We introduce various elements of the system as this lesson proceeds.
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- MEASURING LOG RADIUS

~— Width ———~

Ficure 4.2 Measuremnents faken
on alog slab.

MEASURING Lo LENGTH

Log radius inside bark at both ends of 2 log is measured using the numbers
printed on the edge of the scaling stick. These numbers are divided into 2 cm
classes, numbered consecutively from 1 up to the maximum possible for the
length of stick. The scaler places the metal tine inside the bark at one side of the
log and lays the stick so that it passes by the log pith to the opposite side of the
log. A record is made of the class number in which the opposite edge of the log
(inside the bark) falls. Essentially this procedure consists of the scaler measur-
ing the diameter inside bark, but recording the radius. (Since the radius is one-
half of the diameter, labelling 2 cm classes in increments of 1 automatically
converts the diameter measured to 1 cm radius classes.) This is a much easier
way for the scaler to measure average radius than trying to measure it directly
because the pith seldom falls in the exact centre of a log. If the log is not circu-
lar in cross-section, two measurements are made at right angles to one another,
and the average is recorded.

Radius is recorded to the nearesi centimetre. On the scaling stick this means that

_ any reading which falls between the lines demarking a radial class is recorded

as that particular class. If the reading falls directly onto a line dividing classes,

_the reading is rounded to the nearest even-numbered class. For example, if a
-reading falls directly on the line dividing the 15 and 16 c¢m classes, 16 cm
.would be recorded; if the reading were to fall directly on the line dividing the 16
_and 17 cm classes, 16 cm would again be recorded.

Some special situations that may be encountered when measuring radius are

* butt flare and slabs. Butt flare (butt swell) is sometimes present in the butt logs

of certain trees. Some species (e.g., western redcedar) often have this flare. This
flare should not be included as part of the radius measurement at the bottom end
of a butt log because it would result in an overestimate of the volume. The
scaler should either measure the radius above the flare or estimate how much
the flare adds to the radius, and subtract that amourit before recording the
radius. '

~ Slabs are oécasionaliy found in a log pile. Radii are recorded for slabs as if they

were round logs. The scaler measures the slab width (defined as the distance
between points where 10 cm faces could be obtained) and depth (defined as the
maximum thickness of the slab) at each end of the log (see Figure 4.2). Each
radius is then estimated from:

Width + Depth
4

Radius Recorded =

The length of logs can be measured using either the scaling stick or a logger’s
tape. A logger’s tape is a metal measuring tape wound onto an open-edged
metal spool. There are claws on the zero end of the tape for attaching the tape to
one end of the log. The scaler needs simply to stretch the tape along the length
of the log to determine the length. If the scaling stick is used, it is laid repeat-
edly along the log until the compléte log length is covered. The scaler uses the
heel of the metal tine to mark the end of each stick length. The scale along the
narrow edge of the scaling stick used for measuring radius is used to measure
the length remaining (fractional length) when another complete stick length
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CALCULATING VOLUME

using Smallan’s formula

using the scalling stick for lengths
displayed on the stick

would extend past the end of the log. The class number on the stick edge will
give the fractional length in cm if it is multiplied by 2. (Recall that the class
widths are 2 cm.) The length of the log is then determined as:

Number of Stick Lengths x Length of Stick + Fractional Length

Of the two methods of measuring length, the logger’s tape is preferred because
it is less likely to produce errors.

Log lengths are always recorded in m to the nearest 0.2 m. Rounding is always
towards the nearest 0.2 m division. For example, a length of 8.09 m would be
recorded as 8.0 m; a length of 8.11 m would be recorded as 8.2 m. Borderline
lengths are always rounded down. For example, a length of 8.10 m would be
recorded as 8.0 m; a length of 8.3 m would be recorded as 8.2 m.

In British Columbsia, scaled volumes are determined in cubic meters (m®) and
recorded to three decimal places. Smalian’s formula is used to calculate vol-
ume from measurements of log radius at the top and bottom ends of the log, and

log length.

Let’s look at the volumé determination for a log of length 8.0 m, with a top
radius inside bark of 8 cm and a bottom radius inside bark of 16 cm. In order to

 simplify the presentation of log dimensions, we will adopt a convention of writ-

ing the dimensions as L/R/Rg with no units. This log can then be described as
8.0/8/16. We will first calculate the volume using Smalian’s formula directly
and then show you how to compute the same volume using some of the num-
bers on the face of the scaling stick.

Recall from Lesson 2 that Smalian’s fbrmula can be written as:

2
where V) is the volume of the log in m®, Ry and Ry are the radii at the top and

“bottom of the log respectively in metres, and L is the length of the log in metres.

Using this formula, we can compute the volume for our log as:

(rex 0.08% + wx 0.16%)

> x 8.0 = 0.402 m>

The scaling stick can be used to aid in calculating log volumes without the need
for a calculator. In order to follow the steps which we will go through, you

~ should refer to the the scaling stick template displayed in Figure 4.3 on the fol-

lowing page.

Step 1. Go to the column with radius 8. ‘

Step 2. Go up the column until you reach the number at the same level as the
8 m length (recorded in the first column).

Step 3. Write that number down. (30)

Step 4. Go to the column with radius 16.

‘Step 5. Go up the column until you reach the number at the same level as the

8 m length.
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Step 6. Write that number down. (322)
Step 7. Add these numbers together. (80 + 322 = 402)
Step 8. Divide the sum by 1000. (402 + 1000 = 0.402)

- The resulting number is the volume of the log in cubic metres.

In order to show you why this works, it is necessary to first rewrite Smalian’s
formula, '

(NR% +mR§) xL (AT +AB) xL

1- =

2 A 2
_ATXL+ABXL
o2 2

At and Ap are the cross-sectional areas in square metres at the top and bottom
ends of the log respectively. What this version of Smalian’s formula is saying in
words is that the volume of a log is the sum of the half volume of a cylinder of
length L formed using the cross-sectional area at the top of the log (A x L/2)

METRIC SCALE STICK

Length
{m} .
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Mim 28 43 62 % m 140 172 209 249 292 239 a8y 442 499 560 624
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Ficure 4.3 British Columbig scaling stick tempilate.
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using the scaling stick for lengfhs”
that are not displayed
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- with the half volume of a cylinder of length L formed using the cross-sectional

area at the bottom of the log (A x Z/2). When we calculate this for our example,

_ we get:

nRixL mRjxL mx0.08°x80 xx0.16>x8.0
2 2 2 2
= 0.80 +0.322

Y

Note that these numbers correspond to the numbers we found on the scaling
stick except that they are divided by 1000,

We can now define the numbers that we looked up on the scaling stick. These

‘numbers represent the half volume of a cylinder of a particujar length and radius
recorded in dm? (cubic decimetres). There are 10 dm in 1 m and 1000 dm® in

1 m3. Hence we need to divide the numbers on the scaling stick by 1000 to geta
volume in m>. The reason that the half volumes are recorded on the scaling stick
in these units is to avoid the need for a decimal place.

That is all that there is to calculating volumes using the scaling stick providing
that the length of the log for which you wish to calculate volume is given on the
stick (i.e., log lengths between 3 m and 12 m inclusive in intervals of 1 m).
Before moving on to learn about how to handle other lengths, you may wish to
calcniate a few log volumes on your own by using the scaling stick template.
The dimensions of a few practice logs are given below.

Logl 12.0/25/35  (Answer: 3.487 )
Log2  9.0/6/21  (Answer: 0.674 m)
Log3 80/10/20  (Answer: 0.629 n)

Smalian’s formula can be considered as the average of two cylinders; one with a
radius R, the other with radius Rp, and both having a length of L. Since the
volume of a cylinder is directly proportional to length, you can mathematically
separate the log into parts with different lengths but identical radii, calculate the
volume of each part, and sum the results to obtain the overall volume. This can
be.illustrated symbolically as:
7RZ + TR
(T—B). x L
2

- (nRE + nRE nRE + nRE
(Rt enrl) | foREenR)

2 2

nRL, wREL, nRIL, REl,
= + + +
2 2 2 2

where Ly + L = L

As can be seen from above, you would need to sum four readings from the scal-
ing stick to determine the volume of a log separated into two parts. In theory, a
log can be separated into as many parts as you would like. The number of scal-
ing stick readings you would need to sum to obtain the log volume is always
twice the number of parts. In practice, it is most efficient to keep the number of
parts to a minimum. :
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As an example, let’s look at a log with dimensions 17.0/14/36. A length of 17 m S

is not found on the scaling stick, so if we wish to use the stick to calculate vol-
ume we must break 17.0 m into parts. Say we choose to break the log into 12.0
m and 5.0 m parts. The scaling stick readings are:

- 12.0/14 369
12.0/36 2443
5.014 154
5.0/36 1018

3984 + 1000 =3.984 m?

Does it make any difference if we choose other segment lengths? Based on the
mathematics presented previously, hopefully you see that the answer remains
the same. This can be illustrated quite easily. Say we chose component lengths
of 10.0 m and 7.0 m. The scaling stick readings would be:

10.0/14 308

10.0/36 2036

7.0/14 216

7.0/36 1425
3985 <1000 = 3.985 m3

The small difference of 0.001 m? is due only to rounding.

Half volumes within any column on the scaling stick can be added togsther to
produce the half volume of a cylinder having a length equal to the sum the com-
ponent lengths. Multiplying or dividing numbers in a column to produce half
volumes for other lengths also works. For example, the reading for 4.0/4 is 10.
If this is multiplied by 2 it yields the reading for 8.0/4 which is 20.

Proportionality does not hold between columns because each column represents

-a different radius; volume is proportional to the square of the radius, not radius

itself. This can be easily demonstrated. The half volume associated with 3.0/9 is
38 dm® while the half volume associated with an identical length but triple the

- radius (3.0/27) is 344 dm3. Dividing 344 by 38 yields 9 (32). If a proportional

relationship did exist between columns, the answer would have been 3.

- Let’s calculate the volume of 2 log with dimensions 7.4/7/9 using the scaling

stick. We can divide the length into parts of 7.0 m and 0.4 m. To find the appro-
priate readings for 0.4 m, we simply have to find the readings for a length of 4.0
m and divide them by 10. Hence, the volume of the log can be calculated as:

0.4/7 3 (@.0/7 + 10)
0.4/ s (4.0/9 = 10)
7.0/7 54
7.0/9 89

151 +1000=0.151 m?

As another example, let’s consider a log with dimensions 15.0/35/45. We could
calculate the volume using the scaling stick by separating.15.0 m into two com-
ponents, say 10.0 m and 5.0 m. If we take this approach we would have to look

 up four values. A simpler approach would be to look up the values for 5.0/35 * o
and 5.0/45 and muitiply them by 3. :

M
it
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THE SCALING STicK FACTOR

REDUCING LOG DIMENSIONS
10 ACCOUNT FOR DECAY

|
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15.0/35
15.0/45

2886 (5.0/35 x 3)
4770 (5.0/45 x 3)
7656 + 1000 = 7.656 m>.

" If you look at your scaling stick template (Figure 4.3), you will see a series of
. numbers at right angles to the other numbers. These numbers are called factors,

and there is one associated with each radius class. The factor is the volume in
dm? of a 1 m long cylinder of that radius.

‘Asan example, let’s calculate the factor for a radius of 15 cm. Recall that the

volume of a cylinder is 7R? x L. Since we wish the volume to be in dm? the
radius and length must be expressed in dm (i.e., R = 1.5 dm and L = 10 dm).
Therefore, the factor for a radius of 15 equals 7 x 1.52 x 10 which equals -

71 dm®. You can verify that this number is identical to that printed on the scal-

ing sheet template. The factor for any other radius class can be calculated in a

similar manner.

- Factors can be used to determine quickly the areas of circles of various radii. To
' obtain an area in m? it is necessary to divide the factor by 1000. To obtain an

area in dm?, the factor needs to be divided by 10. We will illustrate this using a
radius of 15 cm again. The area of a circle is 7R?. If the area is to be in m2, then
we would use .15 m as the radius. The area would be 7 x .152 which equals
0.071 m? (i.e., 71 = 1000). If the area is to be in dm?, then we would use 1.5 dm
as the radius. The area would be 7t x 1.52 which equals 7.1 dm? (i.e., 71 + 10).

The principle use of the factor is for reducing the dimensions of logs to account
for the volume of decay present. This is the subject we deal with next.

Up to this point in this lesson we have talked about the easy part of scaling. The
scaled volume that we want to obtain is the net volume of the log inside bark
(i.e., the amount of solid wood present). Therefore, we must somehow take the
amount of decay into account.

The basic premise on which the scaler operates is that only three measurements

_are recorded: length of the log, radius at the top end of the log, and radius at the

bottom end of the log. This is fine if there is no rot present, but if there is rot (or
other defects which detract from the usable solid wood content of the log) what
can the scaler do? In theory, all the scaler has to do is to reduce one or more of
the measured dimensions to provide a new set of dimensions which reflect the
true firmwood velume present. How the scaler does this depends on the type of
defect present.

A major portion of the art of scaling comes into recognizing the type and
amount of defect present. In order for you to learn this effectively you would
have to spend a considerable amount of time scaling actual logs with a know]-
edgeable scaler. A course in scaling sponsored by the Ministry of Forests is
available periodically at various locations throughout the Province, Successful
completion will provide yon with a Scaler’s Licence. It is not our intention in
this lesson to duplicate that kind of practice. Instead, we will examine some of
the more common types of rot, and for each type of rot, we will illustrate the
principles behind the kind(s) of reduction which can be made.
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sap rot
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Sap rot is rot around the outside portion of the log (Figure 4.4). The volume of
firmwood when sap rot is present is simply the volume of the solid central core
of the log. If the rot is present at both ends of the log, a reduction is made to
each of the radii to reflect the radii of the solid wood core. This is done by mea-
suring the radii inside the rot.

As an example, consider a log with total dimensions of 10.0/20/27 having 2 cm
of sap rot at the top and 4 cm at the bottom end. The gross volume (volume
without deducting the rot) of that log is 1.773 m>. The dimensions that the
scalér would record (the revised dimensions) are 10.0/18/23. This yields a firm-
wood volume of 1.340m3,

If sap rot is visible only at one end of the log, then the radius inside the rot is
recorded at the end at which the rot is present. The total radius is recorded at the
opposite end. Implicit in this reduction is the assumption that the rot extends half-
way through the log as a cylinder or tapers off exactly at the top end of the log.

Unlike the other kinds of rot we will describe, reducing the dimensions for sap
rot always yields an exact firmwood volume. In other words, the firmwood vol-
ume we can calculate from the original log and rot dimensions is exactly the
same as that yielded by the reduced dimensions.

Heart rot is in a sense the opposite of sap rot. The decay is present as a central

core in the log and is surrounded by a solid shell of wood (Figure 4.5). Since the

methods for reducing log dimensions differ depending upon whether the rot £y
extends through the log (i.e., visible at both ends) or not, we consider the two N
cases separately.

'We will illustrate the various procedures appropriate in the case of heart rot that
extends through the log by means of an example. The log we use as the example
has total dimensions of 12.0/19/25. The radius of the decay at the top (RD) is 8
cm and the radius of the decay at the bottom (RDg) is 12 cm. Since decay is
present at both ends, its length (LD) is considered to be 12 m. To shorten our
notation, we will display the dimensions of the rot as 12.0/8/12 and call this the
rot vector (as opposed to the log vector of 12.0/19/25).

Before we show you how to reduce the dimensions of this log to reflect the
decay present, we will calculate the exact firmwood volume of the log to pro-
vide a baseline to which we can compare our efforts at reducing the log dimen-
sions. In order to compute the exact firmwood volume of any log, you need to:
(1) compute the total volume of the log; (2) compute the volume of the rot; and
(3) subtract the rot volume from the total volume. This procedure works for any
type of rot, but the approach to calculating rot volume changes with the rot type.

We can calculate the total volume and the rot volume of our log using either

" Smalian’s formula directly or the numbers on the scaling stick. We use the latter

approach here. The total volume of our log is:
' 12.0/19 680
12025 1178
1859 = 1000 = 1.859 m°>.
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: The rot volume of our log is;
' 12.0/8 121
12.0/12 271
392 +1000 =0.392 m’.

Thus, the exact firnwood volume of the log is 1.859 ~ 0.392 = 1.467 m3,

We will now reduce the original dimensions to arrive at dimensions which
approximate this volume. In this case, we have two choices: radii reduction and
length reduction. Each of these procedures utilizes the “factors™ that we dis-
cussed earlier in this lesson. We will illustrate each reduction method in turn
using our example. You may find that these procedures look tricky, but they
mimic the process followed when we determined the exact firmwood volume.

radii reduction  Radii reduction, as the name implies, consists of reducing the radii. The log
length is kept exactly the same as the original measurement. The procedure con-
 sists of:
Step 1. Computing the net factor for each end of the log;
Step 2. Finding the radii which most closely correspond to each of these factors.

We will now go through these steps for our log. The net top factor for our log is:

Factorfor Rt =19 cm whichis: 113
— Factorfor RDy = 8cmwhichis: 20

The net bottom factor is:

Factor for Ry = 25 cm which is: 196
— Factor for RDp = 12 cm whichis: 435
151

‘The next step is to find the radii that most closely correspond to these net fac-
tors. The closest factor to 93 turns out to be the factor associated with a radius
of 17 cm. (The factor for a radius of 17 cm is 91, while the factor for a radius of
18 cm is 102.) The closest factor to 151 is the factor associated with a radins of
22 cm. (The factor for a radius of 22 cm is 152, while the factor for a radius of
21 cm s 139.) Thus, the dimensions we would record for our log are
12.0/17/22.

As mentioned previously, these reduced dimensions will only approximate the
exact firmwood volume. The volume associated with the reduced dimensions is:

12.0/17 545
12.0/22 912 .
1457 + 1000 = 1.457 m°.

Recall that the exact firmwood volume is 1.467 m>. Answers you calculate will
not always be this close, but the difference will not be large relative to the vol-
ume of the log.

Try calculating the exact firmwood volume and performing radii reduction on
the sample logs below. Answers are provided for checking your results.

i/“h?‘"‘-
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~ length reduction

Log1 Logvector (11.2/35/42); Rot vector (11.2/ 6/ 8)
Answers:  Bxact firmwood volume = 5.083 m®
Reduced dimensions = 11.2/34/41
Reduced volume = 4.991 m3

Log2 Log vector (8.8/48/62); Rot vector (8.8/10/15)

Answers:  Exact firmwood volume = 8.049 m3
' Reduced dimensions = 8.8/47/60

Reduced volume = 8.030 m?

{Hint: Some of the factors necessary for reducing dimensions for this
log are not included on your scaling stick template. You will need to
calculate these manually. This should not be too difficult if you go
back in these notes to where factors were defined.)

Length reduction, as the name implies, consists of reducing length. Radii are

Ieft as originally measured. The procedure consists of the following steps:

Step 1. Compute the average rot factor;

Step 2. Compute the average log factor;

Step 3. Compute the ratio of average rot factor to average log factor and multi-
ply by log length; '

Step 4. Subtract this quantity from the original log length to obtain the reduced
loglength.

The rationale behind length reduction is based on the proportionalify of log

length to log volume exhibited by Smalian’s formula. Recall that we calculated
exact firmwood volume as:

Firmwood Volume = Total Volume - Defect Volume

This formula can be rewritten as:

Defect Volume
Total Volume

Firmwood Volume = Total Volume - Total Volume x

Since log length L is proportional to log volume, we can substitute L for total
volume. Similarly, since the ratio of average rot factor to average log factor

_ approximates the ratio of defect volume to total volume, we can make that sub-

stitution as well. This produces:

Average Rot Factor

Reduced Length = L - L x
Average Log Factor

This is, of course, our formula for determining reduced length. Inits simplest
form, length reduction can be thought of as reducing the log length by a propor-

.tion equivalent to the proportion of defect in a log. Hence, length reduction

works for any type of defect. An experienced scaler can usually approximate the

proportion of defect present in 2 log quite quickly, often without needing to
make detailed measurements.

In order to use length reduction on our example, we first need the average rot
and log factors. The average rot factor for our log is:

Factor for RDr = 8cm whichis: 20
+ Factor for RDg = 12 cm which is: - 45
: 65 + 2=32.5.

o,
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heart rot that does
not extend through the log

. 'The average log factor is:

Factorfor Rt =19cmwhichis: 113
+ FactorforRg =25 cm whichis: 196

7 309 +2=154.5.
The reduced length is:
7 _ Average Rot Factor XL =12 325 %12 =9.48
Average Log Factor 154.5

The dimensions a scaler would record are 9.4/19/25. (Note the rounding of the
length down to 9.4 m because of the stipulation that length be recorded to the
nearest 0.2 m.) These dimensions yield a volume of:

9.0/19 510
0419 23
9.0/25 884
0.4/25 _39

1456 + 1000 = 1.456 m>.

This is almost exactly the same volume as we got using radii reduction
(1.457 m?), The two methods do not always agree as closely as this.

- Log and rot dimensions identical to those on which you practiced radii reduc-
. tion are given below. Try to apply the length reduction technique on these logs.

Check your answers against those provided.

Log 1. YLogvector (11.2/35/42); Rot vector (11.2/ 6/ 8)
Answers:  Exact firmwood volume = 5.083 m?
Reduced dimensions = 10.8/35/42
Rednced volume = 5.071 m3

Log 2. Log vector (8.8/48/62); Rot vector (8.8/10/15)
Answers: Exact firmwood volume = 8.049 m?
Reduced dimensions = 8.4/48/62
Reduced volume = 8.112 m3

If the heart rot does not extend through the log (i.e., it is visible at only one
end), it is assumed to be cylindrical in shape. Assessment of defect length (LD)
in this situation is strictly subjective; the scaler bases the assessment on experi-

‘ence gained from bucking and sawmill studies. For the purposes of this course,
‘we will tell you the length of the rot.

Only length reduction is appropriate in this situation. Recall that radii reduction
_computes the reduced radii from net factors computed for each end of the log. It

implicitly gives equal weight to each reduction. If no rot is present at one end,
the reduction is zero. Hence, if LD < 1/2 L, radii reduction will result in too

. large a reduction, and if LD > 1/2 L, it will result in too small a reduction. Only

if LD is exactly half of L will radius reduction work properly.

The only change that we need to make to the length reduction formula you
learned earlier is to replace “average rot factor” with “rot factor” and L with
LD. The formula becomes:
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Rot Factor N
Average Log Factor

Reduced Length = I. -

Again, we will illustrate this technique with an example.

The log vector for our example is 9.0/23/28. The rot vector is 3.0/0/9. This indi-
cates that the defect length (LD in our notation) is 3.0 m, no rot is visible at the
top end, and the rot has a radius of 9 cm at the bottom end of the log. Recall that
exact firmwood volume is equal to the total log volume minus the rot volume.
The total volume of this log is:

9.0/23. 748
" 9.0/28 1108
1856 + 1000 = 1.856 m>.

The rot volume can be calculated using Smalian’s formula or by using the
appropriate factor. The factor associated with a rot radius of 9 cm is 25. Recall
that the factor is the volume (in dm?) of a 1 m cylinder with a specific radius. In
order to determine the volume of rot in m? with an LD of 3.0 m, we multiply 25
by 3 and divide by 1000. This results in a rot volume of 0.075 m?. Therefore,

the exact firmwood volume for this log is 1.856 ~ 0.075 which equals 1.781 m3.

In order to do length reduction, we need to determine the rot factor and the

- average log factor. The rot factor is 25 (RDg = 9 cm). The average log factor is:

" Factor for R =23 cmwhichis: 166
+ Factor for Ry . = 28 cm whichis: 246
412 +2=206.

Therefore, the reduced length is:

_ Rot Factor xLD=9.0--——zix3-8.64
Average Log Factor 206

Thus, the dimensions recorded would be 8.6/23/28. This yields a volume of:

8.0/23 663
8.0/28 985
0.6/23 50
0.6/28 714

1774 <1000 = 1.774 m>.

You can practice this technique on the following logs and check your results

- against the answers provided.

Log 1. Log Vector (6:2/37/46); Rot Vector (4.0/ 0/ 8)
Answers: . Exact Firmwood Volume = 3.314 m®
' Reduced Dimensions = 6.0/37/46
Reduced Volume = 3.285 m3

. Log 2. Log Vector (7.4/25/36); Rot Vector {6.0/ 0/14)
Answers: Exact Firmwood Volume = 1.864 m?
Reduced Dimensions = 6.2/25/36
Reduced Volume = 1.871 m>

N
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butt rot

Taete 4.1 Assumed Rot Lengths
for Butt Rot

Butt rot is heart rot in the butt log of a tree. If it extends through the log, it is
treated identically to heart rot. If the rot is visible only at the bottom end of the
log, it is assumed to be conical in shape. The reason for assuming a conical
shape is that decay present at the bottom end of a butt log is generally caused by
root rot. Mill studies have indicated that the shape of root rot that extends up

- into the butt log tends to be conical. Length of decay can be approximated from

the ratio of rot radius to total radius. Decay lengths for various ratios are given
in Table 4.1.

RD/R LD
0.010.25 09m
.25 18m
2510 .50 27m
50 3.6m
B50t0 .75 45m
75 54m
75101.0 ' 6.3m
1.0 7.2m

Length reduction is again used for this type of rot. The only change in the for-
mula from heart rot that does not extend through the log is that LD is divided by
3. This is to reflect the conical rot shape which is one third of the volume of a
cylinder (the assumed rot shape for heart rot). The formula becomes:

Reduced Length = L ~ 2ot Factor 1D
Average Log Factor 3

As an example, consider a log with dimensions 10.0/13/18 and butt rot witha 9
cm radius. The ratio of RDyg to Ry is 9/18 which equals 0.5. You can see from
Table 4.1 that the appropriate value for LD is 3.6 m. To calculate exact firm-
wood volume, we need the total log volume and the rot volume. The total log
volume is:

10.0/13 265
10.0/18 509
774 = 1000 = 0.774 m3.
The rot volume is:
nRD3 3.6 3
0031
10000 3 m

Therefore, the exact fimnwood volume is 0.774 — 0.031 which equals 0.743 m*>.

For Iength reduction, we need to determine the rot factor and the average log
factor. The rot factor for a radius of 9 cm is 25. The average log factor is:

Factor forRy =13 whichis: 53
+ Factor forRg = 18 which is: 102
' ' 155 +2=71.5.
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fing rot
that extends through the log
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Therefore, the reduced length is:

RotFactor =~ LD 25 36
- —— X —— =10 - ——x— = 5,61
Average Log Factor -~ 3 775 3

Thus, the dimensions recorded would be 9.6/13/18. This yields a volume of:

9.0/13 239
9.0/18 458
0.6/13 14
0.6/18 30 -

741 = 1000 = 0.741 m3.

As the name implies, ring rot looks like a ring in cross section (Figure 4.6).
There is a solid core of wood inside the rot and a shell of solid wood outside the
tot. Three radii need to be defined when ring rot is present: Ry denoting the total
log radius; R; denoting the radius out to the outer edge of the ring of rot; and Ry
denoting the radius out to the inner edge of the ring of rot. Ring rot may be pre-
sent at one or both ends of the log. If it is present at both ends of the log, it is
assumed to extend completely through the log. :

As in the case of heart rot that extends through the log, either radii reduction or
length reduction is appropriate. We will demonstrate both kinds of reduction
with an example.

It is convenient to display the relevant dimensions of a log with this type of rot
using three vectors. The numbers of the vectors pertain to radii 1, 2 and 3 as
defined above. Our example can be described as: vector 1 = (9.0/22/28); vector
2 =(9.0/15/20); and vector 3 = (9.0/12/15). The total volume of the log is calcu-
lated using the dimensions in vector 1 as:

9.0/22 684
9.0/28 1108
1792 +1000 = 1.792 m>.

The volume using the dimensions in vector 2 is:

9.0/15 318
9.0/20 565

883 +1000=0.883 m3. -

This represents the volume of both the rot and the sohd Wood inner core. The
volume wusing the dimensions in vector 3 is:

9.0/12 204
9.0/15 318
522 +1000 = 0.522 m3.

This represents the volume of the solid wood inner core. Therefore, the volume

of rot is 0.883 - 0.522 which equals 0.361 m>. It follows that the exact firm-

wood volume is 1.792 - 0.361 which equals 1.431 m>. The procedures used in

radii reduction and length reduction mimic the steps we followed for calculating P

Songgent?
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Radii reduction for ring rot requires that revised factors be determined for both
ends of the log. The formula is: '

Revised Factor = R Factor — R, Factor + Ry Factor
The revised top factor for our example is:

FactorforRpy =22cmis 152

— FactorforRp =15cmis 71
+ FactorforRyz; =12emis 45
126

The reduced value for Ry is 20 cm. (The factor for 20 cm is 126 exactly). The

revised bottom factor is:

Factor forRg; =28cmis 246

— FactorforRg; =20cmis 126
+ FactorforRpz =15cmis _71
191

The reduced value for Ry is 25 cm. (The factor for 24 cm is 181; the factor for
25 cm is 196.) Hence, the dimensions a scaler would record for this log are
9.0/20/25. The volume associated with these dimensions is:

9.0/20 565
9.0/25 884
1449 +1000 = 1.449 m3.

Length reduction for ring rot requires that net top and bottom decay factors be

determined prior to averaging the decay factors. The remainder of the procedure

_is identical to that described for heart rot that extends through the log. For our
log, the net top decay factor is:

Factor for R =15cmis 71
- FactorforRr3 =12cmis 45

26
The net bottom decay factor is:

Factor forRgy =20 cm is 126
— FactorforRgs =15cmis  _71
55

Therefore, the average net decay factor is (55 + 26) = 2 which equals 40.5. The
average log factor is: '

FactorforRyy =22cmis 152
+ FactorforRg; =28cmis 246
398 +2=199,

The reduced length is:

I- Average Net Decay Factor XL m9.0— 40.5 %0 =717
Average Log Factor 199
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fing rot that does
not extend through the log

WEIGHT SCALING
IN BRITISH COLUMBIA

The dimensions that would be recorded by the scaler are 7.2/22/28. The associ-
ated volume is:

6.0/22 456
6.0/28 739
1.2/22 91
1.2/28 148

1434 = 1000 = 1.434 m>.

In logs where ring rot does not extend through the log, only length reduction
can be used. As with heart rot, the decay length needs to be estimated. The
approach is similar to length reduction for ring rot that does extend through the
log except that the ratio of average net rot factor to average log factor is multi-
plied by LD rather than L. The formula is:

Average Net Rot Factor «

Reduced Length =L -
Average Log Factor

Scaling sticks are used to scale logs in flat booms or in dry land sorts. A small
proportion of the quantity of timber scaled in the province is determined while
the trees are still standing (cruise-based scale). We will not cover this scaling
method in this course. The remainder of the wood scaled (quite a large propor-
tion), is scaled using weight scaling.

The weight scaling that occurs in British Columbia is used to obtain an indirect
estimate of scaled volume because stumpage rates are based on volume, not on
weight. Truckloads of logs are weighed and a sample of these loads are scaled
for volume, species and grade breakdown. The ratio of volume to weight on the
sampled loads is used to convert the total weight of all the truckloads to volume.

The idea behind this approach is to capture the advantages of both stick and
weight scaling. Volume can be most accurately scaled using a scaling stick.
However, this is expensive and time consuming. Weight, on the other hand, is
cheap and easy to measure. It is simply a matter of driving the truck onto a
scale. There should be a good relationship between weight and volume. Select-
ing a suitable proportion of the truckloads to stick scale should provide a ratio
for converting weight to volume with acceptable accuracy.

The sampling technique used to calculate the scaled volume of wood and its
sampling error is called ratio estimation (also known as ratio of means). We
will not provide the formulae for this sampling method because their use is
beyond the scope of this course. Ratio estimation and a number of other sam-
pling techniques are covered in the course Forestry 238 ‘Forest Mensuration’.
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LOG GRADING

TaeLe 4.2 Log Grades by

Species and Use

(Source: 8§, Watls (editor). 1983, Forestry
Handbook for Billish Columbla, 4th ed.
Forestry Undergraduate Soclety, Faculty of
Forestry, Univarsity of British Columbia,)

- Log grading is the process of assigning logs to various classes on the basis of

surface characteristics and the amount of defect present. The grade of a log
should reflect the quality of the log in terms of possible end use, and hence the
log’s value. Factors commonly considered in assigning log grade are log size
(length and top radius), presence of defects, prevalence of knots, and growth
tate (determined by the number of growth rings in some unit length). Grading
guidelines vary among jurisdictions. As an example of one set of grading stan-
dards, we will look briefly at grading within British Columbia.

Log grading is of concern only within the coastal region of British Columbia. In

the interior of the Province, logs are divided into only “small” and “large” log

- categories, There are several reasons for the differences in grading practice. The

principal reason is probably historical precedent. The forest industry of the
coast developed around the old-growth forests with very large and potentially
valuable logs. The predominant product was lumber. Concentration of logging
effort in a relatively small region led to much buying and selling of logs among
companies. Among logs from old-growth trees, there are considerable quality
differences that affect their end use. Thus it became important to recognize
these differences and agree on standards. In contrast, forest companies devel-
oped much more in isolaticn from one another in the interior of the province.
There never was much buying or selling of logs; most companies simply cut
timber for their own use. Also, most logs were much smaller and of more uni-
form quality than those of the coast.

The coastal grades in British Columbia vary by end use. Product categories rec-
ognized are: (1) peelers (for veneer); (2) lumber; (3) sawlogs; (4) shingle; and
(5) pulp. Not all products are appropriate for each species. For example, the
shingle category is applicable to only western redcedar logs. Except for lumber
which has four grades, all other categories have three grades. Not all of these
grades are appropriate for a given species. Table 4.2 contains the grade distribu-
tion by species and products. Table 4.3 contains the specifics of No. 3 Peeler
Donglas-fir, Grade Code C. This information is provided as examples of grad-
ing requirements. You are not expected to remember the details of either of
these tables.

Species | Peelers Lumber Sawlogs Shingle Puip
ABC DEFG Hil J KLM XY2Z

Douglas-fir * 2. . . s . . .
Cedar . . . s . . s e ..
Hemlock . . s . L ]
Balsam . . . s » LY
Cypress LR S . e . . s .
Pine . . LI ] . 8
Spruce . * o e @ . s . . e .
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- Taste 4.3 Criteria for No. 3
Peeler Douglas-fir, Grade

Code C.

(Source: 5. Watts (edltor). 1983 Forestry
Handbook for British Calumbla, 4th ed,
Forestry Undergraduate Soclety, Facuity of
Forestry, Unkverslty of Briflsh Columbla.)

Grade Rule: Logs 5.2 m or more in length and 19 em or more in radius where
at least 80% of the gross scale will cut out on a rotary lathe into veneer.
Log Requirements to Make the Grade:

_ (a) No conk, conk stain or pocket rot is permitted.

(b) There must be no fewer than 5 annual rings in each 2 ¢cm of diameter.

{c) No knots over 4 cm in diameter are permitted and knots 4 cm or less in diameter
must be well spaced.

{d) Maximum twist permitted over 30 cm of length is 14% of the radius up to 2 maximum
deviation of 8 cm.

{8) Other defects are permitted as listed for No. 1 Peeler Fir, see items () to (m).
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K/} REVIEW/SELF-STUDY Do these questions before you go on to complete the Graded Assignment. These
QUESTIONS  questions are of value to check your understanding of the material before pro-
gressing to the next lesson, as well as later review for the final examination.
Do not submit answers to the tutor.

11.
12.

13.
14.

A oA W R

10.

. What is scaling?

Why do different jurisdictions have different scaling procedures?

. Why are logs scaled?
. Identify three basic units of measurement for scaling.
. What is a board foot log rule?

. What are the reasons for the relatively recent shift in Canada to the use of

cubic volume units?

. Why was Smalian’s formula chosen for calculating log volumes in British '

Columbia?

. What are the procedures and criteria for measuring log radius and length in

British Columbia?

., Explain why the half cylinder volumes displayed on the scaling stick can be

used to provide the same volume for a log as Smalian’s formula.
What is a “factor” and for what can it be used?

Why can length reduction be used for any type of defect while radii reduc-
tion is valid only if the rot extends through the log?

Describe the weight scaling procedure used in British Columbia. Why is it
used? :

What is log grading?

What factors are commonly considered in assigning logs to a grade?
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INTRODUCTION TO PHOTOGRAMMETRY
# AND PHOTO INTERPRETATION

INTRODUCTION This lesson provides an introduction to photogrammetry and photo interpretation.
These terms will be defined and examples of their uses will be provided. The
concept of vertical aerial photography, characteristics of light, and the
photographic process will be summarized. A good understanding of the material
covered in this lesson is essential for Lessons 6, 7, and 8.

LessoN OVERVIEW

LessoN OBJECTIVES - After completing this lesson and the assignment, you should be able:

1. to distinguish between photogrammetry and photo interpretation;

. 2. to explain the basic principles of the photographic process;
3. to sketch the geometry of vertical aerial photography and to use it to explain

scale;

4. to describe the principles of stereoscopic vision;
5. to view your acrial photographs stetcoscopically;
6. to prepare aerial photographs for long-term stercoscopic viewing,

. Lesson ReapiNGgs  Some of the material presented in this lesson may be found in Avery and Berlin,
Sy o ~ pages 1-48. Some of this material is covered in Avery and Burkhart, pages
7 . 253-258.

LessON AsSIGNMENT . When you have completed this lesson, answer the self-study questions at the
' . end. You should then complete Graded Assignement #4 and mail it to your tutor
by the date indicated on your course schedule. Be sure to include a pink
assignment cover sheet.




PAGE 88 - FRST 237
£y
. 3
BACKGROUND  Photogrammetry is derived from three Greek words: photos meaning light; Ry
TO PHOTOGRAMMETRY AND  gramma meaning that which is drawn or written; and metron meaning to
PHOTO INTERPRETATION measure. If you put these meanings together, you get a good definition of

APPUCATIONS OF AERIAL
' PHOTOGRAPHY

photogrammetry: “Measurement of that which is drawn or written with light,”
The American Society of Photogrammetry provides a more formal definition:

“Photogrammetry is the art, science, and technology of obtaining reliable
_information about physical objects and the environment through processes of
recording, measuring, and interpreting photographic images-and patterns of

electromagnetic radiant energy and other phenomena.”

. Photo interpretation involves identifying objects on photographs and

determining their meaning or significance. It is sometimes considered a subset
of photogrammetry. In this course, we use photogrammetry to refer to the
measurement aspects and photo interpretation to refer to the interpretive
aspects of obtaining information from aerial photographs.

Most people have some experience with photogrammetry and photo
interpretation from standard photography. Suppose that someone shows you a
family snapshot. You recognize the individuals in the picture and perhaps the
locale. For example, if the people in the picture were wearing swimming suits
and standing on sand, you might conclude that they were at the beach. All this is
photo interpretation. You zlso can make some observations with respect to some
memory standard you have of the individuals. For example, you may conclude
that so-and-so is looking older or putting on weight. These are measurements of
2 sort, but they are subjective since you have no definite, reproducible standard.
‘Without such standards, you can be fooled easily. For example, size is difficult
to determine on a photograph without a recognizable context. You can alsc be
fooled about colours because of lighting, film processing, and so on.

-/f):ﬁ&w,\
\‘\\ e

Aerial photographs can be regarded in the same way as snapshots. They can be
used to identify landforms and artificial features, to distinguish between forest
types, and so on. These uses can all be classified as qualitative. However, it is
also possible to make quantitative assessments. This is done by noting (or
controlling) conditions under which the aerial photographs are taken. If these
conditions are suitable, it is possible to make quite accurate measurements from
a single photo or a stereo pair of photos.

" Aerial photography is widely used in forestry and many other fields. Some of

the reasons for this include:

* It is a labour saving tool. Traditionally, it has been a cost-effective way to do
forest planning. In the past few decades, it has become a cost-effective way
to obtain certzin mensurational measurements. '

» It is essential for map making and navigation. In the early part of this century,
all map making was done by ground surveys. With the advent of aerial
photography, the trend began to shift towards using this information for
constructing maps. Today, almost all map making is done using aerial
photography and/or satellite imagery.

P
i
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-+ It provides a ready means for detecting changes. Change detection ranges from

before/after photos taken from the same position to comparing current aerial
photographs to previously flown photographs, perhaps with different scales
and photo locations.

» It enables the window of perception to be expanded beyond that of human
vision. Standard photography extends slightly into the infrared region of the
spectrum. Certain objects can be more easily dlstmgmshed in these bands
than by using only visible bands. If nonphotographic techniques are
employed (e.g., radar, thermal scanners), encrgy bands well outside the
range of human vision can be sensed. '

« It has recreational applications. Aerial photographs provide a visible image of
“ground terrain. Although these photographs are not maps (we will discuss
this in later lessons), they provide a means of navigation useful when hiking,
" hunting, and so on. It is possible for the public to order photographs of most
 areas in British Columbia and elsewhere in Canada.

* It can be quite profitable. Aerial photographs are used in geology {e.g.,
mineral/oil exploration), in court cases (e.g., oil spills, SO, damage), for
military strategy (e.g., spy satellites, reconnaissance), and many other
applications.

Some of the general uses of aerial photography in forestry include:

* Measuring heights of objects. With the photographs included with your course
materials, it is possible to discern height differences on the order of the
height of the curbs along a city street. This requires stereoscopic viewing
and expensive equipment. In the assignment associated with Lesson 6, you

will be measuring heights using a pocket stereoscope and a stereometer that
work according to the same principles as more expensive instruments,
although they cannot attain the same degree of precision.

_* Planimetric mapping. This consists of determining the horizontal ground

position of objects. With the photographs in your course materials, you can
obtain accuracy to the same standards as surveyed maps for considerably

' ~ less cost. This is achieved through stereoscopic viewing with simple

instruments. More expensive equipment is not necessarily more accurate,
but is faster to use. You will have an opportunity to practice mapping in the
- assignment associated with Lesson 7.

» Topographic mapping. This consists of determining both the horizontal and
vertical dimensions of the position of objects. Topographic mapping requires
stereoscopic viewing and expensive eqmpment We will touch on this topic
briefly in Lesson 7.

* Photo Interpretation. Forestry applications include stand typing, species
identification, landform analysis, watershed analysis, and vegetation damage
assessment. We will cover some. of these aspects in Lesson 8.
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VErTiCAL AERIAL PHOTOGRAPHY ~ In order to explain what vertical aerial photography is, we first need to intro-
S duce some terminology. Some of the terms to be introduced are illustrated in
Figure 5.1.

Ficure 5.1 lustration showing -
terminology used In photo-
grammetry.

Picture an aircraft flying above the ground surface. Since the ground is seldom £
flat, and a flat surface is useful to the measurements we will subsequently \ }
discuss, we will create an imaginary flat surface at some useful elevation for the
vicinity in which our aerial photographs are taken. This surface is called a

- ground datum. We will express the flying height of the aircraft with respect to
the ground datum for the remainder of this course unless otherwise specified.

The point directly below the aircraft is called the nadir. As the airplane flies
over the ground datum, the nadir moves along the surface forming an imaginary
line depicting the path of the plane. This line is called the line-of-flight and is
generally abbreviated as l-o-f.

In order to determine the orientation of the aircraft, three axes are required. One
extends perpendicularly from the ground datum and passes vertically through
the aircraft. Any rotation of the airplane around this axis is called yaw. Another
axis extends through the aircraft from nose to tail. Rotation around this axis is
called roll. The third axis extends through the wings. Rotation around this axis
is called pitch. Together, the magnitudes of roll, pitch, and yaw determine the
attitude of the aircraft in flight.

Assume the aircraft is carrying a downward-pointing camera. Periodically, the
camera takes a photograph of the ground surface. The centre of this photograph
is called the principal point (PP). More precisely, the principal point is the
point where a perpendicular projected through the centre of the lens intersects
the photo image. In other words, it is an extension of the optical axis of the
camera.

If you look at any one of the aerial photos provided in your kit you will see foy
marks at the midpoint along each of the sides. These marks are built into the R
camera and are called fiducial marks. The fiducial marks are used to determine
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the exact centre of an aerial photograph (i.e., the principal point). The centre is
found by connecting the centres of the opposing fiducial marks with straight
lines. These lines intersect at the principal point.

- Standard aerial photographs are taken in such a manner that there is about 60

percent overlap between consecutive photographs along a line-of-flight. There
is approximately 10 percent overlap between lines-of-flight. The overlap which
exists within a line-of-flight means that the principal point on one photograph
will also appear on the photographs on either side of it, as illustrated in Figure
5.2. The image of a principal point on an adjacent photograph is known as a
conjugate principal point (CPP). Once conjugate principal points and the
principal point are marked on an aerial photograph, the l-o-f can be
approximated since you can be sure of at least three locations over which the
aircraft flew. How to mark conjugate principal points and the 1-o-f on your
photographs are described in the assignment for this lesson.

There is also a nadjr on the photograph. Recall that this is the point directly
beneath the camera centre at the time of the exposure. The nadir and the
principal point may or may not coincide, depending on the attitude of the
aircraft. It is easiest to see the effect if you look at pitch, roll, and yaw
individually. You can see from Figures 5.3 and 5.4 that the presence of both
pitch and roll cause the principal point to deviate from the nadir. However, no
matter how much yaw is present, the nadir and principal point coincide as long
as there is neither pitch nor roll (Figure 5.5).

/f"“\?
o
£y Fisure 5.2 Relationship between
K \\\\\ F principal polnts and conjugate
principal points.
|
|
|
R
PP Nadr @ =
L . Dl
Case 1 Prtch =0 Case2 Pitch = 0
(\ z Fisure 5.3 Effect of plfch (cssumlng

roll = yaw = 0).

_Case1.Ro!I=0 CaseZRo!I=0 Case1.Yaw-0 CaseZ.Yaw::O

Ficure 5.4 Effect of roll (assumlng Ficure 5.5 Effect of yaw (assurming
pitch =yaw = 0). . : pitch = roll = Q).
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FACTS OF LIGHT

PHOTOGRAPHY AS A
MEASUREMENT PROCESS

THE EMR SPECTRUM

AND VIsiBLE LIGHT

Truly vertical aerial photographs are defined as photographs in which the nadir
and principal point coincide. It is necessary to know the location of the nadir for
making measurements on an aerial photograph. However, there is no easy way
to find the nadir unless it happens to coincide with the principal point which is
easy to find. Hence, it is useful if the photographs are truly vertical. Using truly
vertical photographs also simplifies some of the geometry that underlies the
formulas we will later develop for you. We will consider only truly vertical
aerial photographs in this course.

Tilt is said to be present if pitch and/or roll are not zero. The presence of tilt can
be seen qualitatively from an image on one of the edges of the photograph.
There is a series of circles in which you may be able to see a bubble. This is the

- equivalent of a spirit level; the closer the bubble is to the centre in the circles,

the more level the flight. Modern aircraft employ an independent camera mount

- enabling truly vertical aerial photography to be achieved on an operational

basis. However, things can still go wrong so it is useful to specify a maximum
amount of acceptable tilt if you are contracting your own aerial photographs.
The present day standard is usually less than 1 degree.

Yaw, caused primarily by crosswind, is almost always present during a flight.
The presence of yaw means that the aircraft is not flying in the same direction it
is pointing. The impact on aerial photographs is that the 1-o-f does not usually
pass through the fiducial points, making it more difficult to locate the l-o-f.

In photogrammetry, photography is viewed as a measurement process. A logical

question to ask is, “What is it that we measure?” This can best be answered by

addressing two subquestions:

.QI: “What determines where things appeér on an aerial photograph?”

Qy: “What determines how things appear on an aerial photograph?”

The answer to Qq lies in the field of geometry. The answer to Q5 lies in the field
of radiometry. Photogrammetry emphasizes (; and photo interpretation
emphasizes Q5. A general understanding of light energy and the photographic
process is necessary to give you a proper perspective when you are studying
either of these arcas.

Visible light is a form of electromagnetic radiation (EMR). In fact, visible
light forms only a very small portion of a vast spectrum of energy (Figure 5.6).
The EMR spectrum extends over 16 orders of magnitude. It ranges from gamma
rays that can be smaller than 0.3 pm (1 pm = 1 x 10-12 m) to television and radio
waves that can be larger than 10 km (i.e., > 1 x 10 m). The visible range
encompasses only the region between 400 and 700 nm (1 nm = 1 X 10~? m). You
may also see this range expressed as being from 0.4 to 0.7 um. (A um is called a
micrometre or a2 micron. One micron equals 10-6 m or one thousandth of a mm.)
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Fisure 5.6 The electromagnetic radiation (EMR) spectrum.

The atinosphere absorbs or reflects most EMR wavelengths. This process is
called atmospheric attenuation. It is a good thing for us that this occurs since
many of the energy types, particularly those with shorter wavelengths, are dam-
aging or deadly to us. Recent concerns over the depletion of the ozone layer is

. related to a reduction in atmospheric attenuation. The quantity of particular

wavelengths absorbed or reflected at any point in time is related to atmospheric
conditions.

Certain wavelengths are essentially passed intact. These are known as pass
bands. Some of the important pass bands include:

» Visible light and just into the ultraviolet band (0.3 to 0.7 um). Our eyes have
adapted to make use of energy on these wavelengths. The small portion of
ultraviolet that penetrates is what causes suntans. '

- * Reflected and emitted thermal infrared (10 to 14 pm). This is important

because it allows the sun’s energy that has been absorbed by the earth to be
released through the atmosphere as heat. When free release of the heat does
not occur, for exampie in a greenhouse, the temperature increases. Particular
atmospheric pollutants can cause the same effect on a global scale. This
process has been called the greenhouse effect.

Normal aerial film is sensitive to wavelengths of 0.3 to 1.1 u#m, a range that is
slightly greater than the range of wavelengths that human vision can perceive.
In aerial photography, the lower end of the range is frequently cut off by filters.
You will notice that film sensitivity extends slightly into the infrared (from 0.7
to 1.1 y#m). This is only a small portion of the large infrared band, which
extends from 0.7 to 3000 zm. Thermal infrared (emitted energy) has wave-
lengths between 2.5 and 14 um, so there is no such thing as thermal infrared
film. However, there are certain non-photographic sensors that can sense wave-
lengths in this region. We will cover a few of them in Lesson 8. The region of

- the infrared captured by film is termed the near infrared and is comprised of

reflected infrared radiation.
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SPECTRAL RESPONSE CURVES

Ficure 5.7 EMR stiiking a leaf.

Ficure 5.8 Spectral response
curves of two objects, one
yellow and the other green. -

Certain sensing devices supply their own sources of EMR (e.g., radar and
X-rays). These types of sensors are called active sensors for this reason.
Passive sensors rely on outside sources of radiation (e.g., standard aerial
photography). A standard terrestrial camera when used without a flash is a

‘passive sensor. When it is used with a flash it becomes an active sensor. Passive

sensors are limited by the characteristics of the surface illumination.

When EMR falls on a surface, three things happen which are relevant to the
portion of the EMR spectrum that is recorded on film: reflection, transmission,

-and absorption. Figure 5.7 shows EMR striking a leaf’s surface. A fourth com-
" ponent, emission, is the ultimate response to absorption; however, the wave-

lengths involved are outside the sensitivity range of film.

incidence

reflection

\ transmission

N

~ The relative amount of each of these components depends upon the wavelength

(»). This is connected with the idea of a spectral response curve. A spectral
response curve relates percentage of energy reflected to the EMR wavelength,
(See Figure 5.8 for an example.) Every object has a characteristic spectral
response ctrve known as a spectral signature. This can be used to identify
unknown materials in a manner equivalent to finger printing. In fact, there is a

R
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(norther latitudes)

Incandescent light

branch of analytic chemistry known as spectroscopy which uses spectral
signatures under laboratory conditions to identify chemical components.

This leads us to the question, “Can we measure the spectral response curve of
images using aerial photographic techniques to identify objects on the ground?”
Unfortunately, this idea doesn’t directly extend to aerial photography. Let’s look
at some of the reasons in a little detail.

‘The first major reason why spectral signatures cannot be used to exactly identify
objects on the ground using aerial photography is because the process is passive.
'This means that we do not control the characteristics of the scene illumination.
Since the spectral response curve relates percentage of energy reflected to wave-

~ length, not to the absolute amount of energy present, the spectral distribution of
the source illumination must be taken into account. For example, sunlight at the
equator has a different spectral distribution than sunlight at northern latitudes.
Atmospheric conditions also influence the spectral distribution of sunlight. The
spectral distributions of several different light sources are given in Figure 5.9.

A possible solution to this difficulty is to make the film respond inversely to the
illumination characteristics of the source illumination. This would result in
recorded results that are true spectral signatures of the surface material. There
have been some broad attempts to do this with retail {terrestrial} films. It is
possible to buy “daylight,” “tungsten light,” and “fluorescent light” films
'among others, However, these are developed for average conditions and likely
won’t exactly match the specifics of any particular lighting condition. Aerial

~ photography uses filters to control some aspects of the scene illumination.
However, as with using different film types, the filters are not likely to exactly
match the specifics of any particular lighting condition.

A second reason why spectral response curves cannot be used to identify

~ objects on aerial photographs is that certain sensors respond differently to
different wavelengths. For example, we all respond differently to different
colours. A standardized curve was developed for photographic purposes called
the standard observer curve. This curve (Figure 5.10) shows the average
human sensitivity to various wavelengths of visible light. Sensitivity can be

Ficure 5.9 Spectral distribuiion of several different Ficure 5.10 The Stondard Observer (Photopic) Curve.

IIg_ht sources,
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thought of as the ability of the light to create a sense of brightness. The standard S
observer curve is used as a weighting in black and white film so that the film
~ reflects the sense of brightness that the average human sees.

‘We can now retumn to one of the questions posed earlier in this lesson, “What

determines how something appears in an aerial photograph?” The answer is:

* the spectral response characteristics of the surface material (i.e., the spectral
Iesponse curve);

» the spectral characteristics of the surface illumination;

» the spectral sensitivity of the sensor including humans directly and humans
and film together; '

+ certain other factors including topography and atmospheric conditions.

CAMERAS, FILMS AND FILTERS The photographic system is comprised of the camera, lens, film, and filter.
These components act in concert to produce the conditions that make
" photography possible. The film and filter serve the following purposes:
* to select the response characteristics that help delineate features of interest.
Usually filters are added to alter response since it is easier than having a
special film designed. o
~ * to extend the window of response beyond that of human vision. Recall that _ \ }

- film can sense EMR wavelengths into the near infrared (up to 1.1 zm) while
humans can see EMR wavelengths only between 0.4 and 0.7 gem. Certain
objects (e.g., coniferous vs. deciduous forest cover) can be more easily
distinguished in the near infrared band.

* to sense and store the image. Many other sensing systems use film as a means
-of storing or displaying sensed data. However, the photographic process is
the only sensing system that uses film as both the sensing and storage
medinm. :

THE PHOTOGRAPHIC SYSTEM

The camera and lens components serve the following purposes:

* to control exposure parameters (aperture and time). The amount of light that
gets through to the film s a function of certain characteristics of the camera
and the lens interacting together, as you will soon see. The amount of llght
needs to be controlled if the image is to turn out properly.

* to produce an image with regular geometry. If the images on aerial
photographs are not distorted, then relating measurements of features on the
photographs to features on the ground is much easier. Standard aerial
photographs can be assumed to have no distortion due to the lens.

RELATIVE APERTURES  Several factors determine how much lght reaches the film. These are:
' » characteristics of the source illumination. The brighter the conditions, the
more light that reaches the film.
» the aperture of the lens. This is the effective diameter of the lens when the £y
shutter opens. The larger the aperture, the more light that reaches the film. L
The amount of light entering the lens opening is linearly related to lens area.
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_— _ ~ Since the lens area is proportional to the square of the lens diameter,
: therefore the amount of light reaching the film is proportional to the square
. of the lens diameter.

» the focal length of the lens. This is the distance between the camera lens
centre and the film. The longer the focal length, the less light that reaches
the film. This can be explained in a number of ways. Perhaps the easiest
way to understand this relationship is to remember that images are larger
with a longer focal length. This means that light reflecting from the objects
has to cover a larger area of film. Since the size of the image is inversely
proportional to the focal length, it follows that the light reaching the film is
also inversely proportional to focal Iength.

* exposure time. This is the length of time the shutter stays open. The longer the
exposure time, the more light that reaches the film.

The relationship between some of these factors is fllustrated in Figure 5.11.

Ficure 5.11 Relationship among
focal length (f), size of Image,
. ;’; " and view angle,

There is also a relationship between the view angle of the lens and the focal
length. For a fixed size of film, shorter focal lengths imply a wider angle lens.
Longer focal lengths imply a narow angle lens. Focal lengths for typical lenses
used in aerial photography are: (1) narrow angle (305 mm); (2) normal angle
(210 mm); and (3) wide angle (152 mm).

Relative aperture (also known as fistop) determines how much light reaches
the film per unit of time under some known lighting condition. It combines the
effect of aperture size and focal length to facilitate rapid setting of exposures.
Another way of looking at ffstops is to think of them as measures of the “speed”
of the lens that are independent of focal length. A definition of f/stop is the focal
length of the lens divided by the lens diameter.

In order to see how the process works, let’s address the question, “Does an
Jistop of f/1 represent more or less light than an ffstop of f/2?” A good way to

. answer a question like this is to think up some appropriate numbers and reason
from them. For example, a lens with a focal length of 40 mm and a lens
diameter of 20 mm represents an ffstop of f/2 (40 + 20). In order to get an ffstop
of f/1, the effective diameter of the lens must be increased to 40 mm or the focal

 length must be halved to 20 mm. Either way, the amount of ght reaching the
film per unit time will increase. Hence, an f/stop of f/1 represents more light
than an fistop of f/2. '
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Tasie 8.1 Relationship between
Relative Aperture and Speed

Index

b

P
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Camera ffstops are set up in such a way that each “step” down halves the
amount of light. Since the amount of light captured is proportional to the area of
the lens, and area is proportional to the square of the diameter, decreasing the
diameter of the lens by a factor of V2 (which approximately equals 1.4) will
halve the amount of light captured. A listing of ffstops and 2n associated speed
index is given in Table 5.1.

Relative Apertures:

fft 14 2 28 4 56 8 1 16 22 32 45 64

Speed Index: ' _
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

The speed index and f/stops are used together to allow the interchanging of

lenses and/or the adjustment of relative apertures while still maintaining

constant exposure. Since the amount of light is halved with each increase in

fistop number, the time the shutter is open must be doubled to achieve the same

exposure. If you step down four fistops (e.g., from f/2 to f78), the exposure time

must be extended 16 (i.e., 2%) times to maintain the same exposure. You can see

this from the table by comparing the speed index for f/2 (4) and f/8 (64). - .

Check to see if you understand this concept by trying this question from an old -
examination.

Harvey ‘Flash’ Kirk, ace photographer, determined that the correct exposure
for his picture at {/1.4 was 1/125 seconds using his standard 55 mm lens. At
the last minute, Harvey decides to use his 135 mm telephoto lens instead. This
lens has a maximum relative aperture of £/2.8. What is his correct exposure
time?

Hint: The sequence of exposure times on a standard camera (in seconds} are:
1/1000, 1/500, 1/250, 11125, 1/60, 1/30, 1/15, 1/8, 1/4, 1/2, 1.

Answer: 1/30 second.

SCALE ON VERTICAL

AERIAL PHOTOGRAPHS

Scale may be defined as the ratio between a model representation of an object
or distance and the real object or distance. You are probably most familiar with
scales from maps. Almost all maps have scales that tell you how to convert
distances on the map to actual distances on the ground. If you have looked at
several maps, you probably have realized that there is more than one way of
presenting a scale, '

We can think of photographic scale as equaling a/A where a is a distance on a .
photograph and A is the corresponding ground distance. It can be proven
geometrically that triangle Wxy in Figure 5.12 is similar to triangle WXY. From
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Figure 5,12 Vertical aerlal photography diagram. Ficure 5.13 The effect of terrain changes on scale.

the properties of similar triangles, it follows that f/H = a/A where H is the
flying height above ground datum. Hence, we can define scale in this diagram
as being equal to f/H.

We have also used Figure 5,12 to illustrate a relationship that we will employ in
future diagrams of this type. Obviously, the true film plane lies on the opposite
side of the lens from the ground. This results in a reversal of images. It is more
convenient, and exactly equivalent geometrically, if triangle Wxy is rotated
through 180 degrees to become triangle Wx'y'. This will offset the image
reversal while maintaining geometric integrity.

Scale varies across aerial photographs if the terrain is not absolutely flat. We
will discuss this feature, termed displacement due to relief, in detail in the next
lesson. It will suffice at the present time for you to think of the scale at any
point on the photograph as being related to the vertical distance between the
aircraft and that point. As this distance changes with the topography, the scale
changes. In other words, there will likely be many scales on a single aerial

~ photograph. We have tried to illustrate this principle in Figure 5.13.

In order to have a single representative scale for an aerial photograph, the
concept of a2 nominal scale is used. Nominal means existing in name only. The
 nominal scale of an aerial photograph is simply f/H. If the ground datum js
_established close to the same elevation as the terrain and the terrain is relatively
flat, then the nominal scale will be close to the actual scale at any point on the
photograph.

The present trend in aerial photographs is to use a unitless scale called a
representative fraction or RF scale. Common nominal scales for post-metric
conversion Canadian aerial photographs are 1:10,000 and 1:20,000. The
photographs in your lab kit have a nominal scale of 1:10,000. A scale of
1:10,000 means that 1 of any unit distance on the photograph is equal to 10,000
of these units on the ground. For example, 1 mm represents 10,000 mm or 10 m
on the ground.

In many older aerial photographs, flight paths were controlled so that the
nominal scales made sense in imperial units. For example, many photos used to
be flown so that the nominal scale was 1 inch = 14 mile. This translates to
1:15,840 using an RF scale.
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STEREOSCOPIC VISION

PercEIVING DEPTH

- seconds in a minute, 20 seconds of a degree translates to 1180th of a degree or

You may have difficulty remembering which of two scales is larger when the
scales are given as RF’s. The key to remembering is to realize that the second
number in an RF scale is really a denominator in a fraction. The larger the
number in the denominator, the smaller the fraction, and the smaller the scale.
For example, 1:10,000 is a larger scale than 1:20,000.

For the photographs in your lab kit, ground datum was established at mean sea
level (MSL), flying height was 3050 m above MSL, and focal length was 305
mm. This translates to a nominal scale of:

f 305mm  305mm 1

H 3050m 3050000 mm 10000

. Suppose the height above MSL for a point on the photographs is 120 m above

MSL. The scale at this point would be:

- I 305 mm - 305 mm i
H (3050-120)m 2930000 mm 9600

A further complicating factor for determining actual scale at some point on the

photograph is not knowing the exact flying height. The specified flying height

above ground datum is easily calculated from knowing the nominal scale and

focal length. However, the actual flying height above ground datum for any -

photograph may differ from this because it is difficult for the pilot to fly at a :, }
L

constant elevation. Differences in flying height of up to 10% of the specified

flying height are sometimes encountered.

Stefeosc«:opic vision refers to our ability to see in three dimensions. In this
section we describe how humans perceive depth, then explain how a stereo-

" scope helps you to view two different images of an object stereoscopically. We

conclude by describing how an overlapping pair of aerial photographs can be
viewed stereoscopically.

‘We see things in three dimensions because we have two eyes. Our concept of

. depth is a result of the difference in convergence angles between our eyes when

they focus on the front (top) and rear (base) of an object (Figure 5.14).
Everyone does not have the same sense of depth because the distance between

. people’s eyes (known as inter-pupilary distance or IPD) differs. The “average”

IPD is 65 mm.

Normal people can resolve a difference between 6, and 8, on the order of about
20 seconds of a degree. Given that there are 60 minutes in a degree and 60

0.00556 degrees. Some individuals can recognize a difference of about 10

_seconds of a degree.




race 101

6\_.._,.»} : Cameras can be used to take the place of your eyes. If two cameras are set up at
right angles to an object along a common baseline separated by a distance that
will allow some portion of their fields to overlap, photographs of the object
from each of the cameras are analogous to what your eyes might see (Figure
5.15). Movies that are in 3-D are shot in this manner. When the photographs are
properly aligned, each of the photographs presents a view of the object from the
same perspective as you would see it if each of your eyes were in the position
from which the respective photographs were taken. If you are able to focus each
eye on the object in the corresponding photograph simultaneously, the two
images should merge into a three dimensional image of the object.

fnegim of Qveﬂap\

Left Right =
Eye Eye - = Photo 1 - Photo 2

{ 3 Fisure 5.14 Percelving depth. Fisure 5.15 Camera locations for taking photographs that can later be
------ g viewed stereoscopically.

Usk OF THE STEREOSCOPE  Your laboratory kit contains a pocket stercoscope. It folds into a flat 14 x 8 cm
3 ' - vinyl case. It may be easier for you to follow the some of the discussion that
- follows if you examine it as you work through the remainder of this lesson.

When you remove the pocket stereoscope from its case, you will notice a
movable metal bar attached to the outside of each of two metal housings. Each
of the housings contains a glass lens. The bars serve as legs that lock into place
when they are opened. When the legs are open, you will notice that the distance
_between the lenses can be adjusted by moving the housings along a bar that
_ shows a scale marked from 50 to 70 mm. This scale is used for setting the width
-of the lens so that it corresponds with your IPD. When you are ready to look
. through the stereoscope, it is placed so that you can look through the two lenses
simultaneously. The numbers on the scale should be facing you.

You likely have seen a 3-D movie at some time. When a 3-D movie is shown,
two projectors are used. Each projector shows images taken simultaneously
from separate cameras, offset some distance from each other. If you have ever
seen a 3-D movie, you will likely remember the funny-looking glasses with
tinted lenses you were given to wear. When you looked through the glasses, you
probably were able to see images clearly in three dimensions. When you took
the glasses off, images on the movie screen appeared quite fuzzy and out of
focus. This occurred because the glasses were tinted in such a way that your left
. eye was able to see images from the left projector only and your right eye

™
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images from the right projector. This enabled each of your eyes to focus
independently on the appropriate images. These images were then merged into a
single image within the optic centre of your brain, producing a sense of depth.

The pocket stereoscope works in much the same fashion as the tinted glasses.
However, the stereoscope uses ground glass lenses to keep the line of sight of
each eye patallel while enabling you to focus your left eye on the left print and
your right eye on the right print, in spite of the natural tendency of unaided eyes
to converge when they focus. The stereoscope also magnifies the image so that
you can make out greater detail.

‘We suggest that you do not try to view a pair of photographs stereoscopically
the first time you read this section. If you have never viewed aerial photographs
stereoscopically before, it is easiest to start your stereoscopic viewing with the
stereograms included with the assignment. Only after you are sure that you can
see stereoscopically, and know what an object viewed from above looks like in
3-D, should you try to view your photographs stercoscopically.

1t is essential to align aerial photographs propetly if you are to be able to view

them stereoscopically. The top of the photographs in your laboratory kit can be
distinguished by the identification information which should be in the upper

right hand corner when the photograph is properly aligned. The identification
information on your photographs will look like ‘30BC79046 No G0xy’ where 4 '"}
‘xy’ can have values between 36 and 39 inclusive. The ‘30BC79” portion of the s
code teils you that the photographs were the 30th set flown in British Columbia

(BC) in 1979 (79). The ‘046’ portion of the code refers to the flight line

number. Flight line is the name given to the path an aircraft follows along a

single bearing. The flight line for your photographs followed a bearing of 270

_degrees (i.e., due west). This means that the top of the photograph represents

true north when the photograph is properly aligned. (Note that most, but not all,
flight lines folow an east or west bearing. If you contract your own aetial
photographs you can specify the direction of the flight line in any direction you

“wish.) The ‘No 00xy’ portion of the code refers to the photo number. This

refers to the position of the photograph within a flight line. Your photographs

- are numbered from 0036 to 0039 inclusive. The numbers increase from east to

west as the photographs progress across the UBC Endowment Lands and
campus area.

To view a pair of photographs stereoscopically, place two consecutively
numbered photographs on a flat surface with the top edges furthest away from
you. Make sure the photograph with the smaller number is on the right. Try to
work in a location where the lighting is good and glare is minimal. Initially,
ensure that both photographs receive roughly equivalent light.

Place the edge of one of the photographs (it doesn’t matter which one) beneath

- the edge of the other photograph. Slide the photographs together, positioned so
- that their lines-of-flight coincide. (You will be marking the line-of-flight on
- each of your photographs in the assignment.} Pick an object that you can see

clearly in both photographs and adjust the photographs so that the images of this

. object are separated by a distance roughly equivalent to your IPD. Place the
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stereoscope on top of the images so that each of the lenses is centered over the
object you wish to view. When you look into the sterecscope, you will probably
see two separate images of the object you are viewing. Move the photographs
slightly while still looking through the stercoscope until the two images of the .
object appear to merge into one. When this occurs, you should suddenly see the
image appear three-dimensional. The effect is quite startling at first; if you are
.in some doubt as to whether you are seemg stereoscopically, then you most
likely are not.

Many people have some difficulty seeing aerial photographs in stereo at first, so
if you can’t do it right away do not get discouraged. I you have difficulty, the
best thing to do is to take a break and try again later. A small proportion of the
population cannot see stereoscopically. This is generally due to damage in one

- eye which leads to the other eye being considerably more dominant. However,
everyone has one eye that is more dominant than the other. Sometimes you can
improve your ability to see stereoscopically by strengthening the light source on
the side of your weak eye.

You can easily find out which of your eyes is dominant by trying an experiment.
Hold your arm out in front of you with your thumb extended vertically. With

- both eyes open, position your arm so that your thumb is blocking an object
across the room from where you are sitting. Close one of your eyes and see
whether your thumb appears to shift. Open that eye and close your other eye.

" The eye you are looking through when your thumb does 7ot appear to shift is
your dominant eye. '

PREPARING AERIAL PHOTOGRAPHS In this final section of this lesson, we describe how to prepare your photographs
* FOR LONG-TERM STERESOCOPIC  for comfortable, long-term stereoscopic viewing. The procedure has been
: ' VIEWING divided into steps in order to make it easier to follow. You will be asked to
prepare each of your photographs as part of the assignment. Be careful how you
- do this because it can affect greatly the accuracy of measurements you will be
" making in later assignments. Also, you will be making marks on the

photographs that cannot be removed. It is possible to ruin the photograph for
any future use. '

“step ] * Remove Margins from the Photographs: :
This is not an essential step, but removing the margins widens the area of easily
obtained stereoscopic coverage. The margins on your photographs consist of an
outer white frame and an inner black frame. One of the margins contains some
instrument readings that inform you of the date of the photograph and the time
of day among other things. You may wish to make note of whatever readings
you consider useful before removing the margins. {None of this mformatlon is
reqmred for your assignments.)

The maigins can be removed easxly with a pair of scissors. Be sure to cut each
of the sides following a straight line, and cut right up to the edge of the print.
.Note that the fiducial marks and the photo identification are within the edges of
the print and should not be removed. . '
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» Locate and Mark Principal Points:

You will recall from earlier in this lesson that principal points are located in the
exact centre of the photographs and that the fiducial marks are used for locating
this point. The procedure that should be followed is quite simple. Lay a straight
edge across the photograph from the centre of one fiducial mark to the centre of
the opposite mark. Use the push pin included with your photographs to scratch a

~ thin line a few cm long in the emulsion in the vicinity of the middle of the

photograph. Repeat this for the other pair of fiducial marks. The point at which
your scratched lines cross is the principal point. Use your pin to make a small
hole through the photograph at that point. On the back of the photograph circle
this hole in ink and label it ‘PPxy’, where “xy’ is the photo number. Use the wax
pencil provided to draw a line over the scratch marks and then lightly erase this
line. This should remove wax from the emulsion, but leave wax where the

" emulsion has been scratched. You will be left with 2 thin coloured cross with a

pin hole in its centre that marks the exact location of the principal point.

*» Locate and Mark Conjugate Principal Points:
Recall that conjugate principal points are images of principal points from

. adjacent photographs in a specific photograph. In order to mark these points

accurately, you need to take advantage of stereoscopic viewing and the fact that
principal points can be precisely located using the fiducial marks. We will

. -assume in the following description that the principal points are already marked
- on all the photographs. .

Set up an overlapping pair of photographs so that you are viewing the principal
point of the left photograph stereoscopically. {This will require that the right
photograph be partially overtop the left photograph.) You should see the cross

" marking the principal point of the left photograph quite clearly although it is

only marked on that photograph. Place a pin in your right hand and attempt to
place the point of the pin directly onto the image of the principal point in the
right photograph while you are viewing that point stereoscopically. Look up
from the stereoscope and visually check that the point of the pin appears to be in
the right place. Try this 2 number of times until you become confident in your
ability to do this accurately. Mark the conjugate principal point by making a
hole in the photograph with your pin at the appropriate location. On the back of
the photograph, circle the hole and label it ‘CPPxy’ where ‘xy’ is the photograph
for which this point is the principal point. On the front of the photograph,
scratch a 1 cm x 1 cm cross in the emulsion with the conjugate principal point in
the centre of the cross. Draw a line over the cross with your wax pencil and then
lightly erase this line.

The same procedure is followed for marking the conjugate principal point on

‘the left photograph except that the principal point on the right photograph is

viewed stereoscopically and the pin for marking the location of the conjugate
principal point on the left photograph should be held in your left hand,

» Mark the Line-of-Flight:

The principal point and conjugate principal points on an aerial photograph
represent the only points over which you can be sure that the aircraft flew. If
yaw is present, the line-of-flight will not pass exactly through the fiducial
marks. Since yaw may not be constant between adjacent photographs, the line-
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of-flight may not be exactly straight. In recognition of this, the line-of-flight on
any photograph is drawn as two straight line segments. Each segment begins at
the principal point and proceeds through one of the conjugate principal points
out to the edge of the photograph. These segments should be drawn on the front
of the photograph in ink so that the line is both thin and permanent.

_* Measure Average Photo Base Distances:

A photo base distance is the distance between a principal point and a conjugate
principal point on a given photograph. The average photo base distance is the
average of this distance on two. adjacent photographs, For example, the average
photo base distance for photos 37 and 38 would be the average of the distances
between PP37 and CPP38 on photo 37 and PP38 and CPP37 on photo 38. These
distances may not be the same because of measurement error and the impact of
changing terrain. '

Photo base distances should be measured with a ruler to the nearest millimetre
and recorded on the back of every photograph. Average photo base distances
should be calculated and recorded on the backs of odd numbered photographs.
For example, the average photo base distances for photos 36 and 37, and for
photos 37 and 38, should both be recorded on the back of photo 37.

* Tape Photographs Down for Long-Term Stereoscopic Viewing:
You will notice that aerial photographs are easily knocked out of alignment for

- stereoscopic viewing if they are not secured in place. This is particularly

bothersome and can contribute error when making the measurements required

_to calculate the height of objects, (Several ways of calculating heights will be

covered in the next lesson.) This can be avoided by taping the photographs to
your viewing surface. If you are careful when you initially align the

‘photographs, the whole of the overlapping region should be in proper alignment

for stereoscopic viewing with no further adjustments required.

- Begin by taping the outside corners of one of a stereo pair of photographs onto

your viewing surface. Slide the other photograph towards the taped photograph
so that their lines-of-flight coincide. It does not matter whether the inside
(adjacent) edge of the free photograph is slid below or above the taped
photograph. Stop when you can see the central portion of the matching edge in
stereo. Move the stereascope to the top of the photograph and make whatever
fine adjustments you need to make to the free photograph until you can see this
pottion in stereo. Repeat this for the bottom of the photograph. Continue to

make fine adjustments up and down the edge until the whole side appears to be

- properly aligned. At this point, tape down the cutside edges of the free

photograph. Check to ensure that you can see stereoscopically anywhere in the

 region of overlap by reversing the position of the free edges of the photographs.

(In other words, lift the free edge of the photograph presently on the bottom and
place it on top of the free edge of the other photograph.) If you can see
stereoscopically ail along this edge, then you have the photographs in perfect
alignment. If you cannot see this portion stereoscopically, then you should
remove the tape from the photographs and begin the procedure anew.
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REVIEW/SELF-STUDY
QUESTIONS

Do these questions before you go on to complete the Graded Assignment. These

questions are of value to check your understanding of the material before

- progressing to the next lesson, as well as later review for the final examination.

Do not submit answers to the tutor.

1. Differentiate between the terms photogrammetry and photo interpretation.

“2. List several reasons why aerial photographs are widely used in forestry and
‘other fields.

3. What are some of the general uses of aerial photography in forestry?
4. Define the following terms: nadir, ground datum, and line-of-flight.

5. Distinguish roll, pitch, and yaw from each other. What is the impact of each
of these on the relationship between the nadir and the principal point?

. Differentiate between principal point and conjugate principal point.

6

7. What are fiducial marks?

8. What is a truly vertical aerial photograph?
9

9. What is tilt? How is it controlled operationally?

'10. What is the primary cause of yaw, and what is its impact?

11. What is the electromagnetic spectrum and what rénge of wavelengths does
it encompass? :

12. What is atmospheric attenuation? Why is it important?
13. What are pass bands? Why are they irﬁportant?

14. What is near infrared radiation?

15, What happens when EMR falls on a surface?

16. Whatis a spectral response cﬁvc?

17. Why can speétral signatures not be used to identify objects from aerial
photographs? : :

18. What is the standard observer curve?
19. 'What determines how something appears in an aerial photograph?

20. What are the purposes of the film/filter component of the photographic
system?

21. What are the purposes of the camera/lens component of the photographic
system?

22. Describe the factors which determine how much light reaches a film.
23. What is relative aperture?

24. Does a smaller ffstop represent more or less light than a larger one? Why?

T,
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25,
26.

27,

28.
29.
30.
31

‘What is scale? What causes it to change across an aerial photograph?

What is meant by a nominal scale on an aerial photograph and how is it
determined? :

‘What is it that causes our sense of depth? Why doesn’t everyone have the

same sense of depth?

What is the principle upon which the stereoscope operates?
How can you determine the top of an aerial photograph?
‘Why might an individual not be able to see stereoscopically?

What is average photo base distance? Why might the corresponding photo
base distances on a stereo pair of photographs be different from each other?
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- LESSON 6

PRINCIPLES OF PHOTOGRAMMETRY

INTRODUCTION

LessoN OVERVIEW

LessoN OBJECTIVES

LEssON READINGS

LEssou ASSIGNMENT

B
\_\ ./'
g

This lesson covers the basic geometric theory behind the techniques for measur-
ing the heights of objects on vertical aerial photographs. Techniques will be
developed for both single photographs and stereo pairs.

After completing this lesson and the assignment, you should be able:

1. to understand the theory behind several different methods of measuring the
height of objects from vertical aerial photographs;

2. to determine the heights of objects on single vertical aerial photographs from
measurements of displacement or shadow length;

3. to determine the heights of objects in the area of overlap on a pair of stereo
photos from measurements of parallax difference.

Much of the material in this lesson is covered by Avery and Berlin on pages 49
10 90. Some of this material is covered in Avery and Burkhart, pages 263-265.

When you have completed this lesson, answer the self-study questions at the
end. You should then complete Graded Assignment #5 and mail it to your tutor
by the date indicated on your course schedule. Be sure to include a pink assign-
ment cover sheet. '
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DISPLACEMENT DUE TO RELIEF

DERIVATION OF A FORMULA FOR
DispLACEMENT DUE 1O RELIEF

l a- a' (= distance x to 2)

x| Y\\Z

p ) I -2

X+ Arm—sY

Ground datum

Ficure 6.1 Diagram for use In
deriving the formula for dis-
placement due to rellef,

You learned in the last lesson that scale varies in an aerial photograph as a con-
sequence of changes in topography. At this point it is worthwhile to ask the
question, “What is the consequence of the fact that scale varies on aerial pho-
tographs?” In the previous lesson we outlined several uses of aerial photographs
that involve making measurements, so you know that the answer to this ques-
tion is not, “Measurements cannot be taken on vertical aerial photographs.” A
partial answer to this question is, “Aerial photographs are not maps and there-
fore should not be expected to yield exact measurements of distance or bear-
ings.” However, there are ways of getting around this problem as you will see in
Lesson 7. A more positive answer is, “We can exploit the fact that scale varies
to determine the heights and relative elevations of objects.” The methods that
can be used to do this are the major thrust of this lesson.

‘We will derive this formula using the geometric theory of similar triangles.

: FolloWing the derivation is much easier if you use the diagram in Figure 6.1.

Four triangles will be used: (1) Lxy; (2) LXY; (3) Lxz; and (§) LX'Z. The fol-
lowing distances have been given special labels:

" *Ltox is called f (the focal length of the lens);

* L to X is called H (the flying height above ground datum);

* X toy is called a (the photo distance between the base of the object and the
principle point);

* X to z is called &’ (the photo distance between the top of the object and the Y
principle point);

*X to Y and X' to Z are called A (the ground distance the object is a way from
the nadir); '

* Zto Y is called & (the height of the top of the object above ground datum).

N’

Triangle Lxy is similar to triangle ILXY. From this similarity, it follows that:
f a

H A

(Recall that we derived this relationship in the previous lesson when we were
exploring scale.} Cross-multiplying yields:

aH = Af. [Call this Result 1.]
Triangle Lxz is similar to triangle LX'Z. From this similarity, it follows that:

o

H-k A
Cross-multiplying yields:
a'(H — h) = Af [Call this Result 2.]

Result 1 and Result 2 provide two different equalities for the product Af.
It follows that:

aH = o'(H - k) £
aHd =a'H-ah
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2H - C\A
H

\ : ’ & Ground datum
[ .
N Ficure 6.2 Diagram for the sam-

ple problem.

ah=aH—aH

ah=(a'-a)H.
Now we will make some judicious substitutions. We will let (a'— @) equal 4 (d
is short for displacement; {a’ — a) is the displacement of the top of the object
from its base on the photograph). Next, we will let a’ equal r (r is short for radi-

al distance; a' is the radial distance of the top of the object from the principal
point on the photograph). After these substitutions, the formula becomes:

rh=dH

This can be rearranged to yield:

i~
. H

This is the formula for displacement due to relief in a single aerial photograph.

It is the first of three formulae that we will derive this lesson. The following

observations can be made from the relationships expressed in this formula:

» d is directly proportional to
This means the farther the top of an object is away from the principal point,
the greater the displacement. Hence, an object of a given height will be dis-
placed more if it is close to the edge of the photo than if it is close to the
principal point. If the object is found exactly at the principal point

- (ie. r=0), then there will be no displacement.

* d is directly proportional to &,

* This means that the taller the object, the greater the displacement. We will
exploit this relationship for calculating the height of objects from a single
aerial photograph later in this lesson.

» d is inversely proportional to H. _
This means that the lower the flying height, the greater the displacement.
* d is not directly related to scale. '
This is useful because you are seldom sure of the exact scale at any point on
a photograph,
» d is radial from the principal point.
You should be able to see this quite clearly from your photographs.

As an example of how you can apply some of this material, look at the follow-

- ing problem taken from an old examination.

Suppose picture A (Figure 6.2) is taken with a camera whose lens has focal
length f at an altitude of H above ground datum. Suppose picture B is taken with
a camera whose lens has focal length 2f at an altitude of 2H above the same
ground datum. Assume both pictures are vertical and that exposure conditions
(illumination, nadir, aircraft heading, cross wind, etc.) are identical. Is pictare A
the same as picture B? Explain.

Picture A differs from picture B. (No, not only because picture B has an air-
plane in it!) The explanation does not lie with scale. The scale for picture A is
J/H. The scale for picture B is 2f/2H which equals the scale of picture A. The
difference between the pictures is due to displacement caused by relief. The dis-
placement of an object r units from the principal point in picture A is ri/H. The
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MEASUREMENT OF HEIGHTS OF
OsJecTs USING A SINGLE
PHOTOGRAPH

. method ]

sure distances with a standard ruler to the nearest 0.5 mm.

T,

PN

displacement of an object r units from the principal point in picture B is rA/2H
which equals 1/2 of the displacement in picture A.

It is possible to obtain a wide range of displacements for a single scale. This can
be done by changing the focal length of the lens an amount proportional to any
change in flying height so that f// remains constant. Hence, whether you can
accurately measure the heights of trees using aerial photographs depends upon
flying height, not scale.

Heights of objects are generally measured using overlapping pairs of stereo
aerial photographs. The reason for this is a matter of measurement precision
rather than theoretical necessity. As you will see, there are two ways that .
heights can be calculated using only a single photograph.

* Using Displacement Due to Relief:
The formula that we derived in the previous section for displacement due to
relief can be rewritten to yield a formula for caleulating height:

dH

=L
r

As an example, we will use this formula to calculate the height of the clock

tower in photo #38. We measured the displacement (d) of the clock tower as 1.5 N
mm. The top of the tower is approximately 96 mm from the principal point (7). L
We will assume that the flying height of the aircraft above the base of the clock
tower is 3000 m. (In order to calculate the height of an object we need to move

the ground datum to the base of that object.) Given these measurements and

assumptions, the height of the clock tower is:

_dH _15x3000
r 96

h 47 m

How precise is this calculation? One way to determine this is to look at the reli-
ability of the measurements. Let’s assume that we measured the distances on the
photograph to the nearest 0.5 mm. Therefore d can range between 1.25 and 1.75
mm and r can range between 95.75 and 96.25 mm. To create a worst case sce-
nario, we need to look at the calculated value of 2 with 4 and r at opposite

extremes. When d = 1.75 and r = 95.75, height becomes:

P 1.75 x 3000 i

4.
o575 Coem

When d = 1.25 and r = 96.25, height becomes:

. 1.25x 3000

=38.7m
96.25

Hence, the height of the clock tower could realistically be within the range of
38.7 m to 54.6 m. This is not very precise although we would do well to mea-

e
| |
ht v
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Lx ~ Ficure 6.3 Determining the
" height of an object using shad-
ow length.

‘The impact of flying height on the precision of height measurements can be eas-
ily seen through a further illustration. Let’s see what will happen to the preci-
sion of the clock tower measurement if the flying height is halved. We will
assume that the focal length is also halved so that the scale remains constant, I
we do this, it means that » won’t change from the example above. Obviously,

. the height of the clock tower (k) will not change either. Since d = rh/H, halving

H must mean that & will double to 3 mm. The precision with which we can

~make measurements on the photograph remains * 0.25 m, Hence, at one

extreme d = 3.25 mm, » = 95.75 mm, and H = 1500 m. Using these figures, the
estimated height is:

P dxH _ 3.25x1500 - 50.85m

P 95.75

. At the other extreme, d = 2.75 mm, r = 96.25 mm, and H = 1500 m. Using these

figures, the estimated height is:

P dxH - 2.75x1500 -42.75m
P 96.25

- Thus, the impact of halving the flying height is to narrow the range of our esti-

mate 1o between 42.75 and 50.85 m. This is obviously an improvement over the
range we obtained with a flying héight of 3000 m.

To show the impact of r on this measurement, we could go through a similar
illustration. Say we chose to halve 7 If H is held constant, this would mean d
would also be halved. We will leave the calculations for you as an exercise.
(You do not have to submit the results.) You should find that the precision of the
height measurement will be worse. Another way of saying this is, “The farther
the object you are measuring is away from the principal point, the more precise
your measurement.” You should keep this in mind when choosing a photograph
on which to make measurements.

* Using Shadow Length:

If the shadow cast by an object is visible on a vertical aerial photograph, the
length of the shadow can be used to estimate the height of the object. The first
step is to convert shadow length on the photograph (s) to shadow length on the
ground (S). This is done by multiplying s by the inverse of scale (H/f):

S.st

If s and f are measured in millimetres and H is in metres, then the units of S will
also be metres. The next step is to use trigonometry to figure out the height of
the object (k) from S and the elevation angle of the sun (e) (Figure 6.3). If h is
vertical, then:

fan(e) = %
h =S x tan(©)
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OT1HER MEASUREMENTS FROM A

SINGLE PHOTOGRAPH -

The elevation angle of the sun (8) can be determined in two ways:

* from knowledge of the height of an object on the photograph with a clearly
visible shadow. In this case, it is a simple matter to solve the equation given

~above for @ as: @ = arctan{?'/S") where k' is the known height and 5 is the
shadow length of the object on the ground.

* from tables of sun angles (known as a solar ephemeris). In order to find the
sun angle, you need to know: (1) the date of the photography; (2) the time of
the photography to the nearest hour; and (3) the latitude and longitude of the
location. Items (1) and {2) can be obtained from information printed on the
margin of photograph.

We will not go through any examples because shadow length is a very rough

means of determining height of objects, and is seldom used in practice. Some of

the reasons why shadow length does not provide reliable heights include:

» the formula requires knowledge of scale at a point;

» the formula assumes the object is perpendicular. This will not be the case if the
- object is leaning or if the ground is not flat;

» the shadow of the object you are interested in may be wholly or partly

obscured; _
* the object may not throw a shadow from the very top;
* the ground level may be obscured by brush, snow, and so on.

Other measurements may sometimes be taken on single aerial photographs,
including distance between two points, area, and the bearing between two
points. These measurements should be applied with caution because they will
be exact only if the ground is perfectly flat. In practice, they frequently are used

to provide rough approximations. Even under these conditions, care should be
taken if the terrain is quite uneven. There is little point in using expensive

instruments to make these measurements since errors due to terrain differences
will likely mask any errors introduced by inexpensive instruments.

Distance measurements on a single photograph are generally made using either
a standard ruler or a rolling wheel planimeter. A rolling wheel planimeter is
composed of three basic parts: (1) a weighted arm of fixed length (polar arm);
(2) 2 trace arm hinged on the unweighted end of the polar arm; (3) a rolling
whee] which rests on the measurement surface attached to a vernier scale. To
use it to measure distance, the trace arm is moved along the line which you are
measuring. The distance is read off the appropriate vernier scale. in mm.

Measurements of area are sometimes made from aerial photographs to estimate
the area of some delineated shape {e.g., timber type). Two types of instruments

‘are commonly used: dot grids and rolling wheel planimeters.

Dot grids are comprised of a transparent sheet covered with a fixed number of
dots per cm?2. The dot grid is placed at random over the shape of interest and the
number of dots that fall into that shape counted. The total count is then divided
by the number of dots per cm? to determine the area of the shape in cm?. This
can be repeated several times in order to calculate an average area. The area in
cm? on the photograph is then converted into a ground area (usually in m? or ha)
using the approximate scale of the photograph.

£
O
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STEREOSCOPY

RADIUS OF STEREOSCOPIC
PERCEPTION

B
IPD

Fisure 6.4 Maximum radius of

sfereoscopic perception.

To determine area using a planimeter, the pointer is run around the boundaries
of the area in a clockwise direction. The area in cm? is read direcfly from the
appropriate vernier scale. As with the dot grid, this works best if it is repeated a
few times and the results averaged. The photograph area is then converted to a
ground area using the approximate scale.

The exact bearing between any two points can be found only if the photographs

- are truly vertical and the terrain is flat. The one exception to the requirement of

flat terrain is if the bearings are from the principal point. This is because dis-
placement due to relief is always radial from the principal point. This fact is
exploited when maps are constructed from aerial photographs, as you will see in
Lesson 7,

Stereoscopy is the science or art that deals with stereoscopic (3-dimensional)
effects and the methods by which these effects are produced. In Lesson 5, we
explained how people see depth. In this section, we look at the maximum dis-
tance at which an average person can discern depth. We also explain the phe-
nomena which cause you to have an exaggerated sense of depth when you view

- an'ovetlapping pair of aerial photographs.

The radius of stereoscopic perception refers to the maximum distance at
which we can perceive a sense of depth. We will calculate this radius first for an
average individual with unaided eyes. Recall that the average individual can
sense angles of convergence on the order of 0.00556 degrees (6) and that the

~ average interpupilary distance (IPD) is 65 mm. In order to determine the radius

of stereoscopic perception (R), we must calculate the distance at which the
angle of convergence of the eyes is less than 0.00556 degrees. It may help you
to follow the calculations if you refer to Figure 6.4

' tan(@/2) = T2 . IFD
R 2R
IPD 65 mm

=670 m

R= -
21an(8/2) 21an(0.00556/2)

Thus, the maximum distance that the “normal” human can discern depth with
the unaided eye is approximately 670 m.

Radius of stereoscopic perception can be increased in two ways. One way is to
increase the virtual base line (i.e., the IPD in Figure 6.4). There is a proportional
relationship between the length of the base line and the radius of stereoscopic
perception so that any increase in the length of the base line immediately causes
a corresponding increase in the radius. The other way is magnification. For
instance, a magnification of 10 times essentially makes objects appear 10 times
closer to the observer. This would cause the radius of stereoscopic perception to
be increased 10 times.
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VERTCAL EXAGGERATION

A common instrument that employs both these sirategies is binoculars. Most
binoculars increase IPD by two times and also magnify by some power as well.
A set of binoculars which have 7 power magnification increases depth percep-
tion over unaided eyes by 2 x 7 which equals 14. Therefore, the radius of stereo-
scopic perception would become 14 x 670 which equals 9380 m.

There is no absolute verﬁcal scale in vertical aerial photographs since different
people have different IPD’s and hence see depth differently. However, there is a
sense of vertical exaggeration. In other words, objects appear taller than they

- should given the horizontal scale. This is related to the base/height ratio

(B/H) where B is the ground base distance between principal points on adjacent
photographs and H is the flying height above ground datum. The angle of con-
vergence increases for a given object as B increases or H decreases. Therefore,
vertical exaggeration increases with an increase in the base /height ratio.

Photo base distance is more or less fixed for any nominal scale of photography
by the size of the print and the amount of overlap required. We will assume for
the following calculations that the photo base distance for standard 23 cm x 23
cm prints is 95 mm. (This will vary up to several millimetres depending upon
the terrain_) For a nominal scale of 1:10,000, 95 mm on the photo represents
950 m on the ground. This increases IPD by a factor of 950 + 0.065 which
equals 14,615. On 1:10,000 nominal scale photographs, there is 2 reduction (the
opposite of magnification) of 10,000 from the ground conditions. Therefore,
sense of depth is increased by a factor of 14,615 + 10,000 which approximately
equals 1.5. Thus, you see a vertical exaggeration of about 1.5 times when you
view your photographs stereoscopically.

‘Would this change if you looked at 1:20,000 photographs? Not if the prints are

" the same size as the 1:10,000 photographs and the horizontal overlap is the

same. You can easily verify this by repeating the calculations that we showed
you for the 1:10,000 photographs. The photo base distance will still be 95 mm.
At a nominal scale of 1:20,000, this represents 1900 m on the ground. This
increases IPD by a factor of 29,231. The reduction due to scale is 20,000.
Hence, vertical exaggeration is 29,231 + 20,000 which approximately equals
1.5 again. Another way to determine this is to use the base/height ratio.
Decreasing the nominal scale from 1:10,000 to 1:20,000 doubles the ground

- ‘base distance. In order to decrease the scale to 1:20,000, flying height must dou-

ble (assuming focal length remains the same). Hence, the base/height ratio
remains the same for 1:20,000 photographs.

In order to check your understanding of this process, see if you can do the cal-
culations for determining the vertical exaggeration for the object shown in
Figure 6.5 when it is viewed using photos 1 and 3.

Answer: Vertical exaggeration is approximately 3 times.

£y
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Fisure 6.5 Location of an oblect
on three consecutlve pho-
~ tographs.

PARALLAX

P
L/

" ABSOLUTE STEREOSCOPIC PARALLAX
O Fisure 6.6 The appearance of a
S vertical object on an overiap-

ping pair of aerlal pholographs.

As mentioned previously, people discern the depth of an object viewed from
above using the differences in convergence of their eyes when viewing the top
versus the bottom of the object. If it were possible to accurately measure the dif-
ferences in convergence of your eyes when you are viewing an object stereo-
scopically on a pair of aerial photographs, this could be used to determine the
height of the object. However, such angles are very difficult to measure so this
does not provide a viable means of determining object heights.

Fortunately, there is another way to measure heights of objects on stereo pairs of
photographs using linear measuréments in a manner similar to that used for sin-
gle photographs. This involves the notion of parallax and parallax differences,
which is the subject of the remainder of this lesson.

Look at the arrow shown on the two aerial photographs in Figure 6.6. We have

 exaggerated the amount of yaw on the two photographs to illustrate that the

photographs are lined up along a common l-o-f, not along a line drawn parallel
to the base of the photographs. The arrow on the photographs represents a verti-
cal object on the ground. Notice that the arrow is pointing away from each of
the principal points. This is because the top of the arrow is displaced radially
from the principal points as a function of displacement due to relief. If an object
is located between the principal point and corresponding conjugate principal
point on a pair of overlapping photographs, the tops of the object in the two
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Fisure 6.7 Locating @ point on @
pdlr of ovetlapping aetial pho-
tographs using a Cartesian
coordinate system.
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photographs will be closer together than the bases when the photographs are

" lined up along a common l-o-f. This will remain true no matter what the dis-

tance is between the photographs as long as the right photograph remains on the
right, Furthermore, the difference in distances between the tops of an object and
the bases of the same object is related to the height of the object. The taller the
object, the greater the distance. '

Any point in the zone of overlap on a pair of aerial photographs will have an
absolute stereoscopic parallax (P) associated with it. The absolute stereoscop-
ic parallax of a point is the algebraic difference, measured parallel to the l-o-f,
of the distances of the two images from their respective principal points, assum-
ing the photographs are truly vertical and are taken from the same height above
ground datum. This definition can be more easily understood by looking at
Figure 6.7. In this figure, we have constructed a Cartesian coordinate system
using the 1-o-f as the X-axis, and a perpendicular drawn to this line through the
two principal points as Y-axes. The point has coordinates (x;,y;) in photo 1 and
(x2,y2) in photo 2. By definition, P = x; — x;,. It is for this reason that absolute
stereoscopic parallax is sometimes called X-parallax. Note that x, is negative in
this example becavse it falls to the left of the Y-axis on photo 2. In this situation,
‘we could write P as being equal to x; + x,. This is usually, but not always, the

.case as you will soon see.

'We can think of the area of overiap between a pair of aerial photographs as

~ being comprised of three regions (Figure 6.8). For simplicity we will describe

these regions only in terms of their locations on the left photograph (photo 1).
Region 1 comprises a narrow strip to the left of the principal point on photo 1
out to the left edge of the zone of overlap. If a point falls into region 1, both x;
and x; are negative. In terms of absolute distances, P = x; — x; however, the for-
mula P = x; —x, still holds in terms of algebraic distances. Region 2 comprises

 the area between the principal point and the conjugate principal point. This is

the major area of overtap for which we developed the formula in the previous

paragraph. Region 3 comprises the area to the right of the conjugate principal )
point out to the edge of the photograph. It is the complement to region 1 in that 6 )
both x; and x; are positive. In terms of absolute distances, P = x; —x,. Again, S

- .the formula P = x; — x; holds in terms of algebraic differences.
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Ficure 6.8 Regions In the areq of
overlap for o pair of aerlal pho-
tographs.

DEVELOPING A FORMULA
FOR DETERMINING THE
HEeIGHT OF OBJECTS

Ficure 6.9 Diagram for develop-
ing the paraliax theorem.

The fact that you can measure absolute stereoscopic parallax in terms of dis-
tances rather than angles is to your advantage since distances are much easier to
measure, However, measuring P may not be easy, nor dogs it provide you witha
direct means of obtaining the height of the object. It turns out that you can mea-
sure the difference in the parallax between the bottom of the object and the top
of the object (known as parallax difference or 4F) more accurately than you
can measure F. Furthermore, dP can be related directly o the height of the
object. How this procedure works will be the subject of the next section.

‘We begin this section by deriving a formula known as the parallax theorem
that will allow the parallax at a point of known elevation with respect to the .
ground datum to be determined. We will then make use of this formula in deriv-

ing another formula that will allow the height of any object in the zone of over-

lap of two photographs to be calculated.

In order to follow the derivation of the parallax theorem, it is essential to refer
to the diagram in Figure 6.9.

w )
X a y
Z e e ra
Ground
X datum
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‘Triangles Wxy and WZY drawn from photo 1 are similar. From the theory of
* similar triangles, it can be shown that:
a_ A+B
f (H-h)

pofAsB) A+
-5) " (H-h)

: Triangles W'x'y' and W'Z'Y drawn from photo 2 are also similar. From the theo-
* - ry of similar triangies, it can be shown that:
e A
fo(H-k)
roJA
{1 =
(H - h)

The parallax of the point at elevation & above ground datum is:

Pug-g=titB_ A B
(H-h) (H-h) (H-h)

where B is the ground base distance. The following formula is known as the
paraliax theorem: ' : /

P= B
(H-#)
~ In words, this formula states that the absolute stereoscopic parallax of a point at
an elevation of k above the gronnd datum is equal to the focal length of the
camera times the ground base distance divided by the difference between the

flying height above ground datum and the elevation of the point above ground
datum.

This formula could be rewritten to give us a formula for the height of any object
above ground datum. We could also use the actual flying height above the base
of the object (H") rather than . The difficulty with using this formula to solve

. for h is that it contains B, the ground base distance. This is rarely known exactly
and estimating it from the photo base distance and the approximate scale is
prone to error unless the terrain is relatively flat.

It turns out that a formula that does not contain B can be derived. In order to
fllustrate the derivation, Figure 6.9 is redrawn in a slightly different fashion as
Figure 6.10. Refer to that diagram to help follow our derivation.

Let P be the absolute stereoscopic parallax at the base of the object.
Pug —(—a{) =a, +a
The parallax difference is:

dP = Prop - P o o o . / }
Prop =P+dP S




. LEssonN 6 PAGE 121
f/ﬂ‘q\
K j Photo 1 Photo 2
w _ w
T &
|
H
Ficure 6.10 Diagram for deriving
a formula for measuring the
height of an object from an : Ground
overlapping pali of photographs. - 8 . datum

From the parallax theorem, we know:

P-i
H-h

Since & = 0 at the base of the object if H is the ﬂymg height above the base, the
parallax at the base of the object is:

Pl
H
‘The parallax at the top of the object is:
P+dP= B
(H-1)

Our objective is to solve for k as well as get rid of B. We can do that with some
mathematical juggling.

—— N i S w— Y — ] —————

HP HP+HdP-HP HdP

P+ dP P+dP P+dP

The final formula is:

HdP
P+dP

.h-

In order for this formula to give an exact answer for height, the symbols must

be defined in the following fashion:
.- h=height of the object above its base;
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Ficuee 6.11 Parallax atf the princl-
pal points of two adjacent aetl-

¢l photographs.

H =1lying height above the base of the object (i.e., ground datum is
moved so that it coincides with the base of the object);

P = absolute stereoscopic parallax at the base of the object;

dP = parallax difference between the top and the base of the object.

1) Determining P:
Absolute stereoscopic parallax at the base of an object is difficult to measure

exactly, even with expensive equipment. Fortunately, P can be easily approxi-
mated. Recall that: '

Pwm—

H-h

- If his considered to be the elevation difference between some point and the

ground datum, this formula provides the absolute stereoscopic parallax of that
point. Recall also that scale (S) at any point is:

f

H-h

where h is the elevation distance between the point and the ground datum. B is

- equal to the distance between the principal points on the ground: Since S x B is

equal to the average photo base distance (b), b can be substituted for P. This
substitution will be exact if:

* the principal points have the same elevation;
* the base of the object is at this elevation.

If these conditions are “almost” true, the average photo base distance can be
used to approximate F. Frequently this is done in practice.

Let’s look at this in a slightly different way by considering the absolute stereo-
scopic parallax in the two adjacent photographs shown in Figure 6.11.

—yst
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CPP1 PP2
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P at PP, is 0 — (—d;) which equals d,. P at PP, is d; — 0 which equals d,. If 2’ at
PP, equals A’ at PP, then P at PP, equals P at PP; (i.e., d; = d). Otherwise
these two differences are not equal. Recall that average photo base distance is

-calculated as:

JG+d,
2

b

Thus, b may be considered an “average” value for P at elevations between the
k' at PP; and the &' at PP,. '

2) Measuring dP:

Parallax difference can be measured quite exactly by exploiting the ability of
the human eye to discern depth. An instrument designed for this purpose,
known as a floating mark stereometer (also sometimes called height finder or
parallax bar), is included in your kit. This instrument uses the same principles

as more expensive electronic equipment, but cannot achieve the same degree of
accuracy.

The stereometer is approximately 18 cm long and 4 cm wide and is stored in a
vinyl case. It consists of a metal base, two plastic tabs each with a small etched
dot, and a metal wheel containing a scale.' There are two grooves, one on each
end of the underside of the base. The grooves are designed to attach to the legs
of the stereoscope. The stereometer should be attached so that the plastic tabs

‘face away from you when you look through the lens of the stereoscope. One of

the plastic tabs is fixed; the other may be moved along the base by turning the
wheel. The scale on the wheel consists of 100 numbers. Each rotation of the
wheel moves the plastic tab 1.0 mm, so the distance between each of the num-
bers on the wheel represents 0.01 mm.

Before you use the stereometer, it is important that you securely fasten the pair
of photographs you are using to a flat surface in a comfortable position for long-
term stereo viewing. (Recall that this procedure was covered in the previous les-
son.) Once this is done, place the stereoscope, with the stercometer attached, in
a position where you can see the object of interest stereoscopically, Adjust the
stereoscope and the plastic tabs on the stercometer so that it appears that the
dots cover the object top on each of the photographs. Look through the stereo-
scope and fine-tune the stereometer so that the dots appear to merge. At this
point you should be seeing the object stereoscopically and a single dot floating
at apparently the same elevation as the top of the object. If you turn the wheel
on the stercometer backwards and forwards slowly, the dot should appear to rise
and fall. Reset the merged dot at the top of the object and take a reading. Move
the wheel until it appears that the object is floating just at the ground surface.

* Take another reading. The top reading minus the bottom reading will equal the

parallax difference. You will have an opportunity to practice using the stere-
ometer in the assignment.

Another inexpensive device that can be used for measuring parallax difference
is the parallax wedge. The parallax wedge consists of two graduated lines on
some transparent material. One line has no numbers, coarse graduations, and is
vertical. The other line has numbers, finer graduations and slopes away from the
vertical line. The numbers on this line represent the distance the lines are apart
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Ficure 6.12 An exampie of @
parallax wedge.

at that point. The lines can be thought of as a series of parallax bars, set ata
reading different from the previous one by a constant amount. An example of a
parallax bar with distances in inches is reproduced in Figure 6.12.

The first step to operating the parallax wedge is to align the photographs for
stercoscopic viewing and tape them into place. View the object of interest
stereoscopically and place the parallax wedge over top of the object. The two
lines on the parallax bar should fuse together along one section of their length.
Because the lines are different distances apart, the fused portion will appear to
float in space. Move the wedge about the photographs until the fused portion of
the line appears to cut across the top of the object. Record the width at that
point. Move the wedge again until the fused line seems to intersect the ground
at the base of the object. Record the width at that point as well. The difference

- between the reading at the top of the object and the reading at the base is the

parallax difference. g
It takes quite a bit of practice to become proficient in using the floating mark
stereometer and the parallax wedge. An operator can become consistent to with-
in 0.05 and 0.10 mm when measuring parallax difference. In contrast, precision
electronic equipment can measure parallax difference to about 0.0005 mm.
However, this equipmenrt is both expensive and buiky.
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The parallax wedge is cheaper than the stereometer and does not contain any
mechanical parts that could be knocked out of adjustment. The stereometer is

-easier to learn how to use and its measurements are repeatable without the pos-

sibility of a previous reading biasing the results.

3) Errors in Calculating Height:
Errors can accumulate from several sources. The sources (in decreasing order of

"importance from the standpoint of this course) are:

* Measuring 4P (on the order of 10% with your level of skill and instrumenta-
tion); _

* Determining precise height (H") of the aircraft above the base of the object {on
the order of 1%);

* Using average photo base distance (b) to approximate the absolute stereoscopic
parallax (P) at the base of the object (on the order of 1%):

* Motion of objects in the wind (possibly on the order of 15% in a reasonably
strong wind).

- - Anumber of precautions can be taken to minimize the impact of these errors.

The precision of your measurements of dP will improve with practice. Usually a
photo interpreter must have between six and eight years of experience before
undertaking contour mapping. Also, using expensive electronic positioning
instruments greatly improves the precision. Precise knowledge of flying height
above the base of an object is particularly important on large scale aerial pho-
tographs. It is possible to use an instrument called a radar altimeter to obtain a

- much more precise height above ground than a standard barometric altimeter.

Absclute stereoscopic parallax at the base of the object can be precisely mea-
sured with expensive positioning equipment, but these measurements are time
consuming. Often parallax is measured only a few times per photograph if the
terrain is approximately level. Errors arising from the motion of objects can be
minimized by taking a stereo pair of photographs simultanecusly. This is fre-

- quently done for large-scale aerial photographs using cameras mounted either

on the wings of a fixed-wing aircraft or on a boom suspended below a heli-
copter. Generally, aerial photographs are not flown on a windy day.
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REVIEW/SELF-STUDY
QUESTIONS

Do these questions before you go on to complete the Graded Assignment. These

s,
e

questions are of value to check your understanding of the material before pro-

gressing to the next lesson, as well as later review for the final examination.

Do not submit answers to the tutor.

12,
13.
14.

15,

1e.

17

18.

. What is displacement due to relief and how can it be calculated?

. What are the relations between displacement and:

(i} radial distance of an object from the principal point;
(ii) height of the object;

(iif) flying height; and

(iv) scale?

. What is the difficulty with determining the height of an object from a single
" photograph using displacement due to relief?

. Explain how shadow lengths could be used to determine the heights of

objects.

. What are some of the practical difficulties with using shadow length?

. Besides measurement of heights of objects, what other measurements may

be made off single photographs? What is the major factor affecting the
accuracy of these measurements? ﬂ:}

. Identify two instruments for measuring the area of a region on an agrial e

photograph and briefly describe how each of the instruments is used.

. What is stereoscopy?

. Wha_lt is the radius of stcfeoscopic perception?
10.
11.

How can the radius of stereoscopic perception be increased?

Why is there no absolute vertical scale in aerial photographs?

What is the base/height ratio and what does it govern?

Differentiate between absolute stereoscopic paratlax and parallax difference.

Why is it awkward to use the parallax theorem to determine the height of
objects in many cases?

What is the relationship between the parallax at the base of an object and

- the object’s elevation above ground datum?

How is absolute stereoscopic parallax at the base of an object normally
approximated? Under what conditions will this approximation be exact?

What two simple instruments can be used to measure parallax difference?
What are the advantages of each?

What are the major sources of error in calculating the heights of objects
from a stereo pair of acrial photographs? What can be done to minimize the
impact of each of these error sources?
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MAPPING SYSTEMS AND MAPPING FROM
 AERIAL PHOTOGRAMMETRY

o,

() LessoN 7

INTRODUCTION In this lesson, an overview of map projection techniques and mapping systems
is first presented to provide background for a detailed discussion of planimetric

- mapping from aerial photographs. The theory behind planimetric mapping is
covered, as are ground control points, photo control points, and flight planning.
Radial line triangulation is presented as a simple means of transferring data
from an aerial photo to a map. Topographic mapping from aerial photographs is
covered briefly.

LessoN OVERVIEW

LessoN Ossectives  After completing this lesson and the assignment, you should be abie:
1. to differentiate among several of the major map projection techniques;
2. to explain the principles that apply to the construction of planimetric and
topographic maps from aerial photographs;
3. to construct a simple planimetric map using radial line triangulation.

LESSON READINGS Material covered in this lesson may be found in Avery and Berlin, pages
91-140. Some of this material is covered in Avery and Burkhart, pages
{” ' 258-262. : ,

* LESSON AsSIGNMENT  'When you have completed this lesson, answer the self-study questions at the
' end. You should then complete Graded Assignment #6 and mail it to your tutor
by the date indicated on your course schedule. Be sure to include a pink assign-
- ment cover sheet. :

S
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OVERVIEW OF
MAPPING THEORY -

MaP PROJECTION PROCEDURES

definitions

There are two basic types of maps:

» planimetric maps which show horizontal (i.e., ground) pesition of details of
the Earth’s surface. These details can include shorelines, rivers and streams,
roads, buildings, civil boundaries, and so on.

* topographic maps which show elevation (relief) in addition to some details of
the Earth’s surface. Relief can be shown using contour lines, shading, and so on.

Aerial photographs play an important role in making both kinds of maps.

Despite the fact that a vertical aerial photograph is not a precise record of dis-
tances (i.e., scale varies because of displacement due to relief), it is a precise
record of angles as measured from the principal point with respect to the line of
flight. As you learned last lesson, this is because all displacement is radial from
the principal point. As you will see, it is this factor that is exploited in map

-making.

‘We will begin this lesson by providing an overview of general mapping theory.
This is not intended to be exhaustive, but it will provide you with some back-
ground, We will then look at planimetric mapping in some detail. We will con-
clude the lesson by briefly discussing the use of aerial photographs in topo-
graphic mapping.

It is difficuit to make maps of larger areas {(e.g., British Columbia, Canada, the
world) because the Earth is approximately spherical and a sphere can not be
flattened onto a plane (map) without distortion. A map-maker would like to
achieve true distance, true direction, true shape and true area on a map. There is
no way to achieve all four of these properties. A number of different projection
procedures have been developed; we will briefly describe the basics of some of
these below. However, we will first define some terms that will help you follow
the descriptions more easily.

A number of technical terms are frequently encountered when reading about
maps. Some of these terms may already be familiar to you, but we expect that a
few will be new.

Parallels: lines of equal latitude. These lines run east-west and are the same
distance apart anywhere on the globe.

Meridians: lines of equal longitude. These lines run north-south on the globe.
They are farthest apart at the equator and converge to a single point at the poles.

Rhumb Lines: lines of true bearing,

Great Circle: formed by the intersection of the Earth’s sphere with a plane
passing through the centre of the Earth. The arc of a great circle is the shortest
distance between any two points on the Earth’s surface. Arcs of great circles do
not have a constant bearing unless they happen to run in a north-south direction .
or coincide with the equator. :

Equivalent Projections: The area of a portion of the Earth’s surface is the same
on a map as it is on a globe of the same scale, but the shape is not the same,

a
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Orthographic projection

Lambert Conformal projection

Fisure 7.1 Map projeciion varla-
tions: (a) erthoganal; (b) Lam-
bert conformal; (¢) Mercator;
(d) fransverse Mercator.

Conformal Projections: The shape on the map is the same as on a globe, but
the area is different.

Orthographic projection is the simplest of all projection procedures because it

does not account at all for the curvature of the Earth’s surface. Orthographic
projections are produced by projecting detail on the Earth’s surface onto a plane
that is tangent to the Earth (i.e., just touches the Earth) at the centre of the pro-
jection (Figure 7.1a). This type of projection creates distortions everywhere
except at the centre of the projection. The amount of distortion increases with
distance from the centre, In other words, the distance between equally spaced
points on the globe becomes greater as you move away from the centre. The
magnitude of the distortion associated with this technique generally limits its
application to small areas of just a few square km.

The Lambert conformal projection technique involves projecting detail from
the Earth’s surface onto a cone with its apex centred over one of the poles
(Figure 7.1b). The cone is positioned so that the lower portion intersects the
globe along two standard parallels in such a manner that two-thirds of the north-
south portion to be mapped lies between these parallels. The remaining area to
be mapped is equally divided so as to lie one-sixth north and south of the stan-
dard parallels. Details are projected onto the cone, and the cone is cut and flat-
tened to produce a map. This technique produces meridians that are straight

- lines radiating from the poles and parallels that are arcs of concentric circles.

There is less distortion in an east-west than in a north-south direction.

Sphere Plane Gone

4 § Sphere

Cylinder

© T
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Mercator projection With the Mercator projection technique, points on the Earth’s surface are pro-
jected onto a vertical cylinder with a north-south axis that is tangent to the Earth
at the equator (Figure 7.1c). Points on the Earth’s surface are projected out-
wards until they intersect the cylinder. The cylinder is then cut and flattened
into 2 map. Mercator projection is very good for regions around the equator,
Distortion in area increases as distance from the equator increases.

You often see Mercator projection used for maps of the complete globe.,
Meridians appear as straight vertical Iines which means that they must be
spaced apart everywhere except at the equator. The amount of distortion
increases greatly towards the poles. At 60 degrees north or south the amount of
distortion is approximately two times; at 80 degrees the distortion is approm—
mately six times. At the poles, the distortion approaches infinity.

One of the main advantages of Mercator projection is that a straight line drawn
in any direction is a thumb line, which is useful for producing navigation maps.
No other projection technique produces maps with this property.

transverse Mercator projection Transverse Mercator projection is similar to Mercator projection except that

‘ the cylinder is tumed on its side (Figure 7.1d). It touches the Earth at the north
and south poles, and along two complementary meridians. The identity of the
meridians is determined by the positioning of the cylinder with respect to the
globe. Transverse Mercator projection is very good for points close to the refer-
ence meridians, but distortion increases in an east-west direction as distance _ o
from the reference meridian increases.

universasl fransverse Mercator Universal transverse Mercator (UTM) projection shows generally less dis-

o (UTM) projection  tortion than regular transverse Mercator projections. The difficulty with east-
west distortion in transverse Mercator projection was solved in the same manner
as time zones. The globe was separated into 60 equal zones, each with its own
reference meridian. Since there are 360 degrees of longitude, each zone covers
360 = 60 which equals 6 degrees of longitude. Hence, no point in an east-west
direction is more than 3 degrees from a reference meridian. Since this approach
ailows the complete globe to be mapped with an acceptable amount of distor-
tion, it was called “universal.” '

A reference grid commeonly called the UTM grid, which follows this projection
system, has been established world-wide. Both the U.S. and Canada use UTM
projection for national mapping and UTM projection is also used by all the
provincial governments. However, some of the U.S. state governments use other
techniques for producing state maps.

- NTS Mapr COORDINATE SYSTEM Map coordinate systems are ways of identifying individual maps within a map

: series. These systems work in much the same way as reference systems in a
library that allow you to easily find the shelf location of a book from among the
thousands of books in the library. Many different map coordinate systems exist
wortld-wide. One such system, the National Topographic System (NTS), used -
to locate maps produced by the federal government, is described below. This
system is superimposed on top of UTM projections which determine the spatial

. locations of the mapped items. An example of the complete numbermg e

sequence and the corresponding scales is given in Figure 7.2.
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- Fisure 7.2 The Natlonal Topographic System (NTS) of identifying rhaps. |

The largest unit in the system is the primary quadrangle. This is an area that
covers 8 degrees of longitude by 4 degrees of latitude. Primary quadrangles are
identified by a number (e.g., 93). No map sheets are produced for an area of this
size.

L . The smallest scale maps in the system are the 1:500,000 series. Each of these

\ \} maps covers one-quarter of a primary quadrangle. The location of a map sheet

Lo

in this series within a primary quadrangle is designated by the primary guadran-

- gle number and its orientation within the primary quadrangle (e.g., 93SE for the

southeast quarter within primary quadrangle 93.)

The next smallest scale is the 1:250,000 series. Each of these maps covers one-

.. sixteenth of a primary quadrangle. The location of a map sheet in this series

within a primary quadrangle is designated by a capitalized alphabetic letter.
Map A begins in the lower right corner. Letters proceed from right to left, and

- left to right in alternating rows up the primary quadrangle to finish with Map P

‘in the upper right corner. Maps are identified by the primary quadrangle number

and the map letter (e.g., 93A for the map in the lower right corner of primary
quadrangle 93).

‘The 1:125,000 series represent quarters of the 1:250,000 series. As with the

1:500,000 series, the quarters are identified by their orientation. Maps are iden-
tified by the 1:250,000 series number followed by a slash and the orientation
(e.g., 93A/SE for the map covering the southeast quarter of map 93A).

The next largest series is the 1:50,000 series. Like the 1:125,000 series maps,

~ these maps represent a pomon of the 1:250,000 series. However, in this case the

1:50,000 maps each cover one-sixteenth of the smaller scale maps. The maps
are identified by the 1:250,000 series number, followed by a slash and then a
number between 1 and 16 inclusive. The numbers progress from I in the lower
right corner to 16 in the upper right corner following the same pattern as the
letters did in the 1:250,000 series (e.g., 93A/1 refers to the map in the Jower
right comer of the 1:250,000 series map 93A).
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PLANIMETRIC MAPPING

FINDING THE RELATIVE POSITION
' OF A PoOINT

~ Fieure 7.3 Information concern-
Ing ¢ point found on two adja-
cent aerial photographs.

iy

o

St

&

The largest scale maps'produced are the 1:25,000 series. Each map in this series
covers one-¢ighth of the 1:50,000 series maps which is divided into two rows of
four. Each of the eight sections is designated by a lower case letter running con-
secutively from a in the lower right corner to  in the upper right comer. Maps
in this series are designated by the 1:50,000 series number followed by the
appropriate lower case letter (e.g., 93A/1a refers to the map in the lower right
corner of the 1:50,000 map 93A/1). '

2

Consider the point C shown on the two photographs in Figure 7.3. The only

information regarding this point that can be obtained from the photographs are

the two angles formed between that point and the lines of flight on the two pho-

tographs. These angles are identified as « and § in the figure. You are unable to-

locate point C on a map with only this information. Additional information that

is necessary includes:

» the distance between PP1 and PP2. This can be thought of as scale.

* the orientation of the triangle which can be formed between PP1, PP2, and
point C. This can be thought of as rotation. Another way of thinking of this
is the relationship between point C and north.

= the actual position in space of cither PP1 or PP2. This can be thought of as £ \}

_ translation. _ S
-This information is provided by the map maker through ground control points
(GCPs). :

Ground control points are carefully located positions on the ground and on the
map that show latitude and longitude (horizontal control} and elevation above
mean sea level (vertical control). Each ground control point provides two pieces

- of information: the latitude and the longitude of the point. Hence, the minimum

number of ground control points that are required on a given map is two.

‘This means that if you have a blank piece of paper on which two ground control
points are located, and you know the exact location of these points on your

aerial photographs, you can produce a planimetric map. The location of the first
ground control point can be thought of as fixing the exact location in space (i.c.,

c

« ' B
PP1 CPP2 CPP1 PP2

PP1 PP2
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- Fisure 7.4 Location of photo
control polnts.
£

NumMBEerR AND LOCATION OF
Grounp ControL PoOINTS

translation). The location of the second ground control point establishes the dis-
tance between these points on the map (i.e., scale) and the orientation of the
map (i.e., rotation).

We will return to ground control points shortly. However, it is first necessary to

_address photo control points (PCP’s). These points (sometimes called ‘pass

points’ or ‘wing points”) are well-defined stationary features easily pinpointed
on overlapping photographs. They are used to help link photographs with no

- ground control points (both along and between lines-of-flight) to photographs

already located on the map. The strategy of locating these points reflects their
purpose. Six photo control points are located on each photograph approximately
a photo base distance above and below the principal point, and each of the con-
jugate principal points. This location allows the points to be seen on a maxi-
mum of six photographs in a series: three on a given line of flight, and three on
the line of flight immediately above or below this line of flight (Figure 7.4).

Photo control points are marked on each of the photographs on which they are
found. The points are best located while viewing a pair of photographs stereo-
scopically. The procedure to follow is much the same as we described for locat-
ing conjugate principal points in Lesson 5. The exact location of the photo con-

- trol points should be marked with a pin hole and a small coloured cross

scratched in the emulsion.

Two ground control points are the absolute minimum required. In order to be
useful, each of these points must appear on at least two of the photographs that
cover the area to be mapped. The more ground control points located in the
mapping area, the more accurate the map is likely to be. However, ground con-

 trol points are expensive to establish. (They usually require a special ground

survey unless you are fortunate to already have ground monuments in place.)
Locating too many of these points increases the cost of making the map an inap-
propriate amount. The optimal number of points cannot be stated in general
terms; it depends upon the desired accuracy of the map and the skill of the map
makers.
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TRANSFERRING DETAILS FROM
PHOTOGRAPHS TO MAPS

-for you to follow at first. You will have a chance to practice in the accompany- £
- ing assignment. We suggest you read through the description that follows sev- S J

s

The positioning of the ground control points also affects map accuracy. It turns
out that control using photo control points is betier within a line of flight than
between lines of flight. This is due principally to the greater overlap within a
line of flight. Thus, ground control points are most effective if they are spread
over the map in such a way that they help link photographs from adjacent lines
of flight. The usual point of maximum error on a map is the farthest point from
a ground control point. Hence, it is also a good idea to spread the ground control
points over the area to be mapped. Note that practical considerations do not
always make this possible. For example, if a road is located along one edge of
an area to be mapped and the remainder of the area is not easily accessible on
foot, it may be more cost efficient to locate the ground control points along the
road. Another consideration is the fact that ground control peints must be accu-
rately located on the aerjal photographs. If the photographs have not been flown
when the ground control points are being located, the points can be marked on
the ground with targets (frequently large white crosses several metres in size)
that will be visible on the photographs. This requires that the ground control
points be located in an area where the ground is visible from the air (i.e., not
under a dense canopy of trees).

The procedure used to transfer details from photographs to maps is called
radial line triangulation. This technique is easy to do, but it may be difficult

eral times before trying the assignment. You should also proceed slowly and
carefully. Small errors have a tendency to accumulate and can become quite
substantial even on a map as small as the one you will be making.

There are a number of ways of performing radial line triangulation. The tech-
nique we describe makes use of mylar sheets. This approach to transferring
details is both inexpensive and flexible enough to handle a variety of map
scales. Other techniques and equipment are described in Avery and Berlin,
pages 123-130.

. Our description of radial line triangulation using mylar sheets is divided into

two parts. This first part comprises the steps involved in transferring the joca-
tion of the principal points from the photographs to the base map:

1. Accurately locate and mark the ground control points on all the photographs
in which they appear.

2. Accurately locate photo control points on all the photographs

3. Tape a photograph containing at least two ground control points to your table.
{In practice you can work with a photograph with only one ground control
point, but it makes the process more complicated. One of your photographs
has three ground control points so you will be able to follow this descrip-
tion. Once you understand the process, you will likely be able to imagine
how you could transfer detail if none of your photographs has more than one
ground control point.) '




TN

o

, A
sy

s

PAGE 135

4. Centre a mylar sheet over top of that photograph and tape it down to your
table as well. Write the photo number at the top of the sheet, '

5. Poke a hole through the mylar sheet at the principal point.

6. Draw the line-of-flight on the mylar sheet. (Note: the mylar sheets are easier
to work with later if you change the colour of ink you are using between

steps.)

7. Draw a radial line from the principal point through each of the ground control
points. When you are making a map approximately the same scale as the
photographs (which is what you will be doing in the assignment), it is not
necessary to draw the complete radial line. Rather, only a segment of the
radial line extending a few centimetres on either side of the point on the
photograph needs to be drawn. This will help keep the mylar sheets from
getting too cluttered in the vicinity of the principal point.

‘8. Draw a segment of a radial line from the principal point through each of the

photo control points.
9. Remove the mylar sheet and the photograph.
10. Repeat steps (3) through (9) for each of the other photographs.
11. Tape the base map onto the table.

.12, Place the mylar sheet containing the most ground control points onto the

~ base map in such a way that the radial lines drawn through the ground con-
. trol points on the mylar sheet intersect the ground control points on the base
map. :

13. Place a mylar sheet prepared from an adjacent photograph onto the base
map. Orient the two mylar sheets in such a way that their lines-of-flight
coincide and the lines through the ground control points intersect at the
ground control points marked on the base map.

14. Carefully tape these mylar sheets into position. Be careful not to tape
directly to the base map if you can help it because you would like to remove
the mylar sheets without damaging the base map.

15. Fit the other mylar sheets into position one at a time. Use the line-of-flight,
ground control points, and photo control points to orient the sheets. Tape
each sheet into place when it is properly located.

16. Poke a hole with a pin through the mylar sheet onto the base map to mark
the locations of the principal points on the base map.

17. Remove the mylar sheets from the base map.

18. Mark the location of the principal points on the base map with small
crosses. Label each of these points for future reference.

The second part of radial line triangulation is concerned with ransferring object
locations and shapes from aerial photographs onto base maps. The same mylar
sheets that were used for transferring the principal points are used to transfer
these details. The technique is similar to what we have previously described for
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TRANSFERRING DETAILS FROM A MAP

transferring the principal points. The procedure for transferring a single point is
summarized below. Note that objects are considered to be collections of single
points. A rectangular building may be correctly located on a map by locating
just the four corners. Objects with more complex shapes can be located exactly

-from a few points and the remainder of the object can then be sketched onto the

map.

The steps for transferring a single point are:

1. Tape a photograph containing the point onto a flat table.

2. Tape the appfopriate mylar sheet over top of the photograph.

3. Draw a radial ﬁne_ segment from the principal point through the point.

- 4. Remove the mylar sheet and photograph.

10 A PHOTOGRAPH

5. Repeat steps (1) through (4) for all other photographs that contain the point.
6. Place the mylar sheets into their proper positions on the base map.

7. The location of the point on the base map is determined by the intersection of
the line segments drawn through that point. Mark this point by poking a
small hole through to the base map using a pin.

Transferring detail from aerial photographs to maps is much more common than
transferring detail from maps to aerial photographs, but there are some occa-
sions when the latter can be useful. The procedure is similar in concept to radial
line triangulation but works in the opposite direction. In the steps that follow,
we assume that mylars have already been prepared and that the principal points
of the relevant photographs are located on the base map,

Transferring a point from a base map to a stereoscopic pair of aerial pho-
tographs is accomplished by following these steps:

1. Tape the base map to a flat surface.

2. Tape the mylar sheets that cover the point of interest into their proper loca-
tions on the base map. :

3. On each of these mylar sheets, draw a radial line from the principal point
through the position of the point of interest on the base map.

4. Remove the mylar sheets from the base map and tape them onto their corre-
sponding acrial photographs.

5. Set up an adjacent pair of these photographs for stereoscopic viewing,

6. View the photographs stereoscopically. The location of the point of interest
on the aerial photographs is found where the lines drawn on the mylar sheets
appear to cross.

7. Mark this point on each of the photographs by poking a hole through the
mylar sheets and underlying photograph using a pin.

£ T,

N\
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&/ LocAL ADJUSTMENT OF SCALE Recall from Lesson 6 that an aerial photograph is not a map because scale

: : ' varies everywhere as a function of relief. However, it is possible to optically
remove displacement due to relief on a photograph to produce an image that is a
true representation of ground position. The resulting image is called an
orthophote. Orthophotos can be used as detailed planimetric maps if line maps
are not available for an area, and are especially useful for the creation of base
maps. Base maps are maps that contain little detailed information besides the
locations of lakes, rivers, and roads. These maps serve as templates for more

. ' detailed maps that may be developed (e.g., forest cover maps, ecological maps,
soil maps) for an area.

TOPOGRAPHIC MAPPING A detailed description of topographic mapping and some of the instruments
involved is beyond the scope of this course. The text by Avery and Berlin pro-
vides very little detail on this subject (pages 130 to 133), but there is a brief
description of some of the instruments involved.

Topographic mapping requires ground control points to provide vertical as well

as horizontal control. Maps are produced using electronic devices attached to
- plotters. Vertical positioning is determined using a “floating dot” similar in prin-
ﬁ( \‘} - 7 _ _ . ciple to what you used to determine heights of objects in Lesson 6.




" PAGE 138

FRST 237

‘REVIEW/SELF-STUDY

QUESTIONS .

Do these questions before you go on to complete the Graded Assignment. These

questions are of value to check your understanding of the material before pro-
gressing to the next lesson, as well as later review for the final examination.
Do not submit answers to the tutor.

10.
11.

12.
13.

14.
15.

16.
17.

. What is a map coordinate system?

. Outline the main stages of the National Topographic System (NTS). Y

. Differentiate between planimetric and topographic maps,
. 'What causes difficulties when making maps of larger areas of the Earth’s

surface?

. Differentiate between: (1) parallels and meridians; (2) equivalent and con-

formal projections.

. What is a: (1) thumb line; (2) great circle?

. Briefly describe the following pro_]ecnon procedures:

(i) orthographic projection;

(if) Lambert conformal projection;
(iif) Mercator projection;

(iv) transverse Mercator projection.

. How did the term universal transverse Mercator projection arise?

. What information besides the angles formed between a point and the prin-

cipal point on two adjacent photographs is required to accurately locate that
point on a map? What names are given to this information?

What are ground control points?

What are photo control points? Where should they be located on a photo-
graph? Why?

How should ground control points be positioned on an area to be mapped to
maximize their efficiency?

Explain (in your own words) how radial line triangulation works for trans-
ferring point locations from aerial photographs to a map.

How are object locations transferred from aerial photographs to maps?

Explain (in your own words) how to transfer a point from a map to a stereo
pair of aerial photographs.

‘What is an orthophoto?

How is vertical control maintained in topographic mapping?
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APPLICATIONS OF PHOTOGRAMMETRY
AND PHOTO INTERPRETATION IN FORESTRY

e

o LessoN 8
INTRODUCTION
LessON OVERVIEW

~ Lesson OBJECTIVES

Lesson READIﬁes

o o

.

LESSON ASSIGNMENT

This lesson addresses some of the forestry applications of photogrammetry and
photo interpretation mentioned in Lesson 5. Topics presented include forest
cover typing, the basics of species identification, photo volume equations, and
applications in forest inventories. Non-photographic imaging systems and geo-
graphic information systems are also covered briefly.

Following completion of this lesson, you will be able:

1. to explain how photo-interpretation and photogrammetry can be used in for-
est cover typing, tree species identification, photo volume equations, and
forest inventories;

2. to outline the strengths and weaknesses of non-photographic imaging systems
relative to photographic systems;

3. to identify some of the forestry uses of particular non-photographic systems;

4. to explain the rudiments of geographic information systems.

Material relevant to this lesson may be found in the text by Avery and Berlin
pages 141-249 and 323-354. Some of this material is covered in Avery and
Burkhart, pages 265-270.

When you have completed this lesson, answer the self-study questions at the
end. There is no graded assignment for this lesson.
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FOREST COVER TYPING

FACTORS THAT MAKE STANDS
APPEAR DISTINCTIVE

species composition

age and stand sthructure

This Iesson is intended to provide you with some exposure to present and future
applications of photogrammetry, photo interpretation, and related technologies.
Coverage is by no means exhaustive, but it should provide you with sufficient
background to allow you to pursue additional sources in these areas on your
own should you so wish.

Recall that photo interpretation was defined in Lesson 5 as the identification of
objects from photographs and determination of their significance or meaning.
Objects differ from each other in photographs because of differences in size,
tone (or colour), shape, and texture among other things. It is easy to identify dif-
ferences on many occasions, but it is often a difficult task to identify why the
differences exist (i.e., to determine what is changing on the ground to produce
the different effects that you are seeing as differences on the photograph). It is

. this idea of change that is important in producing forest cover type maps

{maps showing the location of different cover types). However, it is equally
important to know what elements are present to produce the pattern visible on
the photograph,

Cover typing is a term associated with subdivision of a heterogeneous forest
area into more uniform subgroupings. This is often a preliminary step in con-
ducting a forest inventory. It is usually a simple matter to differentiate uniform
areas within a forest. If you look at the forest areas included on your aerial pho-
tographs you will see many distinctively different areas. However, it requires

- considerable experience and skill to identify what comprises these different

areas and to determine which geographically separate areas may be combined
into common types for inventory or management purposes.

In the following section, we will examine some of the characteristics of forest
stands that cause differences in appearance on aerial photographs, and discuss
how these characteristics can be quantified on 1:10,000 nominal scale photo-
graphs,

Forest stands can be thought of a groupings of trees that are similar in terms of
certain characteristics and different from surrounding groupings of trees.
Boundaries between adjacent stands may be distinct or gradual, Some stand
conditions that are important for management include: 1) species composition;
2) age and stand structure; 3) density (site occupancy); and 4) site.

It is a simple matter to identify the species composition of a stand as being
mainly deciduous (light tone, fine texture), mainly coniferous (dark tone,
coarser texture), or mixed. It is difficult (although not impossible) to determine
rough species composition from 1:10,000 nominal photographs. This requires
cansiderable skill and an intimate knowledge of the area being typed. The inter-
preter will take advantage of land form, topography, aspect and other attributes,
to provide clues as to what species may be present. As you will see later in this
lesson, it is possible to identify the species of individual trees using aerial pho-
tography, but this requires larger scale photographs for accurate identification.

Age is impossible to determine directly from aerial photographs, but relative
size (i.e., height) may give an indication of broad age class (i.e., newly estab-
lished, immature, mature, and overmature). Stand and fire history records (if
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~ available) are also used in assigning age to cover types delineated on aerial pho-
‘tographs.

Stand structure is a little easier to identify. If the trees are mostly of similar

- height then the stand is even-aged; if there are two or three distinctive canopy

levels, then the stand is a two- or three-leveled stand; if there are many tree
sizes present, then the stand is uneven-aged. Again, knowledge of the area and
what species you might expect to find growing under different conditions is use-
ful for classnfymg structure.

Density, or the degree of occupancy by trees of an area of ground, is easy to
determine subjectively on aerial photographs, and is defined as degree of crown
closure. Crown closure can also be measured accurately, particularly on large-
scale photographs using fine dot grids. Dot grids are transparent sheets contain-
ing a specified number of dots per square centimetre. The number of dots
falling on tree canopies is divided by the total number of dots in a given cover
type and multiplied by 100 to provide percentage crown closure.

It is impossible to determine site quality exactly using only aerial photographs.
However, knowledge of terrain type, topographic position of the stand, aspect,
and other features allow subjective assessment. Site index (height of dominant
trees within a stand at some reference age) can sometimes be determined from
height measurements and knowledge of stand age obtained from ground sarveys
or existing records.

LESSON 8
fﬂ.\“‘% .
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THE BASICS OF TREE SPECIES

IDENTIFICATION

MAJOR IDENTIFICATION FEATURES

The recognition of tree species on 1:10,000 nominal scale aerial photographs is
most easily done when the species grows in pure, even-aged stands. If the
stands are comprised of a mixture of species, then identification of single trees
becomes more difficult. Species identification is more of an art than a science,
although experienced interpreters can be quite accurate. Often the interpreter is
helped by knowledge of the area and analysis of the prevalent landforms.
Interpreters also make frequent visits to classified stands to “ground check”
their interpretation.

Tree characteristics that will help you to identify species on larger scale pho-
tographs (e.g., greater than 1:2,000) are presented in this section, with particular
reference to B.C. tree species that typify these features. You will see that there -
may be considerable overlap of features among species. Also, many trees do not
look “typical” for various reasons (e.g., crowding, open-grown, damage). The
experienced interpreter is able to implicitly combine several features together
when identifying species and properly identify most trees.

Five tree characteristics are normally examined stereoscopically to aid in identi-
fication. These include: crown boundary (outline); crown topography; crown
tone or hue; branching habit; and foliage density. '
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crown boundary

Fisure 8.1 Crown boundailes: (@)
starshaped, typical of older Douglas-Tir
and wastern white pine: (b) clrcular, typl-
cal of young trees of many species,
Including spruces, frue firs, and many
pines; (¢} fregular, typlcal of some hard-
woods, open-grown and damaged trees;
(d) net patterned, typical of alder.

crown fopograbhy

Ficure 8.2 Concave crown
topography: (a) spire-shaped, typical
of true firs and young western hemilock;
(b) conlcal, fypical of westarn redcadar,
_ western hemlock ond Douglas-fir; (c)
pyramidal, typleal of wastern redcedar,
Deouglos-fir and open-grown crowns.

Fisure 8.3 Convex crown topog-

raphy: (o) cyindrcal, typical of spruce
and some older Douglas-fir; (b) globose,
typledl of lodgepole pine, ponderosa
plne and aspen; (c) blllowy, typical of
cottonwood and maple: (d) tufted, typ!-
catof maple.

crown fone or hue

Each feature is described in turn. We do not expect you to remember the fea-
tures associated with any of the species, but you should know what each of the
characteristics represent.

Crown boundary refers to the cross-sectional outline of the crown when seen
from above. There are four basic patterns (Figure 8.1):

=5

(b) Circular {c) Irregular {d) Net patternad

R R

(a)mSt;r-_shaped

Crown topography refers 1o the appearance of tree crowns in aerial photo-
graphs when they are viewed vertically through a stereoscope. Tree crowns
appear either concave or convex. There are three concave-shaped crowns

(Figure 8.2):

R R

(a) Spire-shaped )] gmica! : (c) amical

There are four convex-shaped crowns (Figure 8.3):

(@) Cylindrical - (d) Tufted

Crown tone refers to the general lightness or darkness of the crown. This is
mainly pertinent to black and white photography such as you have been using
for this course. Hue refers to the colour of the foliage, and so is pertinent only
to coloured photography. Tones and hues are highly variable within a species

. and vary with site, age, and vigor. These characteristics are most useful when

differentiating among species within a stand. The following are some general
tones and associated species:

~ » light tones, typical of western redcedar, pines, young trees and stressed trees;
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branching habit

Fisure 8.4 Branch atrangement:
{a) opposite which results In an apparant
layering of branches, typlcal of pines,
spruces and true flrs: (b} alternate which
does not produce a prenounced layeting
effect, typlcal of hemlock and western
redcedar; (¢) alternate and spiral which
' causes many branches to be visible, typl-
cal of hemiock and wastern redcedar.

Ficure 8.5 Branch direction: (a)
ascending, typlcal of Douglas-ir; (b) horl-
zontal, typical of pines and true firs; (c)
drooping, typlcal of spruces, western
hemiock and western redcedar.

 follage density and pattern

* medium tones, typical of western hemlock, western redeedar, maturing trees;
* dark tones, typical of short-needled pines, spruces, and some old-growth trees.

Branching habit can be divided into a number of subcategories. Branch
arrangement refers to the initial distribution of branches along a stem (Figure
8.4).

ZEE G

{a) Opposite {b) Alternate (©) Altemate and splral

Branch direction refers to the angle between the branches and the main stem
(Figure 8.5).

{c) Drooping

{a) Ascending (b) Honzcntal

Branch form refers to whether a branch is straight, forked, or curved. Some-
times branch form depends on tree age. For example, young western hemlock
has many visible single forked branches. As the hemlock matures and foliage
quantity increases, the branches begin to become fan-shaped. In mature hem-
lock, the branches are broadly fan-shaped. Western redcedar, on the other hand,
has many visible straight branches that seldom fork. This is one of the best
means of distinguishing between western hemlock and western redcedar.

Foliage density and pattern refers to the arrangement and density of the

foliage seen on the branches. Some examples of foliage density and pattern

include:

(2) clumped in small tufts, typical of lodgepole pine;

(b) clurnped in large tufts, typical of ponderosa pine;

(¢) pendulous (i.e., branches with foliage hanging down making the branches
visible and the crown appear thin), typical of western redcedar;

(d) striated (i.e., the foliage covers the entire branch making the branch appear
“hairy”™), typical of western hemlock;

(e) cigar-shaped (i.e., the foliage on the branch has a rounded, cigar-like appear-
ance usually hiding the branch), typical of Douglas-fir and spruces.
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" PHOTO VOLUME EQUATIONS

ESTIMATES OF SINGLE TREE VOLUME

In Lesson 3 we discussed volume equations that were based on ground-based
measurements of particular single-tree characteristics, and briefly mentioned
photo volume equations. Photo volume equations relate volume to more easily
measured variables on aerial photographs. Photo volume equations can be
developed to estimate both single tree volume and stand volumes. Each of these
applications is described in this section.

Regression techniques are used to estimate coefficients using sample data. The
main advantage of photo volume equations over ground-based volume equa-
tions is Jower measurement costs; once the equations are constructed ground-
based measurements can be reduced or avoided entirely. The major disadvan-
tage of photo volume equations is lower accuracy.

The poorer accuracy of photo volume equations versus ground-based volume
equations is due principally to two factors: measurement errors on the photo-
graph; and the inability to directly measure DBH on aerial photographs.
Measurement errors can be reduced by careful interpreter training and the use of
large-scale photographs. DBH may be estimated indirectly from other factors or
DBH can be replaced by other independent variables (usually crown diameter or

- crown area) in volume equations.

‘The best variables to measure on large scale photographs for estimating volume

‘are height and some aspect of crown dimension (usually crown diameter or

crown area). These variables are useful because they can be easily and accu-
rately measured, and they have a good relationship to volume. '

~ You learned about measuring height on aerial photographs in Lesson 6, and we

won’t discuss heights any further here. Crown measurements are new for you,
s0 we will spend some time on these.

Crown measurements are useful for predicting tree volume because they are -
correlated to DBH or basal area. Generally, higher correlations exist for even-

- aged conifers which have not been subjected to undue suppression or stand

competition. The relationship between crown dimension and DBH is usually
linear for trees in the middle diameter or age classes. However, crown dimen-
sion often does not contribute significantly to the regression equation if tree
height is included.

Crown diameters can be measured on zerial photographs in the same manner as
any distance. Measurement can be difficult because of the small size of the
crown image even on large scale photographs, the effects of crown shadows,
and the impact of non-circular crowns. Careful interpreters can measure to
within approximately 0.1 mm. The final accuracy of the measurement is depen-
dent upon the scale of the photograph, film resolution, and the ability of the

‘interpreter.

Crown areas can be measured with finely graduated dot grids, using electric
planimeters, by assuming various shapes (e.g., oval), or with stereoplotter coor-
dinates along the crown perimeter. At the present time, crown area is more time-
consuming to measure than crown diameter and consequently is not used as fre-
quently. However, crown area often is more highly correlated with stem volume
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ESTIMATES OF STAND VOLUME

than is crown diameter. As more sophisticated electronic equipment becomes
available, crown areas may begin to supplant crown diameter in single tree
photo volume equations.

Volume tables are often compiled from photo volume equations based upon
crown and height measurements. Occasionally, single-entry volume equations
based on either crown diameter or crown area are used because of the amount of
time involved in determining tree heights. This approach is similar in concept to
local volume equations. It works well when tree height is relatively constant
within a crown class; this is only to hold likely for the specific area for which
the equation was derived.

With medium to small scale aerial photographs, the emphasis is often on mea-
suring stand variables rather than individual tree variables. Stand volume has
been developed based on measurements that can be made on aerial photographs.
These measurements include species composition, average stand height (height
class), average crown diameter, and percentage crown closure. Methods of esti-
mating stand volume, including the use of photo measurements for that purpose
are covered in the course Forestry 238. '

APPLICATIONS OF PHOTO-
GRAMMETRY IN TIMBER
" INVENTORIES

Timber inventories provide the quantity and quality of timber present within a
designated area. The purpose of a timber inventory is similar to that of invento-
ries of other commodities (e.g., merchandise within a store). It provides infor-
mation necessary to the effective management of the commodity. Timber inven-
tories are covered in detail in the course Forestry 238 so we will not go into
much detail here.

Timber inventories can cover large geographical areas. Because of the size of
the areas, basing the inventory on purely ground-based measurements is nor-
mally prohibitively expensive. However, some ground-based measurement may
be necessary in order to correct the photo-based measurements.

Aerial photographs are widely used in timber inventories for purposes of strati-
fication (i.e., cover typing) and measurement. Other inventory-related applica-
tions include preparation of maps and planning of the sampling scheme. Aerial
photographs are also used for updating existing maps to reflect changes to the
forest (e.g., fires, cutting, regeneration) since the maps were made.
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NON-PHOTOGRAPHIC
IMAGING SYSTEMS

COMPARISON OF PHOTOGRAPHIC
AND NON-PHOTOGRAPHIC
IMAGING SYSTEMS

As the name implies, non-photographic imaging systems are ways of sensing
and storing images that do not use film as both a sensing device and a storape
medium. These types of systems are often called remote sensing systems. In

~ the broadest sense, remote sensing refers to techniques used to detect and study

objects at a distance without physical contact. Sight, smell, and hearing may all

‘be considered as examples of remote sensing in this context. However, remote

sensing is generally used in a more restrictive fashion to describe a series of
technological systems used for identifying objects on the ground from an image
produced from an aerial or space platform. All remote sensing devices produce
an image, even though the images may look considerably different depending
upon the device. For example, a camera produces photographs, a thermal scan-
ner produces a thermograph, and certain satellite scanners produce digital
codes.

In the material that follows, we will concentrate on providing you with an
overview of some non-photographic imaging systems and some of their poten-
tial uses in forestry.

Photographic and non-photographic systems have certain similarities and differ-

-ences. The best type of system to employ for a specific use depends to a large

part on the nature of the use. One way of appreciating how the differences
between these two groups of systems affect how they may be best employed is
to look at certain general characteristics of the systems.

Photographic imaging systems are limited to a very narrow band of the EMR
spectrum extending just beyond the boundaries of visible light, as you learned

in Lesson 5. Non-photographic imaging systems can sense in a wide range of

bands that include visible light. Bands that are suitable for detecting certain
characteristics of interest can be selected. The fact that photographic systems

 are limited to visible light has mixed effects. On one hand, it is a drawback

because photographic systems are not effective if light conditions are poor (e.g.,
smoke, haze, darkness, etc.). These conditions do not hamper particular types of
non-photographic sensors. On the other hand, the photographic process pro-
duces images with superior resolution than those produced by non-photo-
graphic processes. Resolution refers to how well a sensor can record spatial
detail. You can think of it as how small an object on the earth’s surface can be,
and still be seen by a sensor. The better the resolution of the sensor, the smaller
the object that can be seen.

Photographic sensors utilize chemical reactions in the emulsion layers of the

- film to detect, store, and display energy variations within a scene. Non-photo-

graphic sensors store electronic signais that correspond to energy variations
within a scene. The source of these signals may be either incident (e.g., passive
sensors) or self-generated (e.g., active sensors). These signals can be stored on
magnetic tape or displayed as an image on a screen and photographed. On some
occasions, the images are also electronically enhanced. Note that even though
the final images of non-photographic sensors may end up on film, the film is
used only for displaying the information.
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- ExAMPLES OoF NON-PHOTOGRAPHIC
IMAGING SYSTEMS

therrnal scanner

“The fact that non-photographic sensors generate images using electronic signals
. makes it possible to transmit these images over large distances. For example,
satellite sensors detect from space, but the images are transmitted as electronic

signals to receiving stations on the earth where they are stored and/or displayed.

“The electronic nature of the sensed data also makes it amenable to computer
. ‘analysis. Photographic data are not as easily reduced to machine-readable form.

. Computer analysis of images has certain advantages and disadvantages com-

pared to human interpretation of data in the form of visual images. Computer
interpretation is rapid and more precise when spectral differences are of primary
concern. Also, if several different bands are involved, there are too many vari-
ables for the human mind to comprehend simultaneously. However, computer
analysis is no better than the computer programs used to make the analysis.
Often many factors outside the characteristics of objects themselves affect the
signal strength (e.g., topography, season of the year, time of day). These factors
must be considered in the interpretive program. Also, spatial patterns are diffi-
cult to distinguish using computers; visual interpretation allows the use of the
human mind to qualitatively evaluate spatial patterns and make subjective

judgements.

Because human interpreters are limited in their abilities to discern spectral pat-
terns and computers are limited in their ability to discern spatial patterns, the
best approach to analysis is often a combination of the two. This is called com-
puter assisted analysis. In this type of analysis, the computer is provided with -
proper identification and coordinates of certain ground conditions, and uses this
as a guide in analyzing the rest of the image.

Several non-photographic imaging systems are described below. Neither the list
of systems nor the descriptions are exhaustive. It is sufficient for this course for
you simply to have a broad understanding of a few of the major types of non-
photographic systems. We suggest that you refer to some of the references pro-
vided at the end of Chapter 7 in the textbook by Avery and Berlin for further
information.

The thermal scanner is a-passive type of optical-mechanical scanning system.

It is comprised of three components:

* an optical-mechanical scanner: this is a mirror mounted on a shaft oriented at
a 45 degree angle parallel to the line-of-flight that sweeps the terrain at right
angles to the flight path. This component collects radiated energy and
focuses it onto the detector.

* g thermal infrared detector: different detector elements are used to sense
within the various thermal regions of the spectrum. The main atmospheric
widows in this range are from 3.5 to 5 #m and between 8 and 14 um.

* an image recorder: this is usually comprised of 2 magnetic tape and/or a direct
film recorder. The recording medium advances at a rate proportional to the
aircraft ground speed.

When the thermal scanning image is displayed on standard black-and-white
film, the resulting image looks like a conventional photographic image with
objects appearing in various shades of grey. The lighter tones represent the
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muftispectral scanner

imaging radar

satellife imagery

)

warmest radiant temperatures and the darker tones the coolest temperatures.

~ Thermal scanners can be used to locate “hot spots” following fires.

The multispectral scanner is very similar in design and operation to the ther-
mal scanner. It differs in that 1t separates incoming radiation into several dis-
crete spectral bands (ranges of wavelengths) that are independently sensed and
recorded. The normal storage medium is a multichannel magnetic tape but a
cathode ray tube or photographic film may also be used. The advantages of a
multispectral scanning system include:

-« the entire spectrum range from ultraviolet to the thermal infrared can be

sensed with a single optical system at one time;

* data are easier to send electronically from space (no film);

* individual bands can be colour coded and two or more can be combined to
produce true colour or an almost unlimited number of false colour renditions
of the image (called ‘enhancing’).

As with all passive sensors, cloud cover can affect the quality of the image.
Multispectral scanner images have been used in forestry for land use classifica-
tion, insect and disease mapping, and other uses that don’t require high resolu-
tion images. :

Radar is an acronym for radio detection and ranging. It is an active sensing

system that supplies radiation in the radio and microwave portion of the electro-
magnetic spectrum. The common radar system used for interpretation is side- o
looking airborne radar (SLAR). This system creates a two-dimensional image

- by transmitting and receiving short bursts of energy from the side of a moving

aircraft. It operates at wavelengths ranging from 0.8 to 100 cm. The shorter
wavelengths produce better resolution, but the longer wavelengths are better for
penetration of clouds and haze.

Imaging radar works by electronically measuring the return time of the energy

pulses. The range distance between the transmitter and an object can be deter-

mined from this. The intensity of the returned pulse is a complex function of the
interaction between the terrain and the transmitted pulse. Strongly reflective
surfaces appear light in the image if the signal is reflected back directly.
Surfaces such as water appear dark because much of the signal is diffused.
Advantages of imaging radar include:

+ all-weather capacity;

= night sensing capability;

* long lateral coverage (up to 50 km to one side of the aircraft);

» enhancement of geologic features (shadow effect);

= suppression of detail (emphasizes larger terrain features of interest);

.. *limited geometric distortion.

The major disadvantage of SLAR is its poor resolution. Because of this, it is
seldom used at scales larger than 1:125,000. SLAR can be used in forestry for
mapping fire boundaries and for preparing inventory maps in regions where
haze is common (e.g., tropical rain forests).

Non-photographic imaging systems can be readily employed from orbiting . \%
satellites. The United States began providing satellite-acquired remote sensing oF
data to the public in the late 1960°s. LANDSAT (Land Satellite) represented
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the first program designed specifically for collecting remote sensing data. (Prior
to January 1975, the program was known as ERTS [Earth Resources Technol-

" ogy Satellite].) To date, five LANDSAT missions have been launched — the
first in 1972 and the last in 1984. The LANDSAT satellites were launched so as
to orbit the earth in repetitive, near-polar, sun-synchronous paths. This results in
the satellite returning to the same position after a number of orbits around the
planet. All five LANDSATS have carried a multispectral scanner with a ground
1esolution of about 80 m. The primary sensor of LANDSATS 4 and 5 has been a
thematic mapper. The thematic mapper is similar to the multispectral scanner in
theory, but it incorporates improved spatial resolution (30 m), additional spec-
tral bands (7), greater radiometric accuracy, and improved geometric fidelity.

Other satellite sensing'programs have been established after LANDSAT. Some
of these are described in Avery and Berlin (pages 223 to 230). The major limit-
ing factor in any of the satellite-based remote sensing images released to the
public has been the ground resolution. The best resolution available is on the
order of 10 m from the French SPOT program. Major forestry uses inciude land
use classification and environmental monitoring.

§< \} GEOGRAPHIC INFORMATION Management of the forest resources requires a large amount of accurate and

~ o : SYSTEMS  timely information. This requires the organization and storage of large amounts -
' of data, and the analysis and display of this data in a format that is useful to a

large number of users. More and more commonly, a large proportion of the

‘information needs are met by remote sensing data.

. Geographic Information System (GIS) is the name given to a computer sys-
tem designed to accept, organize, store, analyze, and display spatiat (i.e., posi-
tional} and atiribute (j.e., descriptive) information. Both the spatial and the
attribute information are digitally referenced to a common coordinate system.
Information is stored in different layers called data bases. When the data bases

_are linked together they form a data bank.

A number of different GIS packages have been developed over the last several
years and are available commercially. In this section five basic elements com-
mon to all such systems are discussed.

 -ENCODING ~ - There are two basic types of position indexing systems used: raster (cell) cod-
o ing and vector (polygon) coding. Raster coding can be thought of as a matrix of

cells superimposed over a map image. Each location or square is referenced by
a digital code. Attribute information is linked to the geographic position through
the raster code. Normally, the information category most prevalent within the
raster is stored, although more precise procedures are beginning to become
available. Raster coding is functionally equivalent to the pixels that comprise a
remotely sensed digital image. Pixels are squares representing the smallest unit
of resolution in an image. The fact that raster coding matches pixel structure
facilitates transfer of remotely sensed information to the GIS.
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Data INpUT

DATA MANAGEMENT

MaNIPULATIVE OPERATIONS

Outpur

. retrieval is the ability to quickly manipulate and analyze the data stored within

=

Vector coding consists of digitally encoding and storing points along the

~ perimeter of each distinct area (polygon). This type of coding more accurately

defihes area boundaries and requires less computer storage space than raster

coding. However, vector coding generally must be translated to raster coding if
remotely sensed data are to be input directly into the system.

Analog data (i.e., maps) need to be converted to digital data (i.e., numbers) by
the process of digitizing in order to be input into a GIS. Digitizing may be done
either manually using a digitizer and a digitizing table or automatically using a
vector scanner. Digital data (e.g., satellite images) usually require reformatting
and scaling to match the geometry of the GIS image. '

The data management component of a GIS consists of a series of computer pro-
grams that allow for data entry, storage, retrieval and maintenance tasks. This
component essentially performs the same functions as data base management
computer packages available commercially. In the case of some GIS packages,
existing data base management software is incorporated into the system archi-
tecture.

One of the major advantages of a GIS over other systems of data storage and i );5

the system. Two kinds of analyses are possible: surface analysis and overlay
analysis. Surface analysis applies to relationships that exist within one data
base (level) in the data bank. An example of surface analysis would be deter-
mining the arca of forest land within different cover types. Overlay analysis
applies to relationships that exist among two or more data bases (levels) in the
data bank. For example, determining the area of land within a particular cover
type that has a particular soil type and range of elevations. (Cover type, soil, and
elevation information would all be stored in different data bases related to each
other by their geographic positioning.) It is also possible to develop evaluative
models (used to assess envirormental characteristics) and allocative models
{used to indicate areas best suited for certain uses) through quantifying and
weighting the results of overlay analyses.

Data can be displayed in formats that are tabular (e.g., tables) or graphic (e.g.,
maps, charts). Most systems have facilities for video monitoring and hard copy
(printer and plotter) display. Maps highlighting various features of interest can

usually be readily produced.
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REVIEW/SELF-STUDY
QUESTIONS

Do these guestions to check your understanding of the material and to review
for the final examination. '
Do not submit answers to the tutor.

1. In what ways do objects differ from each other in aerial photographs?
2. What is cover typing?

' 3. What factors make stands appear distinctive and how can they be quanti-
fied using aerial photographs?

4. What five features are normally examined stereoscopically to identify tree
species on large-scale aeria] photographs? Briefly describe what each of
these entail.

_.5. What are photo volume equations? How do they compare with ground-

based volume equations?

6. What are the primary causes of the poorer accuracy of photo volume equa-
tions?

7. What attributes are commonly measured as independent variables in photo
volume equations? Briefly describe how each of these may be measured.

8. What measurements can be made on aerial photographs to help estimate
stand volumes? :

9. What is a timber inventory?
10. How can aerial photography be used in timber inventories?

11. Define a non-photographic imaging system.

¥

. What is remote sensing?
13. Compare photographic and non-photographic imaging systems.

14. Compare computer analysis and human interpretation of data in the form of
visual images.

15. Briefly describe three examples of non-photographic imaging systems.
State examples of the uses of each of these systems in forestry.

16. What is a geographic information system (GIS)?

17. Briefly describe the five basic elements common to all geographic informa-
tion systems.

18. Differentiate between vector and raster coding. What are the advantages of
each?

19. Differentiate between surface analysis and overlay analysis using a geo-
graphic information system? Provide an example of each.
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('} APPENDIX A

. ASSIGNMENTS TO BE SUBMITTED FOR
GRADING

GENERAL INSTRUCTIONS

@,

For all assignments that you submit for grading, be sure to read the assignment
carefully. If you are not clear about what is required, discuss the problem with
your tutor. -

Be sure o submit each assignment so that it reaches your tutor by the due date |
shown on the course schedule. Include a pink assignment sheet for comments.

Your tutor appreciates recei\?ing assignments that are typed or output on a
printer; if you are unable to provide a printed copy, write as legibly as possible
using dark-coloured ink.,

On rare occasions, assignments are lost in the mail, Keep a copy of each
assignment you send in the event of loss.It is also possible that your tutor may
wish to discuss an assignment with you over the telephone; it helps if you have
a copy you can follow as the tutor refers to it.

GRADED ASSIGNMENT #1

{atend of Lesson 1)

PART 1

Please submit your answer for this assignment to the mtor for marking. Check
the course schedule for the due date,

This assignment consists of two parts. The first part involves measuring
diameter at breast height (dbh) using a diameter tape and measuring tree heights
using a Suunto clinometer and a staff hypsometer. This is intended to provide you
with some practice using these instruments, The second part consists of some
simple statistical analyses that you will perform on the data you collect. This is
intended to provide you with an opportunity to review your basic statistics.

Prepare a table given the directions below and submit it as part of the assignment.

Select 20 trees on which you can measure dbh and height. Try to select trees

from a wide range of sizes, Although it is not essential, it would be best if you

select trees from a single sofiwood species. For each tree selected, record the

following information in the order listed:

1. tree number

2. your guess of dbh (record to the nearest centimetre).

3. your measurement of dbh using the diameter tape (record to the nearest 0.1 cm).

4, your guess of tree height (to the nearest metre).

~ 5. estimation of tree height using a staff hypsometer (to the nearest metre).

6. horizontal distance from the tree when using the Suunto clinometer (to the
nearest 0.1 m).

7. Suunto clinometer reading to the top of the tree (in either percent or degrees),

8. Suanto clinometer reading to the base of the tree (in either percent or
degrees).

9. Height of the tree, based on items 6, 7, and 8 (to the nearest 0.1 m).
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‘PART 2

Instructions 1 through 3 below direct you to build a table of “differences.” All
the differences should be recorded in the same table. The sign of each of the
differences is important; be sure to include the signs in the table.

1. Record in tabular format the differences between your guesses of dbh and
measured dbh for each tree. Determine these differencesas
GUESSED VALUE -~ MEASURED VALUE. Label this column Diff;.

2. Record in tabular format the differences between your guesses of height and
height determined using the Suunto clinometer for each tree. Determine
these differences as GUESSED VALUE - SUUNTO VALUE. Label this

" ‘column Diff;. :

3. Record in tabular format the differences between the height determined using
. a staff hypsometer and the height determined using the Suunto clinometer,
Determine these differences as STAFF HYPSOMETER VALUE —
SUUNTO VALUE. Label this column Diff;.

- 4. Determine the mean, standard deviation, and the standard deviation of the

. mean (standard error) for each column of differences.

5. Determine the percentage deviation of each of the columns by dividing the
mean difference by the mean of the measurements using the most accurate
instrument (diameter tape for diameter and the Suunto clinometer for height)
and multiplying by 100, Which of the columns had the lowest percentage
deviation? Provide an explanation for this. '

P
R

6. Use a paired s-test to check whether the mean differences can be said to be
different from zero with 95 percent confidence.

7. Prepare graphs of the absolute value of the differences versus tree number.
You may include Diff; and Diff; on the same graph, but you should show
them in different colours if you do. Do your guesses appear to get better as
You got some practice?

8. Write a short report (not more than a few pages) presenting your results, and
any interpretations that you can draw from the results,
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od GRADED ASSIGNMENT #2
{at end of Lesson 3J)
PROBLEM 1
ff‘f s
L
ProBLEM 2

Please submit your answer for this assignment to the tutor for marking. Check
the course schedule for the due date.

- This assignment will help you to practise finding the volume of trees given

measurements from a sectioned tree and to fit volume and height functions.

Given the following data for a tree which was felled and sectioned:

Tree Number 1 :
_ Section Section Length {m) Diameter i.b. {cm)

1 0.30 (stump height) 285
2 1.00 (breast height) 26.0
3 1.50° 259
4 250 23.9
5 250 21.7
6 2.50 20.8
7 250 : 18.6
8 2.50 _ 15.3
9 2.50 ‘ 125
10 2.50 84
" 2.50 4.0
12 1.70 : 0.0

* L. Calcnlate the volume in m? for each tree using (i) Smalian’s equation for the

middle sections; (ii) the equation for a cone for the top section; (iii) the

* equation for a cylinder for the base section. Be careful to convert diameter
measurements to mefres so that areas will be in square metres and show all
calculations.

2. Compare the volume obtained using these three equations to the volume that
you would calculaie if you assumed that the entire tree was cone-shaped.

Using the information given on the next page for ten sample trees, calculate the
slope and intercept for each of the following equations:

i) Volume; = B, + B, x dbh?; x height; +¢;
if)y Height; = By + B; x dbhZ; + ¢;

Hint: Because dbh? times height results in a large number and volume is a small
number, you can make the calculations more accurate and easier to do if you
relate volume to dbh? times height divided by 1000.

Explain why or why not you think each of the six assumptions of simple linear
regression have been met for each equation.

For the height estimation equation only:

i) Calculate a 95% confidence interval for the true intercept and the true slope.
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PRQBLEM 3

ii) Test whether the true intercept could be 1.3 m (e.g., the height equals breast
height when dbh is zero),

i) Calculate the rZ value and the standard error of the estimate. Explain what

each of these terms means for the height regression.

iv) Use two different methods to test whether the regression is significant. Draw

a conclusion. -
Tree Data
dbh {cm) Haight (m) Volume (m3)
134 13.90 0.0939
16.8 14.70 0.1604
9.7 8.80 0.0308
27.0 16.80 0.3575
"19.0 16.54 0.2486
‘373 28.00 1.3623
23.6 18.21 0.3556
28.1 15.70 0.4928
13.1 13.41 0.0873
395 25.70 1.3664

Using the fitted volume equation from Problem 2, estimate the volume of the
first tree given in Problem 1, How does this estimated volume compare to the
volume youn calculated for Problem 1? Explain any differences.

/ﬁc:\g%\
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(0
A -~ GRADED ASSIGNMENT #3
{at end of Lesson 4)
PROBLEM 1

N

(;Z,“,xj

.. PROBLEM 2

Please submit your answer for this assignment to the tutor for marking. Check
the course schedule for the due date. The assignment consists of two problems.

This exercise is designed to test your anderstanding of the process of
determining log volume and reducing log dimensions for rot. You will probably
need to use the examples provided in the lesson to get started. See if you can
complete some of the later logs without having to look at your notes.

" For each of the following logs, determine:

1. the exact firmwood volurmne;

2. the reduced dimensions a scaler would record using radii reduction and the
associated volume {only if it is appropriate to use this procedure);

3. the reduced dimensions a scaler would record using length reduction and the
associated volume (only if it is appropriate to use this procedure}.

Ttis to your advantage to show your calculations, If you make a mistake, the
tutor should be able to show you where you went wrong. Explanations of what
the vectors represent can be found in your course notes.

Log # Log Vector Rot Vector Ret Type
. B 9.6/45/57 9.6/ 4/12 Heart Rot
2 13.4/35/49 5.0//8 Heart Rot
3 8.2/24/35  B2/4/6 Sap Rot
4 10.4/15728 10.4/5/10 Heart Rot
5 9.8/45/65 1120 Butt Rot
6 7.8/34/47  7.8/22/33 Ring Rot
© 7.810/15
7 6.6/22/30 3.0//6 Heart Rot
8 14.8/16/32 18 Sap Rot
9 10.4/40/52 10.4/30/40 Ring Rot
_ 10.4/24/33
10 72721733 7212/ 4 Heart Rot

Many logs sold outside British Columbia are sold in terms of their estimated
board foot content. Board foot content varies depending upon the log rule
employed, and may also be affected by the length of the log, In this problem,
logs are for export and the buyer and selier have agreed upon Scribner Decimal
C, the most common rule in the Pacific Northwest, as an acceptable log rule.

. However, the Scribner Decimal C log rule is affected by log length since it

employs only diameter at the top end of the log. Any taper between the bottom
and top of the log is assumed to be waste. Because of this assumption, a long
single log is scaled with fewer board feet than the same log bucked into a
number of smaller logs. This problem allows you to explore this issue and
provides some exposure to a common log rule. '




PAGE 158

FRST 237

‘hints

You intend to sell a load of logs to a poténtial buyer who has agreed {0 pay you

- $250/1000 bf if the scaling is done with the Scribner Decimal C Jog rule. Since

you have the opportunity to buck your logs into shorter pieces before the
scaling, you intend to make the most of it.

A representative sample yielded the following three logs which you will use to
_ determine your most profitable bucking strategy.

Log # Top Diameter Length Bottom Diameter
{in.}. (feet) {in.)
1 30 24 35
-2 40 - - 28 48
3 - 50 32 60

- Determine for each log:

1. solid content in m3;

2. board foot scale without further bucking;

3. best bucking strategy, board foot scale of the sum of all pieces, and the
percentage gain for each log;

- 4. value of the log with and without further bucking;

5. number of board feet per m* with and without further bucking;
6. value per m? with and without further bucking.

Describe in a few sentences the general bucking strategy that you followed for
the three logs.

You should use Smalian’s formula for determining the solid wood content in m3.
Tabulated values of Scribner Decimal C log rule follow on pages 159 and 160.
These values are in 10’s of board feet. The diameter in the tables is the top end
diameter of the log. You can reasonably assume that logs resemble conical
sections to get intermediate diameters when bucking. As an example consider a
log with a top diameter of 30 inches, a bottom diameter of 40 inches, and a
length of 20 feet. A conical section implies that the taper is constant. The taper
for this log is (40 — 30) + 20 which equals 0.5 inches per foot. The diameter §
feet from the bottom of the log can be calculated to be 40 — 0.5 x 8§ which equals
36 inches. All diameters need to be rounded to the nearest inch. If the diameter
is exactly half way between the two nearest inches, then round to the even-
numbered inch. For example, 25.5 inches would be rounded to 26 inches; 26.5

" inches would also be rounded 1o 26 inches. No logs can be less than 8 feet long.

£y
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£

oo GRADED ASSIGNMENT #4
{at end of Lesson 5)

f’/; ' PART |

N

Please submit your answer for this assignment to the tutor for marking. Check

_ the course schedule for the due date.

For this assignment, you will require the set of aerial photographs BC 79046 #s
36 — 39 (available from the UBC Bookstore), a UBC campus street map, and
portions of the UBC campus survey map. The street map and two photocopied
sheets of the survey map are included with your course materials.

This assignment is comprised of two parts. You do not need to submit any

- material from the first portion. However, you should do this work carefully at

this time as it 1s necessary for the assignments that follow. It is also pertinent to
the material we presented in the commentary, If you don’t understand it after
trying the assignment, you should contact your tutor to clear up any problems
you may be having before proceeding to the next lesson,

The accuracy with which you prepare your photographs will affect the accuracy
of measurements you will be making later. This is particularly true for locating
the principal points and conjugate principal points. Take your time and do it

_carefully.

1. Through your stereoscope, look at the stereogram test patterns provided on
pagel63. Be sure to set the stereoscope width to match your IPD, If you can
make out any patters, then you can see stereoscopically. Take a break if
you can’t make out any patterns after a few minutes. If you still can’t see
any patterns after several tries, contact your tutor.

2. Try to view an adjacent pair of your aerial photographs stereoscopically. We
suggest reading the appropriate section in the commentary again before you
do this. You may have more difficulty seeing stereoscopically on your
photographs than you did on the stereograms, but it is only a matter of your
eyes getting accustomed. It will become much easier for you with only a
little bit of practice. If you are not able to view your photographs
stereoscopically after several tries, contact your tutor.

The next several directions pertain to preparing your photographs. Descriptions

~ of what each of these steps enails is included in the commentary for this lesson.

3. Trim the frames from your photographs.
4. Locate and mark the principal point on each photograph.

5. Locate and mark the conjugate principal points on each photograph. Note that
you will be able to locate only one conjugate principal point on photos 36
and 39 because these photographs represent the ends of the flight line as far
as the assignment is concerned.

6. Locate and mark the line-of-flight on each photograph.

7. Measure and mark the photo base distances and average photo base distances
on the rear of the appropriate photographs.
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1. Compute an average scale (RF) for photo 38 from ratios of photo and ground
distance. Use the portion of the survey map included with your course
materials to provide accurate ground distances. Note that the survey map is
not drawn to an exact scale, but provides point-to-point distances as marked.
Work with combinations of these distances to calculate the ground distance
corresponding to distances that you can recognize on the photograph. The
map provides ground distances in feet, You should convert these distances to
metres prior to comparing them to-distance measurements on the photograph

- which you should make in millimetres. A street map of the UBC campus,
also included with your course materials, can be used to help you identify
specific roads. Compute the RF scale for 10 pairs of distances. The average
scale (RF) can be determined by comparing the total ground distance to the
total photo distance.

To assist you in recording your results, complete a table with the following
headings: '

DESCRIPTION OF LINE GROUND DISTANGE PHOTO DISTANCE RF
{m) (mm)

2. Will the answer you obtained above be different than the answer you would
obtain by averaging the individual scale calculations for each line? Why?

3. If you completed the same table for photo 39, would you expect to get the
~ same RF for lines that appear in both photographs? Explain. &

™
4. Convert the average RF scale you determined in question 1 to the following “-’}
units: ' -
" cm/m cm on photo per m on the ground
cm/km cm on photo per km on the ground
cm?ha square cm on photo per hectare on the ground
(There are 10,000 m? in 1 hectare.)

5. The camera focal length is known to be 305 mm. Use the average scale
determined in question 1 to estimate the average flying height of the aircraft
above the ground. '

6. Use the results of question 5 to calculate an approximate flying height above
mean sea level. (Note that the elevation in feet above mean sea level for
selected points can be obtained from the survey map used in question 1.
Average the elevation of several points and convert this to metres to get an
approximate ground elevation,)

7. Assume that the distance between the principal point on Photo 1 and the
conjugate principal point corresponding to the principal point on Photo 2 is
larger than the distance between the principal point on Photo 2 and the
conjugate principal point corresponding to the principal point on Photo 1.
‘Which principal point has the higher elevation? Explain your reasoning. (A
diagram might make your explanation easier.)

e,
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- GRADED ASSIGNMENT #5
' (ot end of Lesson 6)

PaRT1 .

Diagrams of two photographs
for use in question 2. '

Please submit your answer for this assignment to the mior for marking, Check
the course schedule for the due date,

There are two parts to this assignment. The questions in Part I are designed to
test your understanding of the theory covered in Lesson 6. The problem in Part
II will give yon an opporunity to practice using the floating mark stercometer.

1. This question reqguires you to consider the subjective “sense-of-depth”
achieved in stereoscopic viewing of vertical aerial photography. For each
proposed change, indicate whether the sense of depth is likely to: (a)

_increase; (b) decrease; (¢) remain unchanged; or (d) change, but in an
unknown way. Briefly justify each answer,
i) The flying height is increased.
ii) The photograph is taken at noon with the sun directly overhead (i.¢., no
shadows). o
- iii) The ground distance between successive exposures is increased.
iv) The photographs are of forest land, but it is a windy day and the tree tops
are swaying.
v) The focal length of the lens is increased.

2. Two overlapping vertical aerial photographs have been prepared for stereo
. -viewing and taped in place as shown in the figure below.

i ! ) 8mm
: r

f—100 mm—@ !

: A~| . : A2

i ° ]

1 I

=92 mm— l-o-f == 00 mm-»;

FEI et ey
PP1 CPP2 CPP1 PP2
o Photo 1 Photo 2

" The distance between the principal point of Photo 1 (PP1) and the conjugate
principal point of Photo 2 (CPP2) is 92 mm. The distance between the
principal point of Photo 2 and the conjugate principal point of Photo 1
(CPP1) is 90 mm. A ground control marker has been located
stereoscopically at Al in Photo 1 and A2 in Photo 2. The distance between

“Al and PP1 is 100 mm, measured parallel to the line-of-flight. The distance

between A2 and PP2 is 8 mm, also measured parallel to the line-of-flight.

i) Which principal point has the higher elevation? How do you know this?

ii) Determine the absolute stereoscopic parallax at the ground control marker.

iii) A radar altimeter has determined that the flying height above PP1 is
1000 m. As part of your ground survey, you have detéermined that the
precise elevation at the ground control marker is 600 m above mean sea
level (MSL). What is the precise elevation above MSL at PP1?

iv) What is the precise elevation above MSL at PP27?
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ParT 2

~ Determine the height of five objects on campus (e.g., buildings, trees, etc.)

using the floating mark stereometer provided in your equipment kit. Measure
each parallax difference twice and calculate a separate estimate of height based
on each of these measurements. Try o ensure that your measurements are
independent of one another. You will not be graded on the closeness of your
repeated measurements to one another, although extremely large differences
(e.g., > 10 m) probably indicate that you made a mistake in either your
measurements or your calculations.

Complete a table to contain your 10 height estimates (i.e., five objects each
measured twice). Suggested headings are given below, A map of the UBC
campus is included with this assignment to help you to describe the location
and/or identify the objects whose heights you are estimating.

STEREQ FLYING PHOTOBASE DESCRIPTION dP HEIGHT OF

‘PAIR HEIGHT (mm OF OBJECT {mm) OBJECT

{m) (m)

Assume that the flying height above the base of each object is 2930 m. Use the
average photo base distances calculated in the last assignment to approximate
absolute stereoscopic parallax at the base of each object.
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GRADED ASSIGNMENT #6
- (ot end of Lesson 7)

Please submit your answer for this assignment to the tutor for marking. Check

' the course schedule for the due date.

You will be making a partial map of the UBC campus in this assignment. This
will provide you with an opportunity to practice transfer of details from zerial
photographs to a map using radial line triangulation.

There should be a base map and four mylar sheets in your laboratory kit. Three
ground control points (GCP’s) have been marked on the base map. Their
locations have been marked on the street map of the UBC campus.

1. Locate and mark each GCP on all the photographs on which they are found.

2. Select, locate, and mark suitable photo control points (PCP’s) on all the
photographs.

3. Use radial line triangulation (described in Lesson 7} to transfer the locations
of each of the principal points from the photographs to the base map. Be
sure to label each of these.

4. Use radial line triangulation to locate the following features on the map:
a. clock tower (single point)

b. Student Union Building (simple rectangle)
¢. Acute Care Hospital {complex shape)

d. Univessity Blvd. from its junction with East Mall at GCP B outto the
edge of stereoscopic coverage at the right edge of photo 37 (continuous
line)

Please submit your map, photographs, and mylar sheets. These will be returned
to you during the weekend laboratory session.
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