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A perspective

Construct a height-diameter relationship using two randomly
selected plots in a forest, and that we have measured three trees
on each.

Growing conditions are quite different on the plots, leading to a
systematic difference between the height-diameter relationship on
each.

If we fit a simple regression to the trees then we obtain a flawed
residual /fitted value plot.

If we fit a simple regression to the trees with an intercept for each
plot then we obtain a reasonable residual/fitted value plot.

Decomposition 1

Note that the model specification implies that:

Yij = Jii = &j 1
and

» The true relationship is linear.
> € ~N(0,02)

» The ¢; are independent.

Clearly not true.

Decomposition 2

What if we could make:
vi— 95 = bi + ¢ 2

Then we merely need to assume that:

» The true relationship is linear.
> b,‘ ~ N(O, U%)
> €~ N(0,02)

> The ¢ are independent.

Much more tenable!

Decomposition 3

The assumptions are satisfied because the systematic differences
between the plots, which previously produced correlation, are now
accounted for by the new random effects.

However, when the time comes to use the model for prediction, we
do not need to know the plot identity, as the fixed effects do not
require it.





[image: image2.png]Data - Height/Diameter from Stage (1963)

A brief synopsis: a sample of 66 trees was selected in national
forests around northern and central Idaho. According to Stage
(pers. comm. 2003), the trees were selected purposively.

The habitat type and diameter at 4'6" were also recorded for each

tree, as was the national forest from which it came. Each tree was
then split, and decadal measures were made of height and diameter
inside bark at 4'6".
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Figure: Al Stage's Grand Fir stem analysis data: height (m) against
diameter (cm). These were dominant and co-dominant trees.

Another look - just 6 NFs
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Exercise 5 Stage by Stage

Model for getting it wrong in R

hi = Bo+ 1 x di +¢€
Regression assumptions.

» True relationship is linear.
> ¢ ~ N(0,02)
> Cov(ej,ej) =0 for i #

Diagnostics for getting it wrong in R

Residuals vs Fitted Normal Q-Q
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Figure: Regression diagnostics from R — don't reveal perfidy.

Model for getting it less wrong in R

hit = Bo + (B1 + buj) X dit + €it
Regression assumptions.

» True relationship is linear.
> by ~ N(0, 0'[271)

> et ~N(0,02)

> Cov(eje, €j¢) =0 for i #j

> Cov(eit,€ig) =0 for t # g
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Now, the key assumptions that we're making are that:

1. the model structure is correctly specified

2. the tree random effects are normally distributed,
3. the tree random effects are homoscedastic.

4. the inner-most residuals are normally distributed,
5

. the inner-most residuals are homoscedastic within and across
the tree random effects.

6. the innermost residuals are independent within the groups.

Diagnostics for getting it less wrong in R
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Figure: Useful regression diagnostics from R.

Diagnostics for getting it less wrong in R

QQ plot: Tree QQ plot: Residuals
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Figure: More useful regression diagnostics from R.

Diagnostics for getting it less wrong in R
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Figure: More useful regression diagnostics from R.

Diagnostics for getting it less wrong in R
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Figure: More useful regression diagnostics from R.

The roles differ

For the design,

» fixed effects represent themselves;

» random effects represent a population.

Within the model,

» fixed effects explain variation;

» random effects organize unexplained variation.

Random effects are effects that common sense says will explain
variation, but you don’t want to have to know them in order to be
able to apply the model.
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Natural resources data commonly have hierarchical structure.

» Trees within plots within stands within forests.

» Times within trees ...

Mixed-effects models enable the modeling of correlated data
without violation of important regression assumptions.

Regression assumptions.
» True relationship is linear.
> Residuals are normally distributed.

> Residuals have identical distribution (variance).

> Residuals are independent.

Mixed-effects models redefine the residuals.

Utility

Mixed effects models also allow the estimation of useful quantities.

» Variance components.

» Intra-class correlation.

Modelling is much more involved

Add a new dimension to your flow chart!

A Candidate Modelling Strategy

The modeling strategy depends on the modeler’s intention.

1. Fit baseline model.

1.1 Include the meaningful fixed effects.
1.2 Include the design random effects.

2. Check the assumption diagnostics.

3. Add or modify random components until diagnostics are
satisfied.

3.1 a heteroskedastic variance structure (several candidates)
3.2 a correlation structure (several candidates)
3.3 extra random effects (e.g. random slopes)

4. Consider adding more fixed effects.

5. Re-examine the diagnostics, add/modify random effects, etc.

Basic Model Statement

Y=X3+2Zb+e

b ~ N(0,D
e ~ N(O0,R)

—

Design Matrices

» X allocates the fixed effects.
» Z allocates the random effects.
Covariance Matrices

» D describes the random effects covariance.

» R allocates the residuals covariance.

Y=X3+Zb+e

Var(Y | X,Z,3,b) =R

Var(Y | X,8) = ZDZ' +R=V
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Profile 5 out

8= (X'VIX)"Ix'v-1ly

[ is gone!

LBVI]Y,X)=f(V|Y,X,Z)

Estimate V/ by maximization and then B by substitution.

ReML

NB: Maximum likelihood estimators of covariance parameters are
usually negatively biased.

Briefly, ReML involves applying ML, but replacing

» Y with KY;

» X with 0;

» Z with K’Z; and
» V with K'VK

where K is any K such that K'X = 0.

Exercise 6 The next steps.





