Linear Mixed Models for Experiments
Mixed models can be used to analyze more complex experimental designs, as noted in the pre-course material notes.   These can be analyzed in R using procedures similar to linear or nonlinear mixed models. The differences are:

1. The “x” variables include class variables.

2. The interpretation is different as experiments can be used to assign cause and effect.  

The textbook:
Pinheiro, J.C. and D. M. Bates.  2000. Mixed-effects models in S and S-Plus.  Springer, New York.

has a number of examples using S and S-Plus, which R was designed to emulate.    Here are three examples from that textbook.  The examples use maximum likelihood to estimate the fixed and random effects of the model, using a procedure called lme found in the package called nlme.  The data used in each of the example is also stored in the nlme library.   
Each of these examples is described here, and the code and data have been loaded for you to try.  If you are not familiar with more complex experimental designs, you might want to spend more time on the first two examples, as these are more simple experiments, and try to interpret the results that you get using R.
Example 1.1:  A simple example of random effects

The y-variable in this example is “longitudinal stress” on train rail lines.  Six rail lines were selected at random, and tested three times each.  Here there is only one factor, “rail” and this is a random-effect.  There is the overall mean (grand mean (ie a fixed-effect labelled as the intercept = 66.5)), the variance due to rail (ie the standard deviation of the “intercept” varying with rail=24.805), and the remaining variance within rails (the “residual” standard deviation=4.0208).

Example 1.2: A randomized block design.  

This example looks at ergonomic stools (ie healthy chairs), where the y variable is the effort to rise from a chair given four particular types of stools (fixed-effects called “Type”).  Each person (a block, labelled as “Subject”) tests each stool, and there are nine persons (ie nine blocks).  The results for the fixed effects are the intercept and how this varies by Type, and then the variance of the intercept for the person (ie the standard deviation of the block = 1.3325) and the left-over variance (ie the block by treatment interaction standard deviation =1.1003).   There is an F-test for H0: means are the same for all types (F=455.01, pvalue<.0001).  Then, the estimated fixed effects coefficients depend upon what contrasts you have included.  Using the “Helmert” contrasts which work well when the treatments are in order:  i) the one labelled “intercept” is the mean of all four Stool Types;  ii) the one labelled “Type 1” is comparing Stool Type 1 with Stool Type 2; iii) the one labelled “Type 2” is comparing Stool Type 3 versus Stool Types 1 and 2; and iv) the one labelled “Type 3” is testing Stool Type 4 versus the other three.   Where the treatments are not in order, other contrasts may be of interest.  Alternatively, using the different contrasts, the fixed-effect coefficients are: i) the one labelled “intercept” is the mean of Stool Type 1; ii) the one labelled “Type 2” is the difference between Stool Type 1 mean and Stool Type 2 mean; iii)  the one labelled “Type 3” is the difference between Stool Type 1 mean and Stool Type 3 mean; and iv) ii) the one labelled “Type 4” is the difference between Stool Type 1 mean and Stool Type 4 mean.  The R code also gives confidence intervals for each fixed-effect and for each variance (actually standard deviation) estimated.  

Example 1.3:  Mixed-effects models for replicated, block designs

Note that the code given with the nlme package was modified for this example.  In this example, the y variable is productivity score.  Six randomly selected workers are tested on each of three machine types.  Each worker uses the machine type three times. The machine types are the treatments (fixed-effect factor), the workers are the blocks (random-effects), and then there are three replicates of each machine in each block.  The model then has Blocks (ie random effects “Worker” with standard deviation estimated as 4.7814), Block by Treatment (“Machine %in% Worker”, with standard deviation estimated as 3.7294) and then replicates within each Block X Treatment (ie “Residual” with standard deviation of 0.96158).  Getting F-tests for the Treatment is a bit more difficult using R.  Instead, two models must be run to get at whether the treatments differ.    There are three models to used test Block X Treatment and the Fixed Effect.  

Example 1.4:  An Analysis of Covariance Model

This shows an example which is an observational study comparing growth curves of the pituitary gland of several boys (16) and several girls (11) based on x-rays of skulls (y=distance).  The data for the girls is used in the code.    The fixed-effect is the age and the random effects are the individuals and the left-over residual.  

Example 1.5: Models for Nested Classification Factors

In this example, there is Dog and Side (right and left) and the y variable is intensity of pixels in the CT scan of the dog, after it is injected with dyes, another observational study.  The Dog is a random-effect, considered to be nested in the Side, and Side is a fixed effect.  Each pixel is a measured over time, so that time is nested in Side and Dog (the residual error term).
Example 1.6: A Split-Plot Experiment

In this experiment, the experimental field is blocked, and divided into plots.  Nitrogen is then applied to the plots (four levels) randomly in blocks. The plots are subdivided (split plot), and a variety (three of these) is randomly assigned within each split-plot.   

#-*- R -*-

library(nlme)

#  pdf(file = 'ch01.pdf')

options( width = 65, digits = 5 )

options( contrasts = c(unordered = "contr.helmert", ordered = "contr.poly") )

# Chapter 1    Linear Mixed-Effects Models: Basic Concepts and Examples

# 1.1 A Simple Example of Random Effects

Rail

fm1Rail.lm <- lm( travel ~ 1, data = Rail )

fm1Rail.lm

fm2Rail.lm <- lm( travel ~ Rail - 1, data = Rail )

fm2Rail.lm

fm1Rail.lme <- lme(travel ~ 1, data = Rail, random = ~ 1 | Rail)

summary( fm1Rail.lme )

fm1Rail.lmeML <- update( fm1Rail.lme, method = "ML" )

summary( fm1Rail.lmeML )

plot( fm1Rail.lme )   # produces Figure 1.4

intervals( fm1Rail.lme )

anova( fm1Rail.lme )

# 1.2 A Randomized Block Design

plot.design( ergoStool )   # produces Figure 1.6

contrasts( ergoStool$Type )

ergoStool1 <- ergoStool[ ergoStool$Subject == "1", ]

model.matrix( effort ~ Type, ergoStool1 )   # X matrix for Subject 1

fm1Stool <-

lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

summary( fm1Stool )

anova( fm1Stool )

options( contrasts = c( factor = "contr.treatment",

                        ordered = "contr.poly" ) )

contrasts( ergoStool$Type )

fm2Stool <-

  lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

summary( fm2Stool )

anova( fm2Stool )

model.matrix( effort ~ Type - 1, ergoStool1 )

fm3Stool <-

 lme(effort ~ Type - 1, data = ergoStool, random = ~ 1 | Subject)

summary( fm3Stool )

anova( fm3Stool )

intervals( fm1Stool )

plot( fm1Stool,   # produces Figure 1.8

      form = resid(., type = "p") ~ fitted(.) | Subject,

      abline = 0 )

# 1.3  Mixed-effects Models for Replicated, Blocked Designs

with(Machines, interaction.plot( Machine, Worker, score, las = 1))   # Figure 1.10

fm1Machine <-

lme( score ~ Machine, data = Machines, random = ~ 1 | Worker,method="ML" )

fm1Machine

fm2Machine <- update( fm1Machine, random = ~ 1 | Worker/Machine, method="ML" )

fm2Machine

anova( fm1Machine, fm2Machine )

fm3Machine <- update( fm2Machine, score~1,method="ML")

summary( fm3Machine )

anova( fm1Machine, fm2Machine, fm3Machine )

# 1.4 An Analysis of Covariance Model

names( Orthodont )

levels( Orthodont$Sex )

OrthoFem <- Orthodont[ Orthodont$Sex == "Female", ]

fm1OrthF.lis <- lmList( distance ~ age, data = OrthoFem )

coef( fm1OrthF.lis )

intervals( fm1OrthF.lis )

plot( intervals ( fm1OrthF.lis ) )   # produces Figure 1.12

fm2OrthF.lis <- update( fm1OrthF.lis, distance ~ I( age - 11 ) )

plot( intervals( fm2OrthF.lis ) )    # produces Figure 1.13

fm1OrthF <-

  lme( distance ~ age, data = OrthoFem, random = ~ 1 | Subject )

summary( fm1OrthF )

fm1OrthFM <- update( fm1OrthF, method = "ML" )

summary( fm1OrthFM )

fm2OrthF <- update( fm1OrthF, random = ~ age | Subject )

anova( fm1OrthF, fm2OrthF )

random.effects( fm1OrthF )

ranef( fm1OrthFM )

coef( fm1OrthF )

plot( compareFits(coef(fm1OrthF), coef(fm1OrthFM)))   # Figure 1.15

plot( augPred(fm1OrthF), aspect = "xy", grid = TRUE )   # Figure 1.16

# 1.5  Models for Nested Classification Factors

fm1Pixel <- lme( pixel ~ day + I(day^2), data = Pixel,

  random = list( Dog = ~ day, Side = ~ 1 ) )

intervals( fm1Pixel )

plot( augPred( fm1Pixel ) )   # produces Figure 1.18

VarCorr( fm1Pixel )

summary( fm1Pixel )

fm2Pixel <- update( fm1Pixel, random = ~ day | Dog)

anova( fm1Pixel, fm2Pixel )

fm3Pixel <- update( fm1Pixel, random = ~ 1 | Dog/Side )

anova( fm1Pixel, fm3Pixel )

fm4Pixel <- update( fm1Pixel, pixel ~ day + I(day^2) + Side )

summary( fm4Pixel )

# 1.6  A Split-Plot Experiment

fm1Oats <- lme( yield ~ ordered(nitro) * Variety, data = Oats,

  random = ~ 1 | Block/Variety )

anova( fm1Oats )

fm2Oats <- update( fm1Oats, yield ~ ordered(nitro) + Variety )

anova( fm2Oats )

summary( fm2Oats )

fm3Oats <- update( fm1Oats, yield ~ ordered( nitro ) )

summary( fm3Oats )

fm4Oats <-

  lme( yield ~ nitro, data = Oats, random = ~ 1 | Block/Variety )

summary( fm4Oats )

VarCorr( fm4Oats )

intervals( fm4Oats )

plot(augPred(fm4Oats), aspect = 2.5, layout = c(6, 3),

     between = list(x = c(0, 0, 0.5, 0, 0))) # produces Figure 1.21

