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1.0 Introduction
Frequently after completing an analysis of variance test in a single factor experimental design,
further analysis is desired to explore potential differences between many pairs of factor level
means. Most textbooks describing common statistical procedures (i.e. Sokal and Rohlf 1995,
Steel et al 1997, Hicks and Turner 1999, Sheskin 2004, Kutner et al 2005) recognize the
preferred method of planning for such contrasts in advance based on expected relationships
that are logical extensions of the experimental design. Such a priori contrasts must be
completely independent (i.e. no one mean can be used in two separate comparisons) and the
number of contrasts is limited by the available degrees of freedom.
It is also acknowledged, however, that desired comparisons cannot always be planned (they
may be suggested by the experimental results themselves) or may be greater in number than
the available degrees of freedom. A considerable number of statistical methods have arisen to
deal with such situations. Such methods fall under the general category of multiple
comparison tests or a posteriori comparisons.
In making a series of multiple comparisons, the general objective is to detect population
differences where they occur, while keeping the cumulative probability of a Type I error
below the desired probability for the entire experiment. While a series of difference-between-
means t-tests could be employed to detect such differences, the sum of Type I error
probabilities could easily escalate above the experiment wise α-level, particularly where a
large number of contrasts are required. Controlling the experiment wise Type I error rate,
then, is a major feature of multiple comparison tests.

2.0 Analysis Methods
Six multiple comparison methods are presented in this paper. The methods selected are a
commonly applied subset of those available for balanced, single factor studies. The
descriptions of various methods below have been compiled from a number of textbooks and
manuals (Hicks and Turner 1999, Kutner et al 2005, SAS Institute 2003, Sheskin 2004, Sokal
and Rohlf 1995, Steel et al 1997), which are used in this paper both as sources for the
methods and as interpretive guides to their application – no original sources (i.e. journal
papers) have been consulted.

Bonferroni Method
The Bonferroni (also Bonferroni-Dunn) method of paired comparisons allows any number of
unplanned comparisons between two means, and permits comparisons for both balanced and
unbalanced designs. It is based on ensuring that the probability of no Type I errors across all
tests is at least 1-α. In order to ensure this requirement, the allowable error rate is divided up
amongst all pairs to be tested to get a new rate (α’) that is used for each paired test:

€ 

α '= α
k

where k equals the total number of comparisons to be completed

For each test of factor level means a and b:
H0: µa = µb

H1: µa ≠ µb
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a t-test can be established whereby:

€ 

tcalc =
y a − y b( ) − 0

MSE 1
na

+
1
nb

 

 
 

 

 
 

        and        

€ 

tcrit = t1−α ' / 2,dferror

For each case tested, if tcalc > tcrit, then the null hypothesis must be rejected, indicating a
significant difference between the means. Alternatively, a p-value can be determined for tcalc
and compared to α’ (a convenient method where p-values have been calculated using a
statistics software program such as SAS). If the p-value < α’, the null hypothesis must be
rejected.
Use of α’ in this method is considered to result in a conservative test: the probability of no
Type I errors will almost always be underestimated. With this method, the worst case scenario
is that the cumulative probability of one or more Type I errors across all tests will equal α.

Scheffé Method
The Scheffé method allows for the same types of comparisons as the Bonferroni method, with
the addition of allowing comparisons between groups of means (i.e. H0: µa = (µb+µc)/2). For
pairwise comparisons where:

H0: µa = µb

H1: µa ≠ µb

the test statistic for the Scheffé test is:

€ 

S =
ˆ L 

s( ˆ L )
         where 

€ 

ˆ L = c j y • j
j=1

J

∑    and    

€ 

s( ˆ L ) = MSE × c j
2 ×

1
n jj=1

J

∑
 

 
  

 

 
     and    

€ 

c j = 0
j=1

J

∑

For the purposes of a multiple comparison between all pairs of factor level means in a trial,
the value of ca in all cases is 1/2, and for cb it is –1/2.
The test statistic is compared to a critical value:

€ 

Scrit = J −1( ) × F1−α,J−1,n−J  (note that the F value is the same as that for the ANOVA)

For the purposes of simultaneous multiple comparisons in a balanced trial (where all values of
nj are equal), it is most useful to feed the value of Scrit back into the calculation of S to get a
critical difference between means where:

€ 

ˆ L = Scrit × s ˆ L ( )       and       

€ 

diffcrit = 2 × ˆ L 

For any pairs of means with a difference greater than diffcrit the null hypothesis should be
rejected: there is a significant difference between the means.
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Tukey’s HSD Test
The Tukey HSD (Honestly Significant Difference) test uses the studentized range satistic (q)
to find significant differences between any pair of means out of a family of J means in a
balanced design. For each possible pair of means a and b:

H0: µa = µb

H1: µa ≠ µb

a test can be established whereby:

€ 

qcalc =
y a − y b

MSE
n

        and       

€ 

qcrit = qα,J ,dferror

where J = number of treatments, and n = number of observations per treatment.

If the value of qcalc exceeds the value of qcrit from the tables of the studentized range, then the
null hypothesis must be rejected, indicating a significant difference between the means.
As with the special case of a Scheffé test for comparison of all means in a balanced design,
we can determine a single value for the critical significant difference by substituting the
critical value back into the formula for qcalc:

€ 

y a − y b( )crit = qcalc ×
MSE

n

For any pairs of means with a difference greater than 

€ 

y a − y a( )crit  the null hypothesis should
be rejected: there is a significant difference between the means.

Student-Newman-Keuls Test (SNK)
The Student-Newman-Keuls (also Newman-Keuls) test is similar to Tukey’s HSD test in that
it uses the same equation for qcalc and the same tables for the studentized range of critical
values. Instead of using a single critical value of the test statistic for all pairs of means,
however, the critical value will vary depending on how many other treatment means are
ranked between the two being tested.
To start this procedure, all of the factor level means are ranked in a list, and all possible
ranges of means are determined. Construct a table of possible ranges. For a list of 5 means i,
ii, iii, iv and v, the possible ranges will include:

i to v ii to v iii to v iv to v
i to iv ii to iv iii to iv
i to iii ii to iii
i to ii

where range (i to v) includes 5 means with a value of k = 5, and range (iii to iv) includes 2
means with a value of k = 2.
For each row in the table of ranges, start with the means with the widest separation (a and b)
such that for:
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H0: µa = µb

H1: µa ≠ µb

a test can be established whereby:

€ 

qcalc =
y a − y b

MSE
n

        and       

€ 

qcrit = qα,k,dferror

(note that the value J from the Tukey procedure has been replaced by k in the determination of qcrit)

If the value of qcalc exceeds the value of qcrit from the tables of the studentized range, then the
null hypothesis must be rejected, indicating a significant difference between the means.
In cases where a significant difference is found, move to the next pair of means (to the right)
in the row and repeat the test. When each row is completed, move to the next row. Note that
for any pair of means in the table for which no significant difference is detected, all pairs of
means in subordinate ranges (any cells in the table that are either lower in the same column or
in equal or lower rows in all columns further to the right) will also have no significant
difference and will not need to be tested.

Duncan’s New Multiple Range Test
Duncan’s test is very similar to the SNK procedure. It differs from the SNK test in that it uses
a variable significance level (α’) depending on the number of means in the range being tested:

€ 

α '=1− (1−α)k−1

This difference is accommodated by using a different set of tables in which the family wise
significance level (α) is used to enter the table, but critical values of the test statistic contained
within the tables have been adjusted based on the number of means in the range and their
effect on α’. With the exception of the alternate table of critical values, the Duncan test is
conducted in an identical manner as the SNK procedure.

Dunnett’s Test
Dunnett’s test is a special case of multiple comparisons where all factor level means are
compared to the control, but no other pairs of means are tested.
For each test of a treatment mean a:

H0: µa = µ0

H1: µa ≠ µ0

A Dunnett modified t statistic can then be established whereby:

€ 

tD calc =
y a − y 0( )
2MSE

n

        and        

€ 

tDcrit = tD 1−α , J −1,dferror

For each case tested, if tDcalc > tDcrit, then the null hypothesis must be rejected, indicating a
significant difference between the means.
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As with the special case of a Scheffé test for comparison of all individual means in a balanced
design and the Tukey HSD test, we can determine a single value for the critical significant
difference by substituting the critical value back into the formula for tDcalc:

€ 

y a − y 0( )crit = tD calc ×
2MSE

n

3.0 Example
In a trial to test growth enhancing treatments in repressed lodgepole pine stands, 10 different
treatment regimes were tested that included selected combinations of thinning and fertilization
in a randomized complete block design. For a variety of reasons including the confounding
effects of further thinning by snowshoe hares in fertilized plots, no treatment interactions can
be reliably evaluated, and each treatment combination will be evaluated as a discrete
treatmen. Given the detection of at least one significant difference between treatment means,
differences between individual pairs of treatment means can then be evaluated using multiple
comparison techniques.
The trial consists of three blocks, each containing 10 treatment units (including an untreated
control). The response variable is ‘apparent’ site index, based on measurement of the last five
years of growth (a modified growth intercept method was used to convert five years of leader
growth at various reference heights to apparent site index) on the best five trees in a plot. The
means by treatment unit are listed in Table 1.

Table 1. Site index (m) data by treatment unit.

Block
Treatment 1 2 3

0 9.62 9.42 9.82
1 10.36 10.32 11.88
2 13.7 11.7 11.88
3 13.08 10.38 11.7
4 18.06 17.26 17.24
5 10.02 10.3 10.1
6 15.1 16.06 14.18
7 15.94 13.18 13.38
8 17.72 15.7 16.52
9 15.14 15.8 16.34

Multiple Comparison Results
A one-factor analysis of variance was conducted using SAS (output in Appendix 1) where:

H0: µ0 = µ2 = µ3 = …  = µ9

H1: at least one pair of means is not equal
Evaluation of the residual plot confirmed the assumption of homogenous variance, and both
the normality plot and normality tests confirmed the assumption of a normal distribution of
errors. The F-value for the analysis was 26.21, with a corresponding p-value of <0.0001 (<α =
0.05). At least one pair of treatment means, therefore, is significantly different.
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For each of the multiple comparison tests discussed above, an additional SAS run was
completed to test for differences between pairs of treatment means (SAS output is included in
Appendix 2). Results of these analyses are presented in three different manners in Table 2 and
Figures 1 & 2.

Table 2. Variation in multiple range test results using a ranked list of means and letter codes to
illustrate groupings. Any two means with the same single-letter code cannot be said to be
significantly different. For example, using the Bonferroni test, treatment 2 is a member of groups
b, c and d, and cannot be distinguished as significantly different from other members of those
groups. It would, however, be significantly different from the mean for treatments 0, 9, 8 and 4. In
the case of the Dunnett test, the letters simply indicate which means are not significantly different
from the control (treatment 0).

Method
Treatment Mean Bonferroni Scheffé Tukey SNK Duncan Dunnett

0 9.62 a a a a a a
5 10.14 ab a ab ab a a
1 10.85 ab ab ab abc ab a
3 11.72 abc ab abc bc bc
2 12.43 bcd abc bc c c
7 14.17 cde bcd cd d d
6 15.11 def cde de de de
9 15.76 ef cde de def e
8 16.65 ef de de ef ef
4 17.52 f e e f f

Figure 1. For each of the six tests, groups of means that are not significantly different from each other
are indicated by a solid, horizontal bar. For an individual mean x, the range indicated by the collection
of bars that falls below x indicates all means from which it cannot be significantly distinguished. For the
Dunnett test, the bar indicates which means cannot be distinguished from the control.

Treatment:
(mean):

0
(9.62)

5
(10.14)

1
(10.85)

3
(11.72)

2
(12.43)

7
(14.17)

6
(15.11)

9
(15.76)

8
(16.65

4
(17.52)

Bonferroni

Scheffé

Tukey

SNK

Duncan

Dunnett
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a. Bonferroni b. Scheffé
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c. Tukey d. Dunnett
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Figure 2. Differences between means as depicted by error bars. Each tail of the
error bars represents 1/2 of the critical difference between means (a fixed critical
difference is not available for the SNK and Duncan tests, so they cannot be depicted
in this manner). Where tails for two means overlap, the means are not significantly
different. For the Dunnett test, the only overlap of concern is with the control
(treatment 0) – no other differences should be interpreted from this chart.
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The methods of data presentation in Table 2 and Figure 1 are capable of showing results for
all six methods, with Figure 1 providing perhaps a quicker overall perception of the
groupings. A presentation such as the one in Figure 2 has the advantage of displaying the
degree of similarity or dissimilarity between adjacent or nearby means, but makes it difficult
to distinguish significant versus non-significant differences under marginal conditions. Still
other presentations are available that combine features of those presented here.
In contrasting the various methods, it is interesting to note the number of other means for
which each treatment mean is significantly different (Table 3). Other than for the Dunnett test,
the Scheffé method distinguished the least number of differences, followed in order by
Bonferroni, Tukey, SNK and Duncan. The Dunnett test, for differences from the control, was
on par with the other tests which made the finest level of distinctions between means.

Table 3. Number of other means (by treatment) for which no significant difference was
found in each of the tests.

Treatment
0 5 1 3 2 7 6 9 8 4

Bonferroni 4 5 5 6 6 6 6 5 5 4
Scheffé 5 5 6 6 6 7 6 6 5 4
Tukey 4 5 5 6 5 6 5 5 5 4
SNK 3 4 5 4 3 3 4 5 4 3
Duncan 3 3 4 3 2 2 4 3 4 2
Dunnett 3 - - - - - - - - -

Discussion
The varying results obtained in the 6 multiple comparison tests in this paper result from the
relative importance placed on Type I and II errors. Methods that place the most stringent
controls on maintaining the experiment wise α level will fail in more cases to distinguish
between means that are truly different. Such methods are considered to be highly
conservative. Methods that are less conservative attempt to make a higher number of
separations between truly different means while at the same time minimizing the risk of
inflating Type I errors.
The relative conservatism of these methods, along with their approach to and/or success at
controlling Type I errors is provided in Table 4. The ranking agrees with the results in Table 3
for the example in this paper.
The choice of multiple comparison methods depends on the situation being tested. The scope
of this paper has been fairly limited to pair-wise comparison of means in a one factor study
with a balanced design. The ranking of conservatism and the availability of methods may
change for other situations.
The choice of methods within the scope of this paper is largely a function of the degree and
type of risk that one is willing to take. Most authors emphasize the absolute control of the
experiment wise α level and favor the Tukey test (α level is controlled but detects more
differences than Scheffé and Bonferroni). Going beyond the selection of a single test,
however, many authors recommend use of several tests. For pairs of means that are always
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separated as significantly different or combined as not significantly different regardless of the
test used, there is no problem. For the marginal pairs, it is worth considering whether or not a
difference is important to the phenomena being studied or the conclusions to be made. If not,
there is no cause for concern. If the distinction is important, then further study may be
warranted.

Table 4. Ranking of multiple comparison methods by conservatism.

Method Conservatism and comments Sources

Scheffé
A highly conservative test usually associated with complex
comparisons; not normally recommended for the type of analysis
in this report. p(no Type I errors) ≥ (1-α).

Hicks and Turner 1999
Kutner et al 2005
Sheskin 2004
Sokal and Rohlf 1995
Steel et al 1997

Bonferroni A highly conservative (similar to Scheffé) test often used for
multiple pair wise comparisons. p(no Type I errors) ≥ (1-α)

Dallal 2001
Kutner et al 2005
Sheskin 2004
Sokal and Rohlf 1995

Tukey

A moderately conservative test that exactly protects the
experiment wise α level: p(no Type I errors) = (1-α). Possibly
the most commonly recommended procedure for making all
possible pair wise tests.

Dallal 2001
Hicks and Turner 1999
Kutner et al 2005
Sheskin 2004
Sokal and Rohlf 1995
Steel et al 1997

Dunnett

A moderately conservative test that exactly protects the
experiment wise α level: p(no Type I errors) = (1-α). The
Dunnett test will, on average, find more means that are
significantly different from the control than does the Tukey test
as it maintains more power through making a smaller number of
comparisons.

Sheskin 2004
Sokal and Rohlf 1995
Steel et al 1997

SNK

A moderately conservative test that protects the experiment wise
α level: p(no Type I errors) = (1-α). Once commonly used, it has
become less so due to concerns regarding detection of differences
no replicated in other methods with similar α level protection.

Dallal 2001
Hicks and Turner 1999
Sheskin 2004
Sokal and Rohlf 1995
Steel et al 1997

Duncan
A lightly conservative test that does not protect the experiment
wise α level; results will often be close to those obtained with a
set of independent t-tests at the α level.

Dallal 2001
Steel et al 1997
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Appendix 1. Analysis of Variance for Example Data
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Appendix 2. Multiple Comparison Test Output from SAS


