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Experimental Design  

Sampling versus experiments 
 
• similar to sampling and inventory design in that information 

about forest variables is gathered and analyzed 

• experiments presuppose intervention through applying a 

treatment (an action or absence of an action) to a unit, called 

the experimental unit.  The experimental unit is an item on 

which the treatment is applied.   

• The goal is to obtain results that indicate cause and effect.    
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Definitions of terms and examples  
 
• For each experimental unit, measures of the variables of 

interest (i.e., response or dependent variables) are used to 

indicate treatment impacts.    

• Treatments are randomly assigned to the experimental units. 

• Replication is the observation of two or more experimental 

units under identical experimental conditions.   

• A factor is a grouping of related treatments.   
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Examples: 

1. 1,000 seedlings in a field. Half of the seedlings get a “tea 

bag” of nutrients, others do not, randomly assigned.   

Experimental unit: the seedling.   

Treatments are: no tea bag, and tea bag.   

Factor:  only one – fertilizer (none, tea bag) 

Replications:  500 seedlings get each treatment 

2. 300 plant pots in a greenhouse:  Each plant gets either 1) 

standard genetic stock; 2) genetic stock from another 

location; 3) improved genetic stock.   

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 
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3.  The number of tailed frogs in different forest types is of 

interest.  There are six areas.  Three are cut and the other 

three are not cut. 

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 

4. Two forest types are identified, Coastal western hemlock and 

interior Douglas fir.  For each, a number of samples are 

located, and the growth of each tree in each sample is 

measured. 

Treatments: 

Experimental Unit: 

Factor(s): 

Replications: 
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What does it mean that  treatments are randomly assigned to 

experimental units? 

• Haphazard vs. random allocation 

• Practical problems and implications 

Other terms: 

• The null hypothesis is that there are no differences among the 

treatment means.  For more than one factor, there is more than 

one hypothesis 

• The sum of squared differences (termed, sum of squares) 

between the average for the response variable by treatment 

versus the average over all experimental units represents the 

variation attributed to a factor.    

• The degrees of freedom, associated with a factor, are the 

number of treatment levels within the factor minus one.    
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Example of hypotheses: 

Factor A, fertilizer:  none, medium, heavy (3 levels) 

Factor B, species:  spruce, pine (2 levels) 

Number of possible treatments: 6  e..g, spruce, none is one treatment. 

Experimental Unit:  0.001 ha plots 

Replicates planned:  2 per treatment (cost constraint).  How many 

experimental units do we need? 

Variable of interest:  Average 5-year height growth for trees in the 

plot 

Null hypotheses: 

There is no different between the 6 treatments.  This can be broken 

into: 

1) There is no interaction between species and fertilizer. 

2) There is no difference between species. 

3) There is no difference between fertilizers. 
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• Experimental error is the measure of variance due to chance 

causes, among experimental units that received the same 

treatment.    

• The degrees of freedom for the experimental error relate to 

the number of experimental units and the number of treatment 

levels.    

• The impacts of treatments on the response variables will be 

detectable only if the impacts are measurably larger than the 

variance due to chance causes.   

• To reduce the variability due to causes other than those 

manipulated by the experimenter, relatively homogenous 

experimental units are carefully selected.   
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• Random allocation of a treatment to an experimental unit 

helps insure that the measured results are due to the treatment, 

and not to another cause.    

Example:  if we have applied the no fertilizer treatment to 

experimental units on north facing sites, whereas moderate and 

heavy fertilizer treatments are applied only to south facing sites, 

we would not know if differences in average height growth were 

due to the application of fertilization, the orientation of the sites, 

or both.  The results would be confounded and very difficult to 

interpret.    
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Variations in experimental design 
 

Introduction of More Than One Factor:   

• Interested in the interaction among factors, and the effect of 

each factor.   

• A treatment represents a particular combination of levels from 

each of the factors.   

• When all factor levels of one factor are given for all levels of 

each of the other factors, this is a crossed experiment.  

Example: two species and three fertilization levels = six 

treatments using a crossed experiment.     
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Fixed, Random, or Mixed Effects: 

• Fixed factors:  the experimenter would like to know the 

change that is due to the particular treatments applied; only 

interested in the treatment levels that are in the experiment 

(e.g., difference in growth between two particular genetic 

stocks) [fixed effects] 

• Random factors: the variance due to the factor is of interest, 

not particular levels (e.g., variance due to different genetic 

stocks—randomly select different stock to use as the 

treatment) [random effects] 

• Mixture of factor types: Commonly, experiments in forestry 

include a mixture of factors, some random and some fixed 

[mixed effect]. 
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Restricted Randomization Through Blocking:  Randomized 

Block (RCB),  Latin Square, and Incomplete Blocks Designs: 

• Randomize treatments with blocks of experimental units 

• Reduces the variance by taking away variance due to the item 

used in blocking (e.g., high, medium and low site productivity 

• Results in more homogeneous experimental units within each 

block. 
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Restricted Randomization Through Splitting Experimental 

Units: 

• Called “split plot” 

• An experimental unit is split.  Another factor is randomly 

applied to the split. 

Example:  The factor fertilizer is applied to 0.001 ha plots.  Each 

of the 0.001 ha plot is then split into two, and two different 

species are planted in each.  Fertilizer is applied to the whole 

plot, and species is applied to the split plot.  Species is therefore 

randomly assigned to the split plot, not to the whole 

experimental unit. 
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Nesting of Factors 

• Treatment levels for one factor may be particular to the level 

of another factor, resulting in nesting of treatments.    

Example, for the first level of fertilizer, we might use medium 

and heavy thinning, whereas, for the second level of fertilizer, 

we might use no thinning and light thinning.    
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Hierarchical Designs and Sub-Sampling:  

• Commonly in forestry experiments, the experimental unit 

represents a group of items that we measure.  E.g. several pots 

in a greenhouse, each with several plants germinating from 

seeds.    

• Treatments are randomly assigned to the larger unit (e.g, to 

each plot not to each seedling). The experimental unit is the 

larger sized unit.   

• May want variance due to the experimental unit (pots in the 

example) and to units within (plants in the example).  These 

are 1) nested in the treatment; 2) random effects; and 3) 

hierarchical 

• A common variation on hierarchical designs is measuring a 

sample of items, instead of measuring all items in an 

experimental unit.     
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Introduction of Covariates   

 
• The initial conditions for an experiment may not be the same 

for all experimental units, even if blocking is used to group 

the units.    

• Site measures such as soil moisture and temperature, and 

starting conditions for individuals such as starting height, are 

then measured (called covariates) along with the response 

variable 

• These covariates are used to reduce the experimental error.   

• Covariates are usually interval or ratio scale (continuous).    
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Designs in use 

• The most simple design is one fixed-effects factor, with 

random allocation of treatments to each experimental unit, 

with no 1) blocking; 2) sub-sampling; 4) splits;  or 5) 

covariates 

• Most designs use combinations of the different variations.  

For example, one fixed-effects factor, one mixed-effects 

factor, blocked into three sites, with trees measured within 

plots within experimental units (sub-sampling/hierarchical), 

and measures taken at the beginning of the experiment are 

used as covariates (e.g., initial heights of trees.   
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Why?   

• Want to look at interactions among factors and/or is cheaper 

to use more than one factor in one experiment than do two 

experiments. 

• Experiments and measurements are expensive – use sampling 

within experimental units to reduce costs 

• Finding homogeneous units is quite difficult: blocking is 

needed 

BUT can end up with problems: 
• some elements are not measured,  
• random allocation is not possible, or  
• measures are correlated in time and/or space.   

 
 
In this course, start with the simple designs and add complexity.   
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Main questions in experiments 

Do the treatments affect the variable of interest? 

For fixed effects: Is there a different between the treatment 

means of the variable of interest?  Which means differ?  What 

are the means by treatment and confidence intervals on these 

means? 

For random effects: Do the treatments account for some of the 

variance of the variables of interest?  How much? 
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Completely Randomized Design (CRD) 

• Homogeneous experimental units are located 

• Treatments are randomly assigned to experimental units 

• No blocking is used 

• We measure a variable of interest for each experimental 

unit 

 

CRD:  One Factor Experiment, Fixed Effects  

Main questions of interest 
 
Are the treatment means different? 

Which means are different? 

What are the estimated means and confidence intervals for these 

estimates? 
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Notation: 
 
Population:  ijjijy ετμ ++=    OR ijjijy εμ +=  

ijy  = response variable measured on experimental unit i and 
treatment j 
 
j=1 to J treatments 
 
μ = the grand or overall mean regardless of treatment 
 

jμ = the mean of all measures possible for treatment j 
 

jτ = the difference between the overall mean of all measures 
possible from all treatments and the mean of all possible 
measures for treatment j, called the treatment effect 
 

ijε = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment j that was 
applied to it 

jijij y με −=  
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For the experiment:   
ijjij eyy ++= •• τ̂    OR ijjij eyy += •  

 
••y = the grand or overall mean of all measures from the 

experiment regardless of treatment; under the assumptions for 
the error terms, this will be an unbiased estimate of μ  
 

jy• = the mean of all measures for treatment j; under the 
assumptions for the error terms, this will be an unbiased 
estimate of jμ  
 

jτ̂ = the difference between the mean of experiment measures 
for treatment j and the overall mean of measures from all 
treatments; under the error term assumptions, will be an 
unbiased estimate of jτ  
 

ije = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment j that was 
applied to it 

jijij yye •−=  
nj = the number of experimental units measured in treatment j 
 
nT = the number of experimental units measured over all 

treatments = ∑
=

J

j
jn

1
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Example:  Fertilization Trial 
 
A forester would like to test whether different site preparation 
methods result in difference in heights.  Twenty five areas each 
0.02 ha in size are laid our over a fairly homogeneous area.  Five 
site preparation treatments are randomly applied to 25 plots.  
One hundred trees are planted (same genetic stock and same 
age) in each area.  At the end of 5 years, the heights of seedlings 
in each plot were measured, and averaged for the plot.   
 
i = a particular 0.02 ha area in treatment j, from 1 to 5. 

Response variable ijy :  5-year height growth (one average for 
each experimental unit) 
 
Number of treatments:  J=5 site preparation methods 
 
nT  = the number of experimental units measured over all 

treatments = ∑
=

5

1j
jn =25 

 
n1 = n2 =n3 =n4 =n5 =5 experimental units measured each 
treatment  



 

 23

Schematic of Layout: 
3 4 4 5 1 
1 2 3 5 2 
2 1 2 4 2 
5 4 3 1 5 
4 3 1 5 3 

 
Data Organization and Preliminary Calculations 
 
For easy calculations by hand, the data could be organized in a 
spreadsheet as: 
 

Obs: 
Treatment, j=1 to J 

 

i=1 to nj 1 2 3 … J  
1 y11 y12 y13 … y1J  
2 y21 y22 y23 … y2J   
3 y31 y32 y33 … y3J   

… … … … … …  
n yn1 yn2 yn3 … ynJ   

Sum y.1 y.2 y.3 … y.J y.. 
Averages 

1•y  2•y  3•y   
Jy• ••y

 

 

    
1 11 T

J

i

n

i
ij

j

j
j

n

i
ijj n

yyyy
n
y

yyy
jj

••
••

= =
••

•
•

=
• ==== ∑ ∑∑

NO

TE:  may not be the same number of observations for 
each treatment. 
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Example: 
 
J= 5 site preparation treatments randomly applied to n=25 plots.   
 
Response Variable:  Plot average seedling height after 5 years  
 
Plot Average Heights (m) 
     
  Treatments Overall
Observation 1 2 3 4 5   

1 4.6 4.9 4.0 3.4 4.3  
2 4.3 4.3 3.7 4.0 3.7  
3 3.7 4.0 3.4 3.0 3.7  
4 4.0 4.6 3.7 3.7 3.0  
5 4.0 4.3 3.0 3.4 3.4   

SUMS 20.600 22.100 17.800 17.500 18.100 96.100
Means 4.120 4.420 3.560 3.500 3.620 3.844
nj 5 5 5 5 5 25

 
Example Calculations: 
 

∑
=

• =++++==
5

1
11 12.45/)3.40.47.33.46.4(

i
iyy  

844.325/1.965/)1.185.178.171.226.20(5

1

5

1

5

1 ==++++==

∑

∑∑

=

= =
••

j
j

j i
ij

n

y
y
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We then calculate: 

1) Sum of squared differences between the observed values and 

the overall mean (SSy): 

( ) ∑∑∑
== =

•• −=−=
J

j
j

J

j

n

i
ij ndfyySSy

j

11 1

2 1  

 
Also called, sum of squares total (same as in regression)  

2) Sum of squared differences between the treatment means, and 

the grand mean, weighted by the number of experimental units 

in each treatment (SSTR) 

( ) ( ) 1
2

11 1

2 −=−=−= ∑∑∑
=

•••
= =

••• JdfyynyySS
J

j
jj

J

j

n

i
jTR

j

 

3) Sum of squared differences between the observed values for 
each experimental unit and the treatment means (SSE) 

( )∑∑
= =

• −=−=
J

j

n

i
Tjij

j

JndfyySSE
1 1

2  

SSESSSSy TR +=  
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Alternative formulae for the sums of squares that may be 
easier to calculate are: 
 

TR

T

J

j
jjTR

T

J

j

n

i
ij

SSSSySSE
n
yynSS

n
yySSy

j

−=

−=

−=

••

=
•

••

= =

∑

∑∑

     

     

2

1

2

2

1 1

2
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For the example, differences from treatment means (m): 
 
  Treatments Overall
Obs. 1 2 3 4 5   
1 0.480 0.480 0.440 -0.100 0.680  
2 0.180 -0.120 0.140 0.500 0.080  
3 -0.420 -0.420 -0.160 -0.500 0.080  
4 -0.120 0.180 0.140 0.200 -0.620  
5 -0.120 -0.120 -0.560 -0.100 -0.220   
SUMS 0.000 0.000 0.000 0.000 0.000 0.000
Sum of 
Squares 
Error 0.468 0.468 0.572 0.560 0.908 2.976
nj 5 5 5 5 5 25
s2

j 0.117 0.117 0.143 0.140 0.227   
 
Example Calculations: 
 

( )

468.0)12.40.4()12.40.4()12.47.3()12.43.4()12.46.4(

1ent for treatm 

22222

5

1

2
11

=−+−+−+−+−=

−= ∑
=

•
i

i yySSE
 

117.0
15

468.0
1

1 for  

1

1
2 =

−
=

−
=

n
treatmentSSEs  

 

( )

2.976    0.9080.5600.5720.4680.468  
5 for  SSE  ...2 for  SSE 1 for 

 
1 1

2

=++++=
+++=

−= ∑∑
= =

•

treatmenttreatmenttreatmentSSE

yySSE
J

j

n

i
jij

j
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Differences from grand mean (m) 
    
  Treatments Overall 
Obs. 1 2 3 4 5   
1 0.756 1.056 0.156 -0.444 0.456  
2 0.456 0.456 -0.144 0.156 -0.144  
3 -0.144 0.156 -0.444 -0.844 -0.144  
4 0.156 0.756 -0.144 -0.144 -0.844  
5 0.156 0.456 -0.844 -0.444 -0.444   
SUMS 1.380 2.880 -1.420 -1.720 -1.120 0.000 
Sum of 
Squares 
Total 0.849 2.127 0.975 1.152 1.159 6.262 
nj 5 5 5 5 5 25 
 
 

( )

6.262   1.1591.1520.97502.1270.849  
5 for SSy   ...2 for SSy  1 for 

 
1 1

2

=++++=
+++=

−= ∑ ∑
= =

••

treatmenttreatmenttreatmentSSy

yySSy
J

j

n

i
ij

j
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Difference between treatment means and grand mean (m) 
 
  Treatments Overall
  1 2 3 4 5   
Mean 4.120 4.420 3.560 3.500 3.620  
Difference 0.276 0.576 -0.284 -0.344 -0.224 0.000
Sum of 
Squares 
Treatment 0.076 0.332 0.081 0.118 0.050 3.286
nj 5 5 5 5 5 25
 
Example Calculations: 

( ) ( ) ( )

( ) ( ) ( )
286.3

)844.3620.3(5)844.3500.3(5)844.3560.3(5

)844.3420.4(5)844.3120.4(5

222

22

1

2

=
−×+−×+−×+

−×+−×=−= ∑
=

•••

J

j
jjTR yynSS
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Test for differences among treatment means 
 
The first main question is:  Are the treatment means different? 

    H0: μ1 = μ2 = … = μJ 
H1: not all the same 

OR:   
  H0: Jτττ === L21 = 0 

H1: not all equal to 0 
OR: 

 
H0: (φTR+σ2

ε) /σ2
ε  = 1 

H1: (φTR+σ2
ε)/σ2

ε > 1 
 

Where σ2
ε  is the variance of the error terms;  

φTR is the effect of the fixed treatments (see page 234 for more 

details on what this is). 

 

If the treatment does not account for any of the variance in the 

response variable, then treatment effects are likely all = 0, and 

all the treatment means are likely all the same. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
Treatment J-1 SSTR MSTR= 

SSTR/(J-1) 
F= 
MSTR/MSE 

Prob F>  
F(J-1),( nT -J), 

(1- α) 
Error nT -J SSE MSE= 

SSE/(nT-J) 
  

Total nT -1 SSy    
 

MSE
MS

JnSSE
JSS

nSSE

JSSF TR

T

TR
J

j
j

TR =
−
−

=
−

−
=

∑
=

)/(
)1/(

)1(/

)1/(

1

 

 
Under H0, and the assumptions of analysis of variance, this 
follows an F-distribution.  If    

 

)1,,1( α−−−> JnJ T
FF  

 
We reject H0 and conclude that there is a difference between the 
treatment means.  
 
Notice that this is a one-sided test, using 1-α 
 
This is because we are testing if the ratio of variances is > 1. 
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For example, if we have 4 treatments, and 12 experimental units, 
and we want α=0.05: 

If the calculated F is larger than 4.07, we reject H0:  The 

treatments means are likely different, unless a 5% error has 

occurred. 

OR:  We take our calculated F value from our experiment and 

plot it on this F curve.  Then, find the area to the right of this 

value (p-value).  We reject a hypothesis if the probability value 

(p-value) for the test is less than the specified significance level.    

0 2.4 4.8

F(3,8; 0.95)=4.07

Rejection Region
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For the example:  
  
If assumptions of ANOVA are met then interpret the F-value.   
 
H0:  μ1= μ2 =μ3 =μ4 =μ5 

 
H1:   not all equal 
 
Analysis of Variance (ANOVA) Table: 
     
Source df SS MS F p-value
Treatment 5-1=4 3.286 0.821 5.51 0.004
Error 25-5=20 2.976 0.149   
Total 25-1=24 6.262       
 

If assumptions of ANOVA are met then interpret the F-value.  
NOTE:  Fcritical for alpha=0.05, df treatment=4 and df error=20 
is 2.87.  
 

Since the p-value is very smaller (smaller than alpha=0.05), we 

reject H0 and conclude that there is a difference in the treatment 

means.  BUT this is only a good test if the assumptions of 

analysis of variance have been met.  Need to check these first 

(as with regression analysis). 
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Assumptions regarding the error term 

For the estimated means for this experiment to be unbiased 

estimates of the means in the population, and the MSE to be an 

unbiased estimate of the variance within each experimental unit, 

the following assumptions must be met: 

1. Observations are independent – not related in time nor in 

space [independent data] 

2. There is normal distribution of the y-values [or the error 

terms] around each treatment mean [normally distributed] 

3. The variances of the y’s around each treatment mean [or 

the error terms] are the same (homogeneous) for all 

treatment means [equal variance] 
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Similar to regression: 

• a normal probability plot for the error terms can be 

used to check the assumption of normality, and  

• a residual plot can be used to visually check the 

assumption of equal variance.   

OR, these can be tested using (1) normality tests (as with 

regression); (2) Bartlett’s test for equal variances (for more than 

one factor or for other designs with blocking, etc. this becomes 

difficult). 
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Transformations to meet assumptions 
 
Similar to regression: 
• logarithmic transformations can be used to equalize 

variances 
• arcsine transformation can be used to transform proportions 

into normally distributed variables 
• rank transformation can be used when data are not 

normally distributed and other transformations do not 
“work” [nonparametric analysis of variance using ranks] 

 
Unlike regression you must transform the y-variable  
 
Process: 
• do your analysis with the measured response variable 
• if assumptions of the error term are not met, transform the 

y-variable 
• do the analysis again and check the assumptions; if not me, 

try another transformation 
• may have to switch to another method:  generalized linear 

models, etc.



 

 37

 
Expected values:   
 

Under the assumptions of analysis of variance, MSE is an 

unbiased estimate of σ2
ε  and MSTR is an unbiased estimate of 

φTR+σ2
ε.  Therefore, this F-test will give the correct 

probabilities under the assumptions.   

 

This is the same as saying that the expected value of MSE is 

σ2
ε , and the expected value of   MSTR is φTR+σ2

ε.   The F-test 

is then a measure of how much larger the value is when the 

treatment means are accounted for. 
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For the example, before interpreting the ANOVA table, we must 
check assumptions of ANOVA: 
 
Is there equal variance across treatments?  (estimated by MSE as 
0.149 on our ANOVA table).  Using a residual plot and EXCEL: 
 

Residual Plot

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

        4   3  5                                1                  2
Pred. Values (Treat. Means in m)

R
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 (E

rr
or

 in
 m

)
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Are residuals normally distributed? Again using EXCEL: 
 

Residuals vs. normal z(0,1)

0.00

0.20

0.40

0.60

0.80

1.00

-2 -1 0 1 2

z-values

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Stand. Res
z(0,1)

 
 
Where standardized residuals are calculated by: 
 

MSE
e

e i
i

0
)edstandardiz(

−
=  

 
Compare these to z-values for a standard normal distribution with a mean of zero 
and a variance of 1 (z(0,1))  
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Differences among particular treatment means 
 
If there are differences among means detected, which means 
differ? 
 
Can use: 
• Orthogonal contrasts – see textbook 
• Multiple comparisons 

 
Multiple comparisons (or contrasts): 
 
• Many different types, e.g. 

o T-test for every pair of means; must adjust the alpha 
level used by dividing by the number of pairs. 

o Scheffe’s multiple comparisons 
o Bonferonni’s adjustments 

 
• Try to “preserve” the alpha level used to test all the means 

together (the F-test) 
 

 
For the example, given that there is a difference among 
treatment means, which pairs of means differ? 
 
t-test for pairs of means: 
• determine the number of pairs possible   

 

means of  pairs   possible  10
!2!3

!5
2
5

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Comparing Treatments 2 (largest estimated mean) versus 4 
(smallest estimated mean):  

686.3

5
1

5
1149.0

)5.34.4(

11

0)(

     0:H
:H         OR      0:H

42

42
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⎝
⎛ +×

−
=

⎟⎟
⎠
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⎝

⎛
+

−−
=

≠−
==−

••

t

nn
MSE

yyt

μμ
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Under H0:  This follows: 
 

Jn T
t −− ,2/1 α  
 
Using alpha=0.005 (0.05/10=0.005), for 5 treatments and 25 
observations, the t-value is 3.153.  Result?  
 
Another way to assess this is to obtain the p-value for t=3.686, 
with 20 degrees of freedom (25-5).   
 
This is 0.001464.  Since this is less than 0.005, we reject H0 and 
conclude that these two means differ.    
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Confidence limits for treatment means 
 
Under the assumptions, confidence intervals for each treatment 
mean can be obtained by: 
 

j
Jnj n

MSEty
T 21),( α−−• ±  

Since MSE estimates the variance that is assumed to be equal, 

and the observations are normally distribution and independent. 

For the example:  

j
nj n

MSEty
T 2/1),1( α−−• ±  

6.35.36.34.41.4 54321 ===== ••••• yyyyy

equal all are   since same  theall are    All j
j

n
n

MSE
 

09.2173.0
5
149.0

975.0,20 == t  

 
For treatment 1: 

)46.4,74.3(
36.01.4173.009.21.4 ±×±
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Using SAS and R: 
 
For entry into statistical programs like SAS and R, the data 
should be organized as: 
 

Treatment Obs: Response
j=1 to J i=1 to nj  
1 1 y11 
1 2 y21 
1 3 y31 
… … … 
1 n1 y(n1) 1 
2 1 y12 
2 2 y22 
2 3 y32 
… … … 
2 n2 Y(n2) 2 
… … … 
J 1 y1J 
J 2 y2J 
J 3 y3J 
… … … 
J n J y(nJ) 3 
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For the example, we can put the data into an EXCEL file: 
 
Treatment Observation AveHt

1 1 4.6
1 2 4.3
1 3 3.7
1 4 4.0
1 5 4.0
2 1 4.9
2 2 4.3
2 3 4.0
2 4 4.6
2 5 4.3
3 1 4.0
3 2 3.7
3 3 3.4
3 4 3.7
3 5 3.0
4 1 3.4
4 2 4.0
4 3 3.0
4 4 3.7
4 5 3.4
5 1 4.3
5 2 3.7
5 3 3.7
5 4 3.0
5 5 3.4
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Power of the Test: 

A Type I error rate (α, significance level), the chance of 

rejecting a null hypothesis when it is true (you reject when the 

means are actually the same) must be selected.  Given: 

• a particular number of experimental units 

• sizes of the differences between true population means, and  

• variation within the experimental units 

this will set the Type II error rate (β), the chance of accepting a 

null hypothesis when it is false (you fail to reject when the 

means are actually different) 

The power of the test is 1- β, the probability you will reject 

the null hypothesis and conclude that there is a difference 

in means, when there IS a difference between population 

means. 
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If the difference between population means (real treatment 

means) is very large, than a small number of experimental units 

will result in rejection of the null hypothesis. 

 

If the number of experimental units is very large, then even a 

small difference between population means will be detected. 

 

If the variation within experimental units is very small, then the 

difference will be detected, even with a small difference 

between population means, and even with only a few treatment 

units. 
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Statistical Significance is not the same as differences of 

Practical importance!  UNLESS you: 

• have some idea of within experimental unit variation from 

a previous study with the same conditions (e.g., MSE from 

a previous study) 

• know the size of the difference that you wish to detect 

• have selected the α level 

Then: 

You can calculate the number of experimental units per 

treatment that will result in rejection of H0: when the 

differences are that large or greater. 

Alternatively: 

You can calculate the power of the test for an experiment you 

have already completed.   

[see examples in www.forestry.ubc.ca/biometrics course 

materials for FRST 430/533] 

 

 48 

Methods based on maximum likelihood rather than least squares 

ML methods can be used when: 

• Treatments are random rather than fixed (more on this 

later) 

• Transformations do not result in assumptions being met 

• Your dependent variable is a count, or it is a binary variable 

(e.g., yes or no; dead or alive; present or absent) 
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CRD:  Two Factor Factorial Experiment, Fixed Effects 

Introduction  

• Treatments can be combinations of more than one factor 

• For 2-factor experiment, have several levels of Factor A and 

of Factor B 

• All levels of Factor A occur for Factor B and vice versa 

(called a Factorial Experiment, or crossed treatments) 

Example:   

• Factor A, (three levels of fertilization: A1, A2, and A3) 

• Factor B (four species: B1, B2, B3 and B4) 

• Crossed: 12 treatments 

• Four replications per treatment for a total of 48 experimental 

units 

• Measured Responses:  height growth in mm 
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Schematic and Measured Response for the Example: 

A1B1=10 A3B2=25 A3B4=35 A2B2=23 A1B2=14 A2B3=24 

A1B4=24 A2B2=22 A1B2=15 A2B4=28 A3B3=32 A3B2=25 

A3B2=27 A1B4=23 A3B3=29 A3B2=26 A1B3=17 A1B1=11 

A3B4=35 A1B2=13 A1B4=22 A1B1=11 A2B3=24 A3B3=30 

A1B3=19 A2B1=18 A2B4=30 A3B3=31 A2B3=23 A1B4=22 

A3B1=22 A2B4=29 A3B1=23 A2B1=18 A1B2=15 A3B1=23 

A2B2=25 A3B4=37 A1B1=9 A3B1=24 A3B4=36 A2B4=28 

A1B3=17 A2B1=18 A2B2=20 A2B1=18 A2B3=26 A1B3=18 

 

A1B1=10 indicates that the response variable was 10 for this 

experimental unit that received Factor A, level 1 and Factor B, 

level 1.  Treatments randomly assigned to the 48 experimental 

units. 
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Organization of data for analysis using a statistics package: 
A B result 
1 1 10 
1 1 11 
1 1 9 
1 1 11 
1 2 15 
1 2 15 
1 2 13 
1 2 14 
1 3 17 
1 3 18 
1 3 17 
1 3 19 
1 4 22 
1 4 23 
1 4 24 
1 4 22 
2 1 18 
2 1 18 
2 1 18 
2 1 18 
2 2 20 

. . .   
3 3 32 
3 4 35 
3 4 36 
3 4 37 
3 4 35 
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Main questions 

1. Is there an interaction between Factor A and Factor B 

(fertilizer and species in the example)?  Or do the means by 

Factor A remain the same regardless of Factor B and vice 

versa? 

2. If there is no interaction, is there a difference  

a. Between Factor A means? 

b. Between Factor B means? 

3. If there are differences:  

a. If there is an interactions, which treatment means 

differ? 

b. If there is no interaction, then which  levels of Factor 

A means differ?  Factor B means? 
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Notation, Assumptions, and Transformations 
 
Models  
 

Population:  ijkjkABBkjAijky ετττμ ++++=     

ijky  = response variable measured on experimental unit i and 
factor A level j, factor B level k 
 
j=1 to J levels for Factor A; k=1 to K levels for Factor B 
 
μ = the grand or overall mean regardless of treatment 
 

Ajτ = the treatment effect for Factor A, level j 
 

Bkτ = the treatment effect for Factor B, level k 
 

ABjkτ = the interaction for Factor A, level j and Factor B, level k 
 

ijkε = the difference between a particular measure for an 
experimental unit i, and the mean for a treatment: 

)( ijABBkjAijkijk y τττμε +++−=  
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For the experiment:   
ijkjkABBkjAijk eyy ++++= ••• τττ ˆˆˆ  

•••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions for 
the error terms, this will be an unbiased estimate of μ  

jky• = the mean of all measures from the experiment for a 
particular treatment jk  

•• jy = the mean of all measures from the experiment for a 
particular level j of Factor A (includes all data for all levels of 
Factor B) 

ky •• = the mean of all measures from the experiment for a 
particular level k of Factor B (includes all data for all levels of 
Factor A) 
 

ABjkBkAj τττ ˆ,ˆ,ˆ = under the error term assumptions, will be 
unbiased estimates of corresponding treatment effects for the 
population 
 

ijke = the difference between a particular measure for an 
experimental unit i, and the mean for the treatment jk that was 
applied to it 

jkijkijk yye •−=  
njk = the number of experimental units measured in treatment jk 
nT = the number of experimental units measured over all 

treatments = ∑∑
− =

K

k

J

j
jkn

1 1
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Means for the example: 

Factor A:  16 observations per level 

A1=16.25, A2=23.38, A3=28.75 

 

Factor B:  12 observations per level 

B1=17.08, B2=20.83, B3=24.17, B4=29.08   

 

Treatments (A X B):  4 observations per treatment 

 

 

 

 56 

Sums of Squares:    

SSESSSSy TR += as with CRD: One Factor.  BUT 

TRSS is now divided into: 

SSABSSBSSASSTR                                    ++=  

SSy:  The sum of squared differences between the observations 

and the grand mean: 

( ) 1 
1 1 1

2 −=−=∑∑∑
= = =

••• T

K

k

J

j

n

i
ijk ndfyySSy

jk

 

SSA:  Sum of squared differences between the level means for 

factor A and the grand mean, weighted by the number of 

experimental units for each treatment: 

( ) 1
1 1

2 −=−=∑∑
= =

••••• JdfyynSSA
K

k

J

j
jjk  
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SSB:  Sum of squared differences between the level means for 

factor B and the grand mean, weighted by the number of 

experimental units for each treatment: 

( ) 1
2

1 1
−=−=∑∑

= =
••••• KdfyynSSB

K

k

J

j
kjk  

SSAB:  Sum of squared differences between treatment means for 

jk and the grand mean, minus the factor level differences, all 

weighted by the number of experimental units for each 

treatment: 

∑∑
= =

•••••••••••••• −−−−−=
K

k

J

j
jkjkjk yyyyyyn

SSAB

1 1

2))()()(( Sin

ce some of the estimated grand means cancel out we obtain: 

  )(
1 1

2∑ ∑
= =

•••••••• +−−=
K

k

J

j
jkjkjk yyyynSSAB  

)1)(1( −−= KJdf
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SSE: Sum of squared differences between the observed values 

for each experimental unit and the treatment means: 

( )∑∑∑
= = =

• −=−=
K

k

J

j
T

n

i
jkijk JKndfyySSE

jk

1 1 1

2 
 

 

Alternative computational formulae: 

TRTR

T

K

k

J

j
kjk

T

K

k

J

j
jkjkTR

T

K

k

J

j
jjk

T

K

k

J

j

n

i
ijk

SSSSySSESSBSSASSSSAB
n

yynSSB
n

yynSS

n
yynSSA

n
yySSy

jk

−=−−=

−=−=

−=−=

•••

= =
••

•••

= =
•

•••

= =
••

•••

= = =

∑∑∑∑

∑∑∑∑∑
2

1 1

2
2

1 1

2

2

1 1

2
2

1 1 1

2

     

      

 

[See Excel Spreadsheet for the Example]
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Assumptions and Transformations: 

Assumptions regarding the error term 

• Must meet assumptions to obtain unbiased estimates of 

population means, and an unbiased estimate of the variance of 

the error term (same as CRD: One Factor) 

o independent observations (not time or space related) 

o normality of the errors,  

o equal variance for each treatment.   

• Use residual plot and a plot of the standardized errors against 

the expected errors for a normal distribution to check these 

assumptions.  

Transformations: 
 
As with CRD: One Factor, you must transform the y-variable  
 
Process: 
• do your analysis with the measured response variable 
• if assumptions of the error term are not met, transform the 

y-variable 
• do the analysis again and check the assumptions; if not me, 

try another transformation 
• may have to switch to another method:  generalized linear 

models, etc. 
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Test for Interactions and Main Effects 

 
The first main question is:  Is there an interaction between the 

two factors?   

       H0: No interaction 
H1: Interaction 

OR:   
 

H0: (φAB+σ2
ε) /σ2

ε  = 1 
H1: (φAB+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φAB is the interaction effect of the fixed treatments. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
 A J-1 SSA MSA= 

SSA/(J-1) 
F= 
MSA/MSE 

Prob F>  
F(J-1),(dfE), 1- α  

B K-1 SSB MSB= 
SSB/(K-1) 

F= 
MSB/MSE 

Prob F>  
F(K-1),(dfE),1- α 

A X B (J-1)(K-1) SSAB MSAB= 
SSAB/ 
(J-1)(K-1) 

F= 
MSAB/MSE 

Prob F>  
F dfAB,dfE,,1- α 

Error nT -JK SSE MSE= 
SSE/(nT -J) 

  

Total nT -1 SSy    
 

 

Source df MS  E[MS] 
A J-1  MSA 

Aφσε +
2

 

B K-1  MSB 
Bφσε +

2

 

A X B (J-1)(K-1)  MSAB 
ABφσε +

2

 

Error nT -JK  MSE 2

εσ  

Total nT -1    
 
See Neter et al., page 826, Table 19.8 for details on expected mean squares; φ  is 
used here to represent fixed effects. 
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For the interactions: 
 

MSE
MSAB

JKnSSE
KJSSABF

T

=
−

−−
=

)/(
)1)(1/(

 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1)(K-1), and df2 is from the denominator (nT-

JK) 

• If the F calculated is greater than the tabular F, or if the p-

value for F calculated is less than α , reject H0. 

o The means of Factor A are influenced by the levels of 

Factor B and the two factors cannot be interpreted 

separately. 

o Graph the means of all treatments 

o Conduct multiple comparisons all treatments (rather then 

on means of each Factor, separately 

o Not as much power (reject H0 when it is false), if this 

occurs. 
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If there are no interactions between the factors, we can look 

at each factor separately – fewer means, less complicated. 

Factor A: 

       H0: μ1 = μ2 = … = μJ 
 

OR:   
 

H0: (φA+σ2
ε))/σ2

ε  = 1 
H1: (φA+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φA is fixed effect for Factor A. 
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From the ANOVA table: 
 

MSE
MSA

JKnSSE
JSSAF

T

=
−
−

=
)/(

)1/(
 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (J-1) and df2 is from the denominator (nT-JK) 

• If the F calculated is greater than the tabular F, or if the p-

value for F calculated is less than α , reject H0. 

o The means of Factor A in the population are likely not 

all the same 

o Graph the means of Factor A levels 

o Conduct multiple comparisons between means for the J 

levels of Factor A, separately 

 

The analysis and conclusions would follow the same pattern for 

Factor B. 
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Analysis of Variance Table Results for the Example 

Source Degrees 

of 

Freedom 

Sum  

of 

Squares 

Mean 

Squares 

F p 

A 2 1258.17 629.08 514.70 <0.0001

B 3 934.75 311.58 254.93 <0.0001

A X B 6 17.00 2.836 2.32 0.0539

Error 36 44.00 1.22 

Total 47 2253.92  

 

If assumptions met, (residuals are independent, are normally distributed, 

and have equal variances among treatments), we can interpret the 

results.  
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Interpretation using α =0.05: 

• No significant interaction (p=0.0539); we can examine 

species and fertilizer effects separately.   

• Are significant differences between the three fertilizer levels 

of Factor A (p<0.0001), and between the four species of 

Factor B (p<0.0001).   

• The mean values based on these data are:   

A1=16.25, A2=23.38, A3=28.75 

B1=17.08, B2=20.83, B3=24.17, B4=29.08   

Did not have to calculate these for each of the 12 treatments 

since there is no interaction. 
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Further analyses, for each Factor separately:   

• Scheffé’s test for multiple comparisons, could then be used to 

compare and contrast Factor level means.  

o The number of observations in each factor level are:  16 

for Factor A, and 12 for Factor B 

o Use the MSE for both Factor A and for Factor B 

(denominator of their F-tests) 

• t-tests for each pair of means could be used instead. 

o Again, use MSE, and 16 observations for Factor A 

versus 12 for Factor B 

o Must split alpha level used in the F-tests by the number 

of pairs 
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Factor A: t-tests for pairs of means 
 
Determine the number of pairs possible   
 

means of  pairs   possible  3
!2!1

!3
2
3

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Use a significance level of 0.05/3 pairs=0.017 for each t-test 
 
Comparing Factor Levels 1 and 2: A1 vs. A2 
 

258.18

16
1

16
122.1

)38.2325.16(

11

0)(

     0:H1      0:H0

1
4

1
1

21

2121

−=

⎟
⎠
⎞

⎜
⎝
⎛ +×

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

−−
=

≠−=−

∑∑
==

••

••••

t

nn
MSE

yyt

K

k
k

K

k
k

μμμμ
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Critical t value from a probability table for:  
 
• df(error) = 36 based on ( nT – JK), and 0.017 significance 

level (For α =0.05 use 0.05/3 pairs for each t-test), 2-sided 
test 

• Using an EXCEL function:  =tinv(0.017,36), returns the value 
of 2.50 (this assumes a 2-sided test).  

• Since the absolute value of the calculated t is greater than 2.50 
we reject H0. 

OR  
• enter your t-value, df (error), and 2 (for 2-sided) into the 

EXCEL function  =tdist(18.258,36,2) 
• Returns a p-value of <0.000. (NOTE that you must enter the 

positive value, and the p-value is for the two “ends” (area 
greater than 18.258 plus area less than -18.258) 

• Since p<0.017, we reject H0 
 
The mean of treatment A1 differs from the mean of A2. 
 

For Factor B 

• Recalculate the number of possible pairs for 4 factor levels 

(will be 6 pairs; divide alpha by this for each test ) 

• The observations per factor level is 12, rather than 16 

• Df(error) and MSE are the same as for Factor A. 
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A Different Interpretation using α =0.10: 

• There is a significant interaction (p=0.0539) using α =0.10; 

cannot interpret main effects (A and B) separately. 

• The mean values based on these data are:  [Excel] 

A1B1=10.25  A1B2=14.25  A1B3= 17.75  A1B4= 22.75    
A2B1=18.00  A2B2=22.50  A2B3= 24.25  A2B4=28.75     
A3B1= 23.00 A3B2=25.75  A3B3=30.50   A3B4=35.75   

 

12 mean values as there is a significant interaction 
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Further analyses: 

• Scheffé’s test for multiple comparisons (or others)  could then 

be used to compare and contrast treatment means (pairs or 

other groupings of means).  The number of observations in 

each treatment are 4 [lower power than if there was no 

interaction], and use the MSE. 

 

• Using t-tests for pairs of means, the number of observations 

are 4 for each jk treatment, use the MSE, and recalculate the 

number of possible pairs out of 12 treatments (will be 66 

pairs!  Retaining α =0.10, we would use 0.10/66 = 0.0015 for 

each t-test )
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Confidence limits for factor level and treatment means 

 
Treatment means: 

jk
JKnjk n

MSEty 21),( α−−• ±
 

Factor A means: 

∑
=

−−•• ± K

k
jk

JKnj

n

MSEty

1

21),( α
 

Factor B means: 

∑
=

−−•• ± J

j
jk

JKnk

n

MSEty

1

21),( α

 

 



 

 73

CRD:  Random and Mixed Effects 

Factors in experiments can be: 

• Fixed:  all levels of interest are included in the experiment; 

we are mostly interested in testing differences and estimating 

means for factor levels 

• Random: levels are randomly selected; not all levels of 

interest are included; we are mostly interested in the variance 

of the response variable that is DUE TO the factor 

• Mixed:  When there is more than one factor, there may be a 

mixture, with some factors that are fixed-effects and others 

that are mixed-effects 

• Often, it is difficult to make the distinction! 
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Examples: 

We are interested in height growth for different families (genetic 

stock).  We select 4 families from all possible families, and 

include these in the experiment.  Then, we get an estimate of the 

variance in the height growth due to changes in genetics.  [One 

random-effect factor – family] 

 

We are interested in seedling success depending on species and 

soil moisture.  We select 3 species out of 12 possible species, 

and include moisture levels of low, medium, and high.  The 

species are considered random-effects (we are interested 

estimating the variance in seedling success due to species).  The 

moisture levels are fixed-effects (we are only interested in these 

specific levels that we might apply in a greenhouse to generate 

seedlings). 
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• This will effect  

o the expected values of the Mean squares, and then, the F-

tests that are used 

o Tests that are done following the overall F-test 

o The conclusions that are made 

 

For J levels of Factor A and K levels of Factor B, we have the 

following model: 

ijkjkABBkjAijk eyy ++++= ••• τττ ˆˆˆ  

Possibilities: 

• Both are fixed (covered already) 

• Both are random 

• One is fixed and one is random
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Expected Mean Square Values Comparison:   

Mean 

Square 

Model I 

Both A and 

B are Fixed

Model II 

Both A and B are 

Random 

Model III 

A is Fixed 

B is Random 

A   

(MSA) 
Aφσε +

2
* 

222

ABA nnK σσσε ++ 22

ABA nσφσε ++  

B  

(MSB) 
Bφσε +

2

 
222

ABB nnJ σσσε ++  
22

BnJσσε +  

A X B 

(MSAB) 
ABφσε +

2 22

ABnσσε +  
22

ABnσσε +  

Error 

(MSE) 

2

εσ  
2

εσ  
2

εσ  

* Aφσε +
2

= 1
1

2

2

−
+

∑
=

J
nK

J

j
jAτ

σε  when the number of observations (n) are all 

equal. 
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F-tests 

• Sums of squares, means squares, etc are calculated the same 

for all three types of models 

• Assumptions:  Same are for fixed-effects models 

• Change the F-test, so that the numerator differs from the 

denominator ONLY in the item that you are testing 

• For means tests, use the same denominator as used for the F-

test (e.g., instead of MSE for Model III, use MSAB when 

testing for differences in Factor A means) 

• Not really relevant to test for differences among means of a 

Random-effects factor as we are interested in the variance due 

to that factor 
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 Maximum Likelihood as an Alternative for Random-Effects and 

Mixed-Effects Models 

• For mixed models, maximum likelihood may be a better 

approach than least squares methods.  

• Why? Better estimates of the variances than least squares 

methods. 

PROC MIXED in SAS 

lme part of the package nlme in R 
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Randomized Complete Block (RCB) 
With One Fixed-Effects Factor 

Freese Handbook, page 34. 

Introduction and Example  

• In RCB, treatments are assigned randomly, but only within 

blocks of treatments 

• Restricting randomization of treatments to within blocks 

(often called sites or trials) is used when the experimental 

units can be grouped by another variable that may impact the 

results  

• In field experiments with large experimental units, blocking is 

often very useful in reducing error variance with only a small 

reduction in error degrees of freedom 

• Blocks are most often random effects (we are interested in the 

variance due to blocks) 

• The interest with RCB is with the factor, not with the blocks; 

the blocks are simply used to reduce the variability among 

experimental units 
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Example: Randomized Block Design (RCB), with Factor A (six 

levels of fertilization: A1 to A6), and two sites.  Randomization 

of Factor A is restricted to within sites. 

Site 1   Site 2  

 

A1 = 9 

 

A6=21 

  

A4=25 

 

A3=19 

 

A3=15 

 

A2=12 

  

A1=12 

 

A5=27 

 

A5=20 

 

A4=17 

  

A2=16 

 

A6=29 

 

Response variable: biomass of grasses and herbs (kg) 

2 observations per treatment – 1 in each site 
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Organization of data for analysis using a statistics package: 

Site Treatment  yjk
1 A1 9
1 A2 12
1 A3 15
1 A4 17
1 A5 20
1 A6 21
2 A1 12
2 A2 16
2 A3 19
2 A4 25
2 A5 27
2 A6 29
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Main questions of interest: 

• Are the treatment means different? 

• Which means are different? 

• What are the estimated means and confidence intervals for 

these estimates? 

As for CRD with one factor 

The organization of the data is the same for CRD with two 

factors as with RCB, BUT the interpretation differs: 

•  It is assumed that there is no interaction between the blocks 

and the treatments. Not really appropriate to check this since 

the randomization of treatments is restricted to within blocks 

• Blocks are usually considered random-effects; want to 

remove the effects of blocks from the analysis 

 

Notation 
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Population:  jkkABjjky εττμ ++++=     

jky  = response variable measured on block j and treatment k 
 
j=1 to J blocks; k=1 to K treatments 
 
μ = the grand or overall mean regardless of treatment or block 
 

Akτ = the treatment effect for k 
 

Bjτ = the block effect for block j 
 

jkε = is actually an interaction term between block and 
treatment, defined as: 

)( BjkAjkjk y ττμε ++−=  
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For the experiment:   
jkkABjjk eyy +++= •• ττ ˆˆ  

••y = the grand or overall mean of all measures from the 
experiment regardless of treatment; under the assumptions for 
the error terms, this will be an unbiased estimate of μ  

•jy = the mean of all measures from the experiment for a 
particular block j  (includes all data for all levels of the 
treatment) 

ky• = the mean of all measures from the experiment for a 
particular treatment k over all blocks 
 

BjAk ττ ˆ,ˆ = under the error term assumptions, will be unbiased 
estimates of corresponding treatment effects for the population 
 

jke = is defined as: 

••••

••••••••

+−−=

−−−−−=

yyyy

yyyyyye

kjjk

kjjkjk )()()(
 

J= number of blocks and also the number of measures 
(experimental units) for treatment k 
KJ = total number of experimental units on which the response 
was measured 
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 Sums of Squares:    

SSESSSSSSy TRBLK ++=  

SSy:  The sum of squared differences between the observations 

and the grand mean: 

( ) 1 
1 1

2 −=−=∑∑
= =

•• JKdfyySSy
K

k

J

j
jk  

SSTR : Sum of squared differences between the treatment means, 

and the grand mean, weighted by the number of blocks 

(experimental units in each treatment) 

( ) 1
2

1
−=−=∑

=
••• KdfyyJSS

K

k
kTR  

SSBLK : Sum of squared differences between the block means, 

and the grand mean, weighted by the number of treatments 

(experimental units in each block) 

( ) 1
1

2 −=−=∑
=

••• JdfyyKSS
J

j
jBLK  
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SSE: sum of squared differences between the observation and 

the grand mean plus the treatment and block effects. 

)1)(1( −−=−−= KJdfSSSSSSySSE BLKTR  

Alternative computational formulae: 

BLKTR

J

j
jBLK

K

k
kTR

K

k

J

j
jk

SSSSSSySSE
JK
yyKSS

JK
yyJSS

JK
yySSy

−−=

−=−=

−=

••

=
•

••

=
•

••

= =

∑∑

∑∑
2

1

2
2

1

2

2

1 1

2

      

      

 

 Assumptions and Transformations: 
• Must meet assumptions for the error term to obtain unbiased 

estimates of population means, and an unbiased estimate of 

the variance of the error term  

o independent observations (not time or space related) 

o normality of the errors,  

o equal variance for each treatment.   

• Use residual plot and a plot of the standardized errors against 

the expected errors for a normal distribution to check these 

assumptions.   To meet assumptions you might have to 

transform the y-variable, as with other designs 
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Differences among treatment means 

 
The main question is:  Is there a difference between treatment 

means: 

       H0: μ1 = μ2 = … = μK 
 

OR:   
 

H0: (φTR+σ2
ε) /σ2

ε  = 1 
H1: (φTR+σ2

ε)/σ2
ε > 1 

 

Where σ2
ε  is the variance of the error terms;  

φTR is fixed effect for the treatments. 
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Using an analysis of variance table: 

Source df SS MS F p-value 
Block J-1 SSBLK MSA= 

SSBLK /(J-1) 
   

Treat. K-1 SSTR MSTR= 
SSTR /(K-1) 

F= 
MSTR/MSE 

Prob F>  
F(K-1),(dfE),1- α 

Error (J-1)(K-1) SSE MSE= 
SSE/ 
(J-1)(K-1) 

  

Total JK -1 SSy    
 

 

Source df MS  E[MS] 
Block J-1 MSBLK  22

BLKKσσ ε +

Treat. K-1 MSTR 
TRφσε +

2

 

Error (J-1)(K-1) MSE 2

εσ  

Total nT -1   
 
NOTE: Neter et al., assume blocks are fixed rather than random 

φ  is used here to represent fixed effects and  
2

σ is used to represent random 

effects. 
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From the ANOVA table: 
 

MSE
MS

KJSSE
KSSF TRTR =

−−
−

=
)1)(1/(

)1/(
 

• Under H0, this follows Fdf1,df2, 1- α  where df1 is from the 

numerator (K-1) and df2 is from the denominator (J-1) (K-1) 

• If the F calculated is greater than the tabular F, or if the p-

value for F calculated is less than α , reject H0, the means of 

treatments in the population are likely not all the same 

Further analyses: 
Can do multiple comparisons between treatments using MSE 

and using J (number of blocks) as the number of observations 

per treatment.   OR Can use t-tests of pairs of means -- must 

divide alpha by the number of possible pairs 

Confidence limits for treatment means 
Treatment means: 

J
MSEty dfEk 21),( α−• ±  

Divide by J, since each block has a measure for each treatment.
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Randomized Block Design with other experiments 

 
RCB with Two Fixed Factors 

• Within each block. treatments are randomly located to each 

experimental unit, but each treatment is a combination of two 

factors 

Example: Randomized Block Design (RCB), with three types of 

food (Factor A: A1 to A3), two species of fish (Factor B) and 

two labs (blocks).    Randomization of treatments (e.g., A1, B2) 

is restricted to within labs. 

Lab 1   Lab 2  

 

A1B1 = 6 

 

A1B2=5 

  

A3B1=11

 

A3B2=12

 

A3B1=10 

 

A2B2=8 

  

A1B1=4 

 

A2B2=9 

 

A2B1=7 

 

A3B2=12

  

A2B1=8 

 

A1B2=5 
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Response variable: weight gain of fish (kg) 

Experimental unit:  one tank of fish; 6 tanks in each lab 

Organization of data for analysis using a statistics package: 

Site 
A 

Food 
B 

Species yijk
1 A1 B1 6
1 A1 B2 5
1 A2 B1 8
1 A2 B2 7
1 A3 B1 10
1 A3 B2 12
2 A1 B1 4
2 A1 B2 5
2 A2 B1 9
2 A2 B2 8
2 A3 B1 11
2 A3 B2 12

 

Main questions of interest—same as for RCB: 

• Is there an interaction between factors? If not, is there a 

difference between means for Factor A?  Factor B? Which 

means are different? What are the estimated means and 

confidence intervals for these estimates? 
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• We are not really interested in the blocks – just used to 

reduce the amount of variation 

Models  
The model is a mixture between a single factor RCB and a 2-
factor CRD; interpretation is more difficult 

o Blocks are usually random not fixed factors 
o Blocks are used to reduce variability within 

treatments; not of interest on their own 
 

Population:  jklBklABlkAjBLKjkly εττττμ +++++=     

jkly  = response variable measured on block j and treatment kl 
 
j=1 to J blocks; k=1 to K levels for Factor A; l=1 to L levels for 
Factor B 
 
Definition of terms follows other designs 
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ANOVA: Blocks Random, Factor A and Factor B are Fixed 
Source df SS MS F  ??? correct? 
 BLK. J-1 SSBLK MSBLK= 

SSBLK/(J-1) 
F= MSBLK/MSE 

Factor A K-1 SSA MSA= 
SSA/(K-1) 

F= MSA/MSBXT 

Factor B L-1 SSB MSB= 
SSB/(L-1) 

F= MSB/MSBXT 

A X B (K-1)(L-1) SSAXB MSAXB=SSAXB / 
(K-1)(L-1) 

F= MSAB/MSE 

Error (J-1)(KL-1) SSE MSE= SSE/ 
(J-1)(KL-1)  

 

Total nT -1 SSy   
 

Source df MS  p-value E[MS] 
 BLK. J-1  MSBLK Prob F>  

F(J-1),(dfE), 1- α  
22

BLKKLσσε +  

A K-1  MSA Prob F>  
F(K-1),(dfBXT),1- α 

Aφσε +
2

 

B L-1  MSB Prob F>  
F(L-1),(dfBXT),1- α 

Bφσε +
2

 

AXB (J-1)(L-1)  MSAXB Prob F>  
F dfAXB,dfE,,1- α 

BA×+φσ ε

2

 

Error (J-1)(KL-1)  MSE  2

εσ  

Total nT -1     
 
φ  is used here to represent fixed effects.   
[see www.forestry.ubc.ca/biometrics course notes for FRST 
430/533 for more on this design]
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 RCB with One fixed, one random factor 
• Within each block treatments are randomly located to each 

experimental unit, but each treatment is a combination of two 

factors 

• For one factor, we are interested in comparing treatment 

means [all levels are in the experiment] 

• For the other factor, we are interested in obtaining an estimate 

of the variance of the response variable that is due to that 

factor [some levels are in the experiment] 

• Must take care with correct F tests and hypotheses. 

 

Example: Randomized Block Design (RCB), with four sites,  

three types of fertilizer (Factor A: A1 to A3, fixed effects), two 

genetic families of pine trees (Factor B, random effects) . 
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Incomplete Block Design 

• Like RCB, BUT there are not enough experimental units in 
each block to have every treatment in each block – 
incomplete 

• For example: 
 
We have 2 sites.  There are 4 experimental units in each site.  
However, we have 5 treatments!  There are not enough 
experimental units in site 1 to have all 5 treatments, nor is there 
enough experimental units in site 2 to have all 5. (REF:  Chapter 
28 of textbook)
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RCB with replicates in each block 
• Within each block there are several replicates of each 

treatment  

• Sometimes called “Generalized RCB” 

Example: Randomized Block Design (RCB), with Factor A 

(three types of food: A1 to A3), and two labs (blocks).    

Randomization of Factor A is restricted to within labs. 

Lab 1   Lab 2  

 

A1 = 6 

 

A1=5 

  

A3=11 

 

A3=12 

 

A3=10 

 

A2=8 

  

A1=4 

 

A2=9 

 

A2=7 

 

A3=12 

  

A2=8 

 

A1=5 

Response variable: weight gain of fish (kg) 

Experimental unit:  one tank of fish; 6 tanks in each lab 



 

 97

Organization of data for analysis using a statistics package: 

Site Treatment  Replicate yijk
1 A1 1 6
1 A1 2 5
1 A2 1 8
1 A2 2 7
1 A3 1 10
1 A3 2 12
2 A1 1 4
2 A1 2 5
2 A2 1 9
2 A2 2 8
2 A3 1 11
2 A3 2 12

 

Main questions of interest—same as for RCB: 

• Are the treatment means different? Which means are 

different? What are the estimated means and confidence 

intervals for these estimates? 
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 Models  
 

Population:  ijkjkTRBLKkTRjBLKijky ετττμ ++++= ×     

ijky  = response variable measured on experimental unit I in 
block j and treatment k 
 
j=1 to J blocks; k=1 to K treatments; i=1 to n replicates 
 
μ = the grand or overall mean regardless of treatment or block 
 

jBLKτ = the block effect for j 
 

TRkτ = the treatment effect for block k 
 

jkTRBLK ×τ = the interaction effect between block j and treatment  
k 
 

ijkε = is error term, specific to observation i 
 
The assumptions for the error term are the same as for other 
designs.   
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Using an analysis of variance table: Blocks Random, Treatments 

Fixed 

Source df SS MS F 
 BLK. J-1 SSBLK MSBLK= 

SSBLK/(J-1) 
F= MSBLK/MSE 

TR. K-1 SSTR MSTR= 
SSTR/(K-1) 

F= MSTR/MSBXT 

BLK 
X TR 

(J-1)(K-1) SSBXT MSBXT= 
SSBXT / 

(J-1)(K-1) 

F= MSBT/MSE 

Error nT -JK SSE MSE= SSE/ 
(nT -JK) 

 

Total nT -1 SSy   
 

 

Source df MS  p-value E[MS] 
 BLK. J-1  MSBLK Prob F>  

F(J-1),(dfE), 1- α  
22

BLKKnσσε +  

TR. K-1  MSTR Prob F>  
F(K-1),(dfBXT),1- α 

TRTBn φσσε ++ ×
22

BLK 
X TR 

(J-1)(K-1)  MSBXT Prob F>  
F dfBXT,dfE,,1- α 

TBn ×+ 22

σσε  

Error nT -JK  MSE  2

εσ  

Total nT -1     
φ  is used here to represent fixed effects. 
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From the ANOVA table: 
 
1. Check for a treatment by block interaction first (hopefully not 

there!). 

2. If there is no block by treatment interaction, F test for 

differences among treatments. 

3. If there are differences, use multiple comparisons (e.g., pairs 

of means t-tests) to see which treatments differ.  Remember to 

correct alpha by dividing by the number of pairs (i.e., tests 

done). 

[see www.forestry.ubc.ca/biometrics and course materials for 

FRST 430/533, for more detaila on this design]
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Latin Square (LS) With One Fixed-Effects Factor 

REF: Neter et al., Chapter 26 (White-newest edition) or Chapter 

28 (Blue – older edition in the library) 

Introduction and Example  

• In RCB, treatments are assigned randomly, but only within 

blocks of treatments; blocking is in “one” direction 

• The Latin Square Design extends grouping of experimental 

units to two variables.   For example, two sites may 

represent north versus south facing stands, and there might 

be a moisture gradient within sites 

• Treatments are randomly assigned in two directions; 

treatment appears once in every row and every column 
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Example:  
 
Response variable:  average 5-year height growth in each 

experimental unit (plot) in cm 

Treatments:  four different species, A1 to A4 

Nutrient Gradient from East to West; Moisture Gradient from 

North to South 

     Means 

   A2=40 A1=35 A4=53 A3=47 43.75
 A4=48 A3=46 A2=39 A1=34 41.75
 A1=27 A4=53 A3=45 A2=41 41.50
 A3=44 A2=39 A1=31 A4=52 41.50

Means 39.75 43.25 42.00 43.50 42.125
 

Treatment Means:   

A1:  31.75      A2: 39.75    A3: 45.50   A4: 51.50 

16 experimental units 
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Analysis of Variance Table:  Assuming that all are fixed-effects. 
 

Source Df SS MS F 
Treatment K-1 SSTR MSTR MSTR/MSE
Row J-1 SSR MSR MSR/MSE 
Column L-1 SSC MSC MSC/MSE 
Error (K-1)(J-2) SSE MSE  
Total JK-1 SSy   
 
Gypotheses and Tests: 

Treatment: H0:  •••••••• === Kμμμμ L321  
(all treatment means are the same and all  
treatment effects equal zero) 

H1: treatment means are not all  
equal 

Test:  FK-1, df(error) = MSTR/MSE 
 

Can test Row effects and Column effects, but these are really not 

of interest. 

If there are differences among treatment means: 
• you might wish to test which means differ using t-tests for 

pairs of treatments (must divide α by the no. of pairs) or a 
multiple comparison test (like Scheffé’s test).   

• Use the MSE from the ANOVA table for each of these. 
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Confidence intervals for treatment means (also use the MSE 
from the ANOVA): 

J
MSEty errordfk )(,2/1 α−•• ±  

Data Organization for Analysis within SAS or R: 

Row Column Treatment Response
1 1 2 40
1 2 1 35
1 3 4 53
1 4 3 47
2 1 4 48
2 2 3 46
2 3 2 39
2 4 1 34
3 1 1 27
3 2 4 53
3 3 3 45
3 4 2 41
4 1 3 44
4 2 2 39
4 3 1 31
4 4 4 52

 
[see www.forestry.ubc.ca/biometrics and course materials for 

FRST 430/533, for more detaila on this design]
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Split-Plot Experiments 
Freese pp. 45 to 50. 
 

Introduction  

• As with factorial experiments, treatments can be combinations 

of more than one factor 

• In a split-plot experiment, the experimental unit (called the 

“whole-plot” for one factor is subdivided, and the second 

factor is applied to the subdivided experimental unit (called 

the “split” plot).  

• Can be a CRD or RCB  

• Split-split plot experiment: one Factor is applied to the whole 

experimental unit, the second Factor is applied to a sub-

divided experimental unit (split-plot), and for the third factor, 

the split-plot is divided once more.  For more on this, see 

“Fundamental concepts in the design of experiments” by 

Charles R. Hicks. 
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Example from Freese: Randomized Block Design, with two 

factors, but using a split-plot for the second factor 

Four plantation areas of each 12 acres (imperial units) each were 

selected (blocks; I, II, III and IV).  Each was divided into two 

areas (whole plot of 6 acres each), and a burning treatment (A or 

B) was randomly assigned to the 2 areas in each block.  Each 

experimental unit was then sub-divided into six areas (split-plot, 

1 acre each), and planting date (a,b,c,d,e,f) was randomly 

assigned to each split-plot  In each split-plot, 1 pound of seeds 

were sown.  At the end of the first growing season, the number 

of seeds were counted.  

(see schematic on page 45 of the Freese book).  
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 Main questions: 

1. Is there an interaction between Factors? 

2. If there is an interaction, look at treatment means for 

differences. 

3. If there is no interaction:  

a. Are there differences between levels for Factor A? 

(whole plot) 

b. Are there differences between levels for Factor B? (split 

plot) 
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 Analysis of Variance Table (for Split-Plot RCB) 
 

Source df SS MS 
Block J-1 SSBLK MSBLK 
Factor A  K-1 SSA MSA 
Exp. Err. #1 (J-1)(K-1) SSE1 MSE1 
Factor B L-1 SSB MSB 
A x B (K-1)(L-1) SSAXB MSAXB 
Exp. Err. #2 K(J-1)(L-1) SSE2 MSE2 
Total JKL-1   
 
 
What are the appropriate F-tests?   

• Depends upon which are fixed and which are random-

effects.   

• Then, need the expected means squares in order to decide 

this. 

• If both factor A and Factor B are fixed, then Exp. Err. #1 is 

used for Factor A, and Exp. Err. #2 is used for Factor B and 

for A X B.   
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Organization of Example Data for Analysis using a Statistics 
Package: 
 

Block Burn_Type Date yjkl
I A a 900
I A b 880
I A c 1530
I A d 1970
I A e 1960
I A f 830
I B a 880
I B b 1050
I B c 1140
I B d 1360
I B e 1270
I B f 150
II A a 810
II A b 1170
II A c 1160
II A d 1890
II A e 1670
II A f 420
II B a 1100
II B b 1240
II B c 1270
II B d 1510
II B e 1380
II B f 380
III A a 760
III A b 1060
III A c 1390
III A d 1820
III A e 1310
III A f 570
III B a 960
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III B b 1110
III B c 1320
III B d 1490
III B e 1500
III B f 420
IV A a 1040
IV A b 910
IV A c 1540
IV A d 2140
IV A e 1480
IV A f 760
IV B a 1040
IV B b 1120
IV B c 1080
IV B d 1270
IV B e 1450
IV B f 270

 
 

[see www.forestry.ubc.ca/biometrics and course materials for 
FRST 430/533, for more detaila on this design]
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CRD: Two Factor Experiment, Both Fixed Effects, with 
Second Factor Nested in the First Factor 
 not in the Freese Handbook 

Introduction and Example  

• In a CRD with two factors, a crossed design shows that all 

levels of Factor A are crossed with all levels in Factor B.   

Example: 

o Response is weight gain 

o Factor A: Salmon or Trout 

o Factor B:  no warming; warmed 1 degree C; warmed 2 

degrees C. 

o Treatments:  6 treatments; all combinations of Factor A 

crossed with Factor B. 

• A nested design is when Factor B has different levels, 

depending on which level of Factor A.  Example: 

o Response:  Weight gain 

o Factor A: Salmon or Trout 
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o Factor B:   

 For Salmon:  No warming; warmed 2 degree C 

 For Trout: No warming; warmed 1 degrees C 

• Both CRD and nested designs have “No warming”, but the 

levels of warming differ by Factor A (species) for the nested 

design. 

• Sometimes it is difficult to decide if the experiment is crossed 

or nested.  For example: 

o For the experiment, could evaluate this as Factor A, 

Salmon or Trout crossed with Factor B, Not warmed or 

warmed, where the level of warming differs slightly by 

species. 
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Example: 

 

A1B1 = 10 

 

A1B1 = 11 

 

A1B2= 13 

 

A2B4 = 23 

 

A1B2 = 15 

 

A2B3 = 18 

 

A2B4= 25 

 

A1B1 = 11 

 

A2B4 = 20 

 

A2B3 = 18 

 

A1B1=  9 

 

A2B3 = 18 

 

A2B4 = 22 

 

A1B2 = 15 

 

A2B3 = 18 

 

A1B2 = 14 

 

Nested design with two factors, where the second factor is 

nested in the first factor, with four replications per treatment. 
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Data: 

A B result
1 1 10.00
1 1 11.00
1 1 9.00
1 1 11.00
1 2 15.00
1 2 15.00
1 2 13.00
1 2 14.00
2 3 18.00
2 3 19.00
2 3 17.00
2 3 18.00
2 4 20.00
2 4 22.00
2 4 25.00
2 4 23.00

 

[see www.forestry.ubc.ca/biometrics and course materials for 
FRST 430/533, for more detaila on this design]
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CRD:  One Factor Experiment, Fixed Effects with 
subsampling (i.e., hierarchical) 

 
Example:  Site Preparation 
 
A forester would like to test whether different site preparation 
methods result in difference in heights.  Fifteen areas each 0.02 
ha in size are laid our over a fairly homogeneous area.  Five site 
preparation treatments are randomly applied to 15 plots.  One 
hundred trees are planted (same genetic stock and same age) in 
each area.  At the end of 5 years, the heights of EACH seedling 
in each plot were measured. 
 
We have three hierarchical levels:  

• Treatments 
• Experimental units within treatments – level at which the 

treatment is applied 
• Trees within experimental units – are “nested” in 

experimental units; different trees in different experimental 
units 

We have variation: 
• Between treatments 
• Between experimental units within each treatment 
• Between trees within each experimental unit in each 

treatment 
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Notation 
 
Population:  SUijlEUijTRjijly εετμ +++=     

ijly  = response variable measured on sample l of  experimental 
unit i and treatment j 
 
j=1 to J  treatments 
 
μ = the grand or overall mean regardless of treatment 

TRjτ = the treatment effect  
jμ = the mean for treatment j; grand mean plus the treatment 

effect 
 
The difference between a particular measure for a sample l,  an 
experimental unit i, and the mean for the treatment j that was 
applied to it is now two parts: 

jijlSUijlEUij y μεε −=+  
The error for the experimental unit and the error for the sample 
unit in the experimental unit.  
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Analysis Methods 
 
Possible ways to analyze this experiment are: 
 
1. Simplify this by calculating averages for each experimental 

unit and use these in the analysis of variance (would then be 
Completely Randomized Design: one factor, already 
covered) 

 
2. Keep each sample observation, and use least squares to 

calculate as per CRD: one factor, but also estimate the within 
experimental unit variance (will cover this now) 

 
3. Keep each sample observation, and use a mixed model and 

maximum likelihood, with the two “error terms” as random-
effects (e.g., PROC MIXED in SAS). 

 
Option 1 is simpler; Options 2 and 3 allow us to look at the 
variability within experimental unit.   
 
Another option you will see but NOT CORRECT!! 
• Keep each sample observation and treat this as one 

experimental unit as if this was a CRD: one factor 
experiment.   

Since the treatment was NOT applied at this level, this analysis 
would not be correct.  Treatments are randomly assigned to the 
experimental unit level.  The degrees of freedom and the 
estimated error variance used in the F-test would not be 
correct.  In some literature, the samples are termed “pseudo-
replications”. 
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Example: 
• Have three temperatures: low, medium, and high (J=3) 
• For each, we have two experimental units (batches) (n=2) 
• Randomly assign temperatures to each batch 
• For each batch, we have three loaves of bread (m=2) 
• The response variable is crustiness of bread. 

 
Data: 

temp batch observation yijl
low 1 1 4
low 1 2 7
low 1 3 5
low 2 1 12
low 2 2 8
low 2 3 10
medium 1 1 14
medium 1 2 13
medium 1 3 11
medium 2 1 9
medium 2 2 10
medium 2 3 12
high 1 1 14
high 1 2 17
high 1 3 15
high 2 1 16
high 2 2 19
high 2 3 18

[see www.forestry.ubc.ca/biometrics and course materials for 
FRST 430/533, for more detaila on this design]
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RCB:  One Factor Experiment, Fixed Effects with 

subsampling   

• Blocked (random or fixed-effect, usually random) 
• Fixed-effect factor A (we will label this as TR for treatment) 
• Experimental units – level at which the block with factor A 

combinations are applied; may be one experimental unit or 
more than one (generalized RCB or RCB with replicates) 

• Sampling units – number of items measured within each 
experimental unit. 

 
Notation for a Generalized RCB with subsampling: 
 
Population:  

SUijklEUijkTRjkBLKTRkBLKjijly εετττμ +++++= ×     

ijkly  = response variable measured on sample l of  experimental 
unit i, block j, and treatment k 
 
The difference between a particular measure for a sample l,  an 
experimental unit i, and the mean for the block j and treatment k 
combination that was applied to it is now two parts: 

SUijklEUijk εε +  
The error for the experimental unit and the error for the sample 
unit in the experimental unit.  
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Analysis Methods 
Possible ways to analyze this experiment are: 
1. Simplify this by calculating averages for each experimental 

unit and use these in the analysis of variance (would then be 
Generalized Randomized Complete Block Design: one factor, 
already covered) 

 
2. Keep each sample observation, and use least squares or  to 

calculate as per Generalized Random Complete Block: one 
factor, but also estimate the within experimental unit variance 
(will cover this now) 

 
3. Keep each sample observation, and use a mixed model and 

maximum likelihood, with the two “error terms” as random-
effects (e.g., PROC MIXED in SAS). 

 
Option 1 is simpler; Options 2 and 3 allow us to look at the 
variability within experimental unit.   
 
Another option you will see but NOT CORRECT!! 
• Keep each sample observation and treat this as one 

experimental unit  
• Since the treatment was NOT applied at this level, this 

analysis would not be correct.  Treatments are randomly 
assigned to the experimental unit level.  The degrees of 
freedom and the estimated error variance used in the F-
test would not be correct.  In some literature, the 
samples are termed “pseudo-replications”. 

 [see www.forestry.ubc.ca/biometrics and course materials for 
FRST 430/533, for more detaila on this design] 
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Analysis of Covariance (ANCOVA) 
For experimental designs covered so far: 

• The response variable (y) is a continuous variable 

• A number of class variables (x’s) are used (effects) to explain 

the variation in the response variable, via a linear model 

• We are interested in differences in means for each class 

variable (fixed-effects) or in the variance in the response 

variable that is due to the class variable (random-effects). 

For linear regression analysis, covered in the beginning of the 

course: 

• The dependent variable (y) is a continuous variable 

• A number of continuous predictor variables (x’s) are used to 

explain the variation in the dependent variable in a linear 

equation. 

• We also introduced class variables (x’s also) to help explain 

the variation in the dependent variable, represented by: 

o Dummy variables to alter the intercept 

o Interactions between dummy variables and continuous 

predictor variable to alter the slope. 
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Analysis of covariance is an experimental design, where we add 

continuous explanatory variables (called covariates) to help 

explain the variability in the response variable, for example: 

• Record the initial weight of all fish prior to adding different 

foods.  Use this initial weight as a covariate 

• Record soil moisture of all plots in a field prior to applying 

different treatments.   Use this soil moisture as a covariate. 

• The covariates help “even-out” conditions that we were not 

able to control in trying to obtain homogeneous treatment 

units, and explain some of the variation in the response 

variable.  We use these covariates to “adjust” the factor 

level means to a common value (usually the mean) of the 

covariate. 

Blocking does this in a similar fashion, but: 

• Blocking restricts the randomization of treatments to 

experimental units (treatments assigned randomly within 

blocks) 

• Blocks are class variables. 
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For analysis of covariance: 

o  the slopes are considered the same over all treatments 

(common slope), in order to assess the impacts of 

different factors (called homogeneity of slopes) 

o This must be tested, as the slope of y versus x may 

vary by treatment  

Model: 
 
We add a covariate to whichever experimental design we wish 
to use.  For example, using an RCB with two fixed-effect 
factors, we add in the covariate.   
 
Population:  

jklBklABlkAjBLKjkljkl xxy εττττβμ +++++−+= )(     

jkly  = response variable measured on block j and treatment kl 
 
j=1 to J blocks; k=1 to K levels for Factor A; l=1 to L levels for 
Factor B;  and definition of terms follows other designs.   
 
xjkl is a measurement of the covariate; β  is the slope of the line 
between y and x.   
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Example:   

A university would like to evaluate three ways of teaching basic 
statistics:  
(A) stats dept. method (3 lectures),  
(B) computer method (3 lectures plus lab using statistical 
software with no lab write-up),  
(C) applied science method (3 lectures plus written lab).  
“Success” is measured as a grade in a common examination for 
all students.   
 
The response (exam grade) might be related to abilities before 
taking the course: 
• Grade in Math 12 is used as a covariate (x variable) and 

obtained for each student.   
• Then students are randomly assigned to one of the three 

class types. 
 
The Math 12 grade is then used to “adjust” the grade in the 

common exam. 
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Looking at 
the trends, 
between 
Mark in 
Stats (y) 
versus Mark 
in Grade 12 
math(x), the 
slopes 
appear to be 
similar. 
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Ignoring the 
Grade 12 
March, the 
mark in 
Statistics is 
higher for 
A, and B 
and C are 
similar. 
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Using the 

covariate, and 

adjusting the 

means along the y 

vs x trend line to 

the average Mark 

in Grade 12 Math, 

C and A are 

similar, and B is 

different 

 
 
 
 
 
 
 

60

65

70

75

80

85

90

95

60 70 80 90 100
Mark in Grade 12 Math

M
ar

k 
in

 S
ta

tis
tic

s

C 
A
B

 
 

 

If the Math grade was not used as a covariate, the conclusion 

would be much different.   
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Variations in ANCOVA: 

1. Slopes are not equal 
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• Harder to interpret, as with any interaction 

o Use graphs to show relationships 

o Switch to a regression approach to finding equations 

using the continuous and class variables (represented 

as dummies) and interpret these results.   

2. More than one covariate.  Can add in more than one 

continuous variable.   

[see www.forestry.ubc.ca/biometrics and course materials for 

FRST 430/533, for more detaila on this design] 


